10338 - The Journal of Neuroscience, November 28, 2018 - 38(48):10338 —10348

Behavioral/Cognitive
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The extent to which subjective awareness influences reward processing, and thereby affects future decisions, is currently largely un-
known. In the present report, we investigated this question in a reinforcement learning framework, combining perceptual masking,
computational modeling, and electroencephalographic recordings (human male and female participants). Our results indicate that
degrading the visibility of the reward decreased, without completely obliterating, the ability of participants to learn from outcomes, but
concurrently increased their tendency to repeat previous choices. We dissociated electrophysiological signatures evoked by the reward-
based learning processes from those elicited by the reward-independent repetition of previous choices and showed that these neural
activities were significantly modulated by reward visibility. Overall, this report sheds new light on the neural computations underlying
reward-based learning and decision-making and highlights that awareness is beneficial for the trial-by-trial adjustment of decision-
making strategies.
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(s )

The notion of reward is strongly associated with subjective evaluation, related to conscious processes such as “pleasure,” “liking,”
and “wanting.” Here we show that degrading reward visibility in a reinforcement learning task decreases, without completely
obliterating, the ability of participants to learn from outcomes, but concurrently increases subjects’ tendency to repeat previous
choices. Electrophysiological recordings, in combination with computational modeling, show that neural activities were signifi-
cantly modulated by reward visibility. Overall, we dissociate different neural computations underlying reward-based learning and
decision-making, which highlights a beneficial role of reward awareness in adjusting decision-making strategies. j
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tion. Actions that often have been linked with rewards (e.g., food,
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Introduction
How we make decisions depends strongly on the outcomes that
have been previously associated with the available courses of ac-
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been rewarded (or even punished; Dayan and Balleine, 2002;
Berridge and Robinson, 2003; Rangel et al., 2008). Generally, the
notion of reward is strongly associated with subjective evalua-
tion, related to conscious processes such as “pleasure,” “liking,”
and “wanting” (Berridge and Robinson, 2003). However, how
human decision-making changes depending on reward awareness is
unclear. Assessing how the level of awareness of information changes
or may bias value-based learning and decision-making may prove
critical to understanding apparent irrationality observed in human
behavior (Kahneman, 2003; Evans, 2008; Weber and Johnson, 2009;
Evans and Stanovich, 2013; Newell and Shanks, 2014).

Rewards have two fundamental roles in the decision-making
process. First, in decision situations, expected rewards act as in-
centives, which determine choices and increase the amount of
motor or cognitive effort one is willing to expend to reach a goal
(Berridge, 2004; Schmidt etal., 2012). Second, after a decision has
been enacted and the action effectuated, the obtained reward, or
the absence of reward, drives important learning processes: suc-
cessful actions are reinforced, while unsuccessful ones are dis-
couraged (Sutton and Barto, 1998). Despite rewards being
strongly associated with subjective feelings, notably with emo-
tions and with the notion of expected pleasure (Berridge and
Robinson, 2003), recent studies have reported that reward cues
that are masked from awareness can still directly influence task
performance (Pessiglione et al., 2007; Aarts et al., 2008; Bijleveld
etal., 2012; Capa et al., 2013). These results suggest that the first
role of reward information—incentivizing decision and effort
production—may be processed outside the scope of awareness in
the human brain to facilitate human performance (but for results
challenging this view, see Bijleveld et al. 2014). On the other hand,
little is known about whether and how the second role of rewards
(i.e., the propensity to reinforce successful actions) is modulated
by awareness.

To address this question, thirty-two participants performed a
probabilistic reversal learning task in which we manipulated the
visibility of reward using a standard masking technique. Partici-
pants were instructed to choose one of two response options,
which led probabilistically either to a significant reward (a 50 cent
coin, “reward condition”) or a negligible one (a 1 cent coin, “no-
reward condition”). Response-reward contingencies reversed
several times over the course of the experiment, and participants

Experimental setup and behavior. a, Two response options (white boxes on the left/right of fixation) were shown on
the screen until a response was given. A correct response was rewarded with a 70% probability (50 cent coin) and not rewarded
with a 30% probability (1 cent coin). Reward visibility was manipulated by masking. Unmasked (long coin presentation, short
backward mask presentation) and masked (short coin presentation, long backward mask presentation) reward trials were mixed
within blocks and randomly chosen across trials (each with a 50% probability). Which response option was most rewarded changed
every 75—125 trials. b, The percentage of switches, at the group level (in black) and for individual subjects (in gray) after specific
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were instructed to select the response op-
tion that was most often rewarded (Fig.
la). Masked (M) and unmasked (UM)
feedback were mixed within blocks to ex-
plore the relative weighting of both types
of feedback. We combined EEG measure-
ments with computational modeling to
investigate, at the time of reward process-
ing and on a trial-by-trial basis, the neural
correlate of the different processes influ-
encing participants’ future choices and
how those were affected by reward visibil-
ity. Thereby, the present work builds on
previous studies that have linked rein-
forcement learning (RL) models to hu-
man neural data obtained from both
fMRI and EEG measurements (Debener
etal., 2005; O’Doherty et al., 2007; Daw et
al., 2011; Fischer and Ullsperger, 2013;
Hauser et al., 2014; Ullsperger et al., 2014;
Fouragnan et al., 2017). In line with pre-
vious work, event-related potential (ERP)
analyses focus on the feedback-related negativity (FRN) and the
P3 component (Holroyd and Coles, 2002; Holroyd et al., 2003).
The investigations on the EEG correlates of RL learning concen-
trate on the following three (computational) variables: the pre-
diction error (signed PE), the level of surprise (unsigned PE), and
the switch/stay behavior on the next trial (Cohen and Ranganath,
2007; Fischer and Ullsperger, 2013; Fouragnan et al., 2017; Col-
lins and Frank, 2018). This approach allows us to investigate the
impact of reward visibility on different cognitive processes in-
volved in probabilistic reward-guided learning.

M- UM+
Previous trial

Materials and Methods

Participants

Thirty-two students from the University of Amsterdam (8 males, 24
females; mean = SD age, 22.25 = 3.1 years) participated in the experi-
ment for course credits or financial compensation. All participants gave
their written informed consent before participation, had normal or
corrected-to-normal vision, and were naive to the purpose of the exper-
iments. All procedures were executed in compliance with relevant laws
and institutional guidelines and were approved by the local ethical com-
mittee of the University of Amsterdam.

Task

Stimuli were presented using Presentation software (Neurobehavioral
Systems) against a black background at the center of a 20 inch VGA
(video graphics array) monitor (frequency, 60 Hz), which was viewed by
the participants from a distance of ~80 cm. Participants should fixate at
the center of the screen and choose between a left or a right box 15 cm
distant from each other by pressing a correspondent left or right chair
button (parallel button).The chosen square was illuminated in blue for
600 ms, indicating the participants’ response followed by a reward (a 50
cent coin) or a punishment (a 1 cent coin) that could be shown in a visible
(100 ms) or masked (17 ms) way. Stimuli were used similarly to those by
(Zedelius et al., 2012). A variable intertrial interval, 1500-2500 ms, sep-
arated each trial. If participants did not select a target after 1500 ms, a
“too late!” message was displayed (Fig. 1a).

Sides were rewarded in a 70%/30% fashion. This probability condition
was reversed several times during the 1200 trials so that, to decide advan-
tageously, participants had to keep track of eventual “rule changes.” We
refer to the choices made on the 30% probability side as “incorrect
choices,” and those made according to the 70% rewarded side as “correct
choices.” Probabilities were fixed across trials within blocks, which lasted
75125 trials. The block length had a minimum value, but it was depen-
dent on how fast participants could learn the rule at stake. To assure that



10340 - J. Neurosci., November 28, 2018 - 38(48):10338 —10348

Correa et al. @ Awareness and Reinforcement Learning

a r 7 b
CHOICE FEEDBACK PERSEVERATION
p(C,=1L) = <ﬂ(th_4; P) PE; =R, — Qg P,., = m X Rep, Learning rate o
p:x>1/(1+e7¥)
_ v re { LifC =1 AlBlc|Aa|B]|C
LEARNING Po-1ifc, =R =
0 = Qe+ axPE Sk a| 1|23 ]|10]11]12
Ct+1 Ct t a. None S E
g e — (]
VALUE WEIGHT A.Only conscious Tym =0; Ty =0 $o b|4|5|6|13|14]15
agy > 0; ay =0 - 7]
dQey1 =B X (Qe+1 — Qre+1) o v b. Identical E = c| 7|89 |16|17]| 18
- . i My #0; Iy =0
I. Identical B Identical um # 05 Tow = Tow : "
UM » UM — Y“uM g a
Bum > 0; Bm = Bum <« c. Differential
- - C. Differential : i
I1. Differential > 0; oy > 0 Tym # 0; Ty # 0 Value weight
Bum > 0; By >0 o "
c d e
10 OCOXT 10+—~0-0—00—OO0—0——+ 1
50 (9]
o ™™ —
#* 3 5 3 5l ev T UM S
K] © o ¢ g %
B T £ [ = r oM 5
£ 3 a o Bp=-0.21(0.05) % Bp=-0.04 (0.03) 0 38
_8 g o B4=1.20(0.02) 0 4 B4=1.10(0.01) o UM c
- — T T T T =T - [=}
2 2 0 2 4 6 8 10 0 2 4 6 8 10 4
E @ Simulated 3UM Simulated 3M Bm 8
14 1 L L L L ,
5 s |/ o - Aum 4
0 3 S y ' ' ' '
18 S - r BUM BM aUM aM 7UM 7M
estimated model # B 05/ 205]
i g 7
£ £ i
1g 100 a Bo=0.02(0.01)| & Bo=0.00 (0.00) 1
g 0. B1=0.98 (0.01) | 0 ¥ 2 By= 1.93 (0.01) | -~
S 0 02 04 06 08 1 0 02 04 06 08 1 x
: 35 Simulated UM Simulated aM 9
° [ <
3 & 6 : : = 6 : : o g
€ 5 s | W [
B S 3 4] e 4 05 >
2 5} = * L )
& ] ° c
5 < ] 54 £
2 ° o 24 5 24 S ©
£ Q © a
@ g E - £ \ b
i) E 0+ \ Bo=-0.01(0.01)| G 0+ Bo=-0,04 (0.01)[
1 AR RN 0 -2 “@1:1}01 0o -2 - T B1:1'?3(0"91) T T T T T 0
) 2 0 2 4 6 2 0 2 4 6
estimated model # Simulated UM Simulated M BUM M aUM oM mUM M
parameter #
Figure2. Modeling approach. a, The computational architecture used to build the model space. b, Model space. Eighteen models were built by systematically combining the different options

available for the different computational modules. ¢, Model identifiability analysis. Data from 32 synthetic participants were simulated with each of our 18 models. Bayesian model selection was used
to identify the most probable model generating the data, using model exceedance probability. This procedure was repeated 50 times. Overall, all 18 models were correctly identified more than 90%
of the time (=45 out of 50 simulations, see top confusion matrix), with an average exceedance probability > 90% (bottom confusion matrix). d, Parameter recovery analysis - general. Overall, data
from 1600 synthetic participants (50 simulations X 32 individuals) were simulated with the full model (model 18). The 6 estimated parameters per participants were then regressed against the true
parameters used for simulating the data. Results show very good identifiability, with regression intercepts (/3,5) close to 0, regression slopes (3,5) close to Tand highly significant (all p-values lower
than Matlab's precision —i.e. reported as = 0). Each dot represents a syntheticindividual. The black dotted lines represent the identity line, the red continuous lines the best linear fits, and the shaded
grey areas the 95% confidence interval around the best-linear fit. The grey densities represent the probability distributions used to sample the parameters. e, Parameter recovery analysis — individual
simulations. The confusion matrices represent summary statistics of the correlations between parameters, estimated over 32-subjects simulations, and averaged over the 50 simulations. Diagonal:
correlations between simulated and estimated parameters. Off diagonal: cross correlation between estimated parameters. Top: Pearson correlation (R). Bottom: explained variance (R2).

everyone could learn the probabilities, for at least 10 trials in a row they
should have been able to choose the “correct side” option for >60% of
the last 25 trials, otherwise additional trials could be added until this
condition was completed. Self-paced rest breaks were given every 70
trials, presenting participants with the percentage of correct sides they
have chosen according to the rule at stake. This break never coincided
with the changing probability conditions, and participants were told
about that.

In 10% of the trials, a forced choice discrimination question asked
“Which coin did you just see?” while displaying a 1 cent or a 50 cent coin.
This questions was asked equally often after unmasked and masked
coins. Participants were instructed that the probability of the correct
response being a 1 cent or 50 cent coin was 50%. It was explained to
participants that they would be paid according to their performance at
the end of the experiment. Finally, all participants received a bonus of €5

on top of what they had already received. Participants were instructed to
choose one of the two targets on each trial, to pay attention to the reward,
and to try to win as much money as possible.

Models building blocks

We designed 18 different models, all adapted from a Q-learning model.
Our Q-learning included the following three basic modules: learning,
choice, and perseveration (Fig. 2a).

Learning. The basic idea is that participants learn by trial and error to
compute a value Q for each option (choosing the left or the right cue). At
each trial ¢, after a choice is made and the outcome of the choice R, is
revealed, the Q value of the chosen option (Q,. ) is updated by inte-
grating a so-called prediction error, §,, which compares what was ex-
pected (Q.,) to the actual outcome, as follows:

8, =R, = Qg
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This update is typically scaled by a learning rate e, such that:

Qcii1 = Qe + a X 8,

Choice. To account for the fact that people try to maximize their ex-
pected outcome, but can make errors or explore locally suboptimal op-
tions, the choice (C,) is typically implemented as a softmax function, as
follows:

P(C,=a) = (1 + exp(B X (Qa) = Qb)) ",

where 3 is the slope of the logistic choice function—the inverse temper-
ature parameter—which we refer to as the value weight.

Perseveration. To capture the tendency of participants to stick to their
previous choices independently of the received reward, we also included
a perseveration bias, 7, in the choice function. This function becomes
the following:

P(Ct = a) = (1 + EXP(B X (Qr(a) - Qt(b)) + 7 X Pr))717

where

_[lifCi=a
Per=1-1ifc,= v

and m governs the weight of the past choice on the present decision,
referred to as the perseveration weight.

When both learning and perseveration are present, the relative impor-
tance of B and  allow the model capture participants tendency to trade-
off between sampling from learned value () versus simply repeating
previous choices (7).

Model space

Given that our task incorporates two types of reward—masked versus
unmasked—several scenarios are possible for learning and persevera-
tion, which can be accounted for by different models. We first assumed
that all models share a common basic block; that is, people learn from
unmasked reward. Additionally, people can learn from masked reward,
either at the same pace or at a different pace than after unmasked reward.
Likewise, the value weight parameter can be identical or different after
unmasked versus masked reward. As for the perseveration, it can be
absent after both masked and unmasked reward: present and of identical
strength, or present with different strengths. Those three learning, two
choice-temperature, and three perseveration scenarios were therefore
combined, generating 18 possible models in our model space (Fig. 2a,b).

Parameter optimization

We optimized the free parameters (o values, 3 values, and 7 values) of
the models by minimizing the negative log likelihood (LLmax) of the
participant-observed choices under the model using the fmincon func-
tion in Matlab (MathWorks), initialized at multiple starting points of the
parameter space.

Model comparison

LLmax values were used to compute the Bayesian information criterion
(BIC), for each model, at the individual level [BIC = 2 X (LLmax) +
df X log(,;,)], and used it to approximate the model evidence (e =
—BIC/2). Individual model evidence values were then fed to the mbb-
vb-toolbox (http://mbb-team.github.io/VBA-toolbox/) to run a Bayes-
ian model comparison (BMC; Daunizeau et al., 2014). This Bayesian
procedure estimates, among other criteria, the exceedance probability
(denoted XP) for each model within a set of models, given the data
gathered from all participants. XP quantifies the belief that the model is
more likely than all the other models of the set. An XP >95% for one
model within a set is therefore typically considered as significant evidence
in favor of this model being the most likely. In addition, the relative BIC
(6BIC; i.e., the BIC for each model relative to best model) can be used to
compare models based on the Bayes factor scale proposed by Kass and
Raftery (1995).
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Model identifiability and parameter recovery

We ran 50 simulations, generating choice patterns for cohorts of 32
synthetic subjects with the 18 different models in our model set. For those
simulations, parameters were randomly sampled from probability distri-
butions, which approximate the distribution of parameters estimated
from fitting the complete model (i.e., model 18) to the choices of our 32
participants. As is common in the field (Daw et al., 2011; Palminteri et al.,
2015), inverse temperature parameters were sampled in Gamma distri-
butions defined by a shape (a) and a scale (b) parameter (UM: a = 4.0;
b = 0.5, M: a = 1.5; b = 1.0), and learning rates were sampled in
distributions defined by two parameters,  and 8 (UM: a = 5.0; B = 1.5;
M: a = 1.5; B = 5.0). Finally, perseveration parameters were sampled in
normal distributions, characterized by mean (w) and SD (o5 UM: u =
0.7; 0 = 0.8; M: u = 1.7; 0 = 1.2). Task properties and contingencies
(e.g., block lengths) used for the simulations were rigorously identical to
the 32 instances that participants faced in our experiment.

Then, we ran our BMC analysis on those 50 X 18 different simulations
and checked that all models are identifiable (i.e., can be correctly esti-
mated as the most probable model in the set of 18 models by the BMC
approach when they were actually used to generate the data). This first
analysis intends to verify that nothing in the design of the model set, the
parameter estimation, or the model comparison approach, unduly ad-
vantages model 18 (e.g., that it is the most complex model), leading to
mistakenly overestimate the probability that model 18 explains our par-
ticipants’ choices in lieu of other models. Next, because our models are
nested, we assessed the parameter recovery in the full-model case (model
18): we computed the Pearson correlation between the parameters used
to generate the data, and the parameters estimated by the maximum-
likelihood fitting procedure. Additionally, we estimated the correlation
between estimated parameters.

Parameters and model recovery

All 18 models are correctly identified >90% of the time, with an average
XP of >90% (Fig. 2¢). A closer look at the parameters estimated from the
1200 trials over the 50 simulations run with model 18 (the most complex
model, in which all other model are nested) show that parameters are also
very well recovered, with regression intercepts (8, values) close to 0, and
regression slopes (3, values) close to 1 and highly significant [all p values
lower than the precision Matlab are reported as equal to 0; Fig. 2d]. At the
scale of a single simulation, the correlation between simulated and esti-
mated parameters over 32 synthetic participants was very significant
(averaged Pearson correlation = 0.92, averaged R? = 0.85; Fig. 2e, diag-
onals), while no cross-correlation was observed between parameters (all
R? values <0.06; Fig. 2e, off-diagonals).

EEG measurements

EEG data were recorded and sampled at 512 Hz using a BioSemi Activ-
eTwo System. A total of 64 four scalp electrodes was measured, as well as
4 electrodes for horizontal and vertical eye movements (each referenced
to their counterpart) and 2 reference electrodes on the ear lobes (the
average was used for referencing). After acquisition, standard prepro-
cessing steps were performed in the EEGLAB toolbox in Matlab. Data
were bandpass filtered from 0.5 to 40 Hz off-line for ERP analyses. Ep-
ochs ranging from 1.8 s before to 2 s after reward presentation were
extracted. Linear baseline correction was applied to these epochs using a
—200 to 0 ms window. The resulting trials were visually inspected, and
those containing artifacts were removed manually. Moreover, electrodes
that consistently contained artifacts were interpolated. Finally, using in-
dependent component analysis, artifacts caused by blinks and other
events not related to brain activity were removed from the EEG data.

ERP analyses

We focused on ERP components related to reward outcome processing
with different latencies and topographical distributions. To zoom in on
these specific components a central region of interest (ROI) was defined
as comprising 15 midline electrodes (Fz, F1, F2, FC1, FCz, FC2, Cz, CI,
C2,CPz, CP1, CP2, Pz, P1, and P2), where both the relevant components
can be observed (frontocentral FRN and centroparietal P3; Cohen et al.,
2007, 2011; Chase et al., 2011; Ullsperger et al., 2014). Selecting a pre-
defined ROI limits the number of comparisons that need to be per-
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formed, but we note that the results were robust and were not dependent
on the specific sets of electrodes used as an ROI (see Fig. 4). We investi-
gated the effect of reward outcome separately for masked and unmasked
trials. To correct for multiple comparisons due to the number of time
points tested, p values were false discovery rate (FDR) corrected at an
a-level of 0.05. All statistical analyses were performed in Matlab (Math-
Works). Based on this ERP analysis, three time windows of interest were
selected for follow-up analyses in which we related model parameters to
single-trial EEG responses.

Single-trial regression analyses

Multiple regressions of ERP amplitude on three model parameters were
conducted. For each subject, each electrode, and each time point, the
three parameters (PE, |PE|, switch/repeat on the next trial) were entered
as predictor variables, and the ERP amplitudes as observations in the
regression model. We checked that the correlations between the time
series of the three predictors was low (absolute value of Pearson’s R
averaged over subjects, <0.2), resulting in low-multicollinearity indices
[variance inflation factors (VIFs): VIF,; = 1.0596 = 0.0099; VIFpy =
1.0524 = 0.0147; VIF icch/repear = 1-0712 = 0.0145]. B-Coefficients as-
signed to each predictor column, which reflect the regression weights
between each of the three parameters and ERP amplitude, were estimated
at the individual level, separately for each electrode and time point. The
significance of the predictors was assessed at the population level using
random effects (¢ tests) on the regression coefficients averaged across the
predefined time windows (100-300, 300—-500, and 500—800 ms) and the
predefined ROIL.

Code availability
The codes used to analyze data from the current study are available from
the corresponding author upon reasonable request.

Data availability
The datasets generated and/or analyzed during the current study are
available from the corresponding author upon reasonable request.

Results
Behavior
Participants were able to perform the task well, and they accu-
rately tracked probability reversals (mean correct response =
71.3 £ 1.51%). To assess the reward discriminability in the M and
UM conditions, we computed participants’ d’, an unbiased mea-
sure of stimulus visibility, from the forced-choice discrimination
trials that were presented throughout the task (10% of all trials,
hence 120 trials in total). Although the overall discriminability
was low in the masked condition, both masked and unmasked
conditions exhibited above-chance accuracy in this discrimina-
tion test (UM: 96 = 1.15% correct, d’ = 3.97 * 0.14, t3,, =
28.38, p < 0.001; M: 55.7 % 1.13% correct, d" = 0.35 = 0.07,
ti31y = 4.91, p < 0.001). Given that chance-level performance on
such a forced-choice discrimination task is a typical criterion
used to show that participants are unable to perceive a stimulus
consciously (Sandberg et al., 2010; Overgaard and Sandberg,
2012), this result implies that we cannot consider that the masked
reward was nonconscious in all participants and for all trials.
Having established that participants performed the task cor-
rectly, we turned to a typical behavioral analysis of learning. Fol-
lowing previous studies (Chase et al., 2011; den Ouden et al,,
2013), we computed switch rates of participants after positive and
negative outcomes, in both unmasked and masked conditions.
Critically, participants switched their response more often after
no reward than after reward, and did so in both the unmasked
and masked conditions (UM: difference 36.06 * 0.59%, t.5,, =
10.76, p < 0.001; M: difference 4.90 * 0.15%, t3,) = 5.65, p <
0.001). The fact that participants tended to switch their choices
significantly more after no reward (1 cent) versus reward (50
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cents) is generally interpreted as evidence for learning. It would
therefore be tempting to conclude that our participants signifi-
cantly learned from both unmasked and masked rewards. How-
ever, this interpretation of switch patterns may not be devoid of
statistical confounds, especially in designs where conditions (in
this case, masked and unmasked) are intermixed. Indeed, this
pattern of results could easily be produced by participants learn-
ing the value of options from unmasked rewards and deriving all
choices from those values (i.e., in the total absence of learning
from masked reward). This is why we turned to model-based
behavioral analyses that are devoid of this statistical confound,
aiming at showing that learning from masked reward outcomes is
still present when these issues are taken into account.

Computational modeling

A simple & rule was used to capture how individuals updated the
value of the chosen options after receiving reward. Following
classical associative learning algorithms, the extent to which pre-
vious reward is integrated in the future option value was con-
trolled by a learning rate, . Choices were derived from a logistic
(softmax) choice function on the difference between option val-
ues. The slope of this choice function, typically referred to as
choice temperature, was defined as the value weight 8. Although
very popular and accounting for a wide range of behavior, this
learning mechanism might not account for the full choice pattern
of participants in our task; indeed, within blocks, our participants
might identify the best option and therefore start disregarding the
feedback, putting more weights on their priors. To account for
this behavior, we added a perseveration module to our computa-
tional model. Perseveration, defined as the tendency to repeat a
choice regardless of the previous outcome, was integrated as an
additional “bias” in the choice function, which regulated the
probability of choosing the same option as that in the previous
trial (Rutledge et al., 2009; Seymour et al., 2012; den Ouden et al.,
2013; Voon et al., 2015). The extent to which perseveration con-
tributed to the final choice was determined by a perseveration
weight, 7 (Fig. 2a; see Materials and Methods). We then system-
atically explored how masked versus unmasked reward impacted
those different modules, by creating sets of models allowing, or
not allowing, parameters to differ between those two conditions
(see Materials and Methods; Fig. 2b). We thereby built 18 differ-
ent models, which were subsequently fit to the behavior, using a
maximum likelihood procedure. A model recovery (Fig. 2¢) and a
parameter recovery (Fig. 2d,e) analysis confirmed that our mod-
eling approach is suitable to address our questions of interests
(Palminteri et al., 2017; see Materials and Methods).

Regarding our participants’ data, a Bayesian model compari-
son approach identified model 18 as the best among our designs
to explain the behavior (XP > 80%; Fig. 2¢). The best fitting
model differentiates learning rate, value weight, and persevera-
tion weight parameters after unmasked and masked reward. Im-
portantly, because our model space included models explicitly
omitting learning from masked reward (Fig. 2b), this model com-
parison result demonstrates the existence of learning from
masked reward, even when perseveration effects are taken into
account.

Participant-level data reveals that the best fitting model gives a
very good account of participant’s learning and switch behavior
(average likelihood per trial = 78.70 & 2.11%; Fig. 3a for three
representative participants, s10, s20, and s30). We then turned to
the analysis of the best fitting model parameters (Fig. 3b). Learn-
ing rates appeared to be higher after unmasked than masked
reward (o = 0.67 % 0.035 g = 0.19 * 0.025 £3,, = 17.01, p <
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a, Time course of the learning task by three representative participants (participant numbers 10, 20 and 30). The x-axis represents blocks of trials during the experiment and the y-axis

represents the local fraction of left-hand responses selected by the participant. Thick black and gray lines represent the reward probability in the different blocks (75—125 trials). Gray-dotted lines
represent the local fraction of left-hand responses. Green thick line represent the local probability of left-hand responses predicted by the computational model. Both behavioral choices and model
predictions are averaged over 12 trials bins, and aligned on block transitions. b, Model parameters for masked and unmasked conditions. Left: value weight. Middle: learning rate. Right:
perseveration weight. M: masked reward, UM: unmasked reward. Histograms and error bars represent mean == s.e.m. Connected dots represent individual parameters. ¢, Model comparison. Results
of a Bayesian model comparison analysis on our participants’ data. White histograms indicate the exceedance probability of each model, and grey dots their expected frequencies. d, Relative BIC.
Bayesian Information Criterion (BIC) of each model, compared to the best fitting model BIC (model 18). BICs are computed at the individual level (random effects). Histogram and error bars represent

mean = s.e.m.

0.001), and so did value weights (Byy = 1.94 = 0.18; By =
0.93 *+ 0.12; t3,, = 7.24, p < 0.001). However, the opposite was
found for the weight put on previous choices (7, = 0.67 =
0.15; my = 1.67 * 0.21; t(3,, = —4.72, p < 0.001; Fig. 3b).

These results lead to several crucial insights concerning re-
ward learning. First, they demonstrate the existence of robust
learning from masked rewards. Second, they clearly illustrate
changes, due to reward visibility, in the trade-off between the
tendency to base choices on the learned options’ values, and the
tendency to repeat previous choices regardless of previous out-
come. This thus suggests that the reliance on the longer-term
priors, based on the accumulation of recent choices, is increased
when the outcome on the current trial is masked and therefore
unreliable.

Finally, we ran independent linear regressions with each of the
individual parameters from the model (six parameters in total) as
independent variables and overall performance (percentage cor-
rect) as the dependent variable to explore what model parameters
correlate with individual performance. Results show that in-
verse temperatures (Syy: B = 0.060, p < 0.001; By, B = 0.076,
p < 0.001) and perseveration parameters (myy: B = 0.043,
p = 0.016; my: B = 0.046, p < 0.001) are positively correlated
with performance, while learning rates (ayy: 8= —0.210,p =
0.0016;5 apy: B = —0.229, p = 0.036) are negatively correlated
with performance.

ERPs and model-based EEG results

Having established, thanks to the manipulation of reward visibil-
ity, a clear computational dissociation between the contributions
of learning versus choice perseveration to the behavior of our

participants, we next aimed at dissociating the neural signatures
of those components by leveraging electrophysiological record-
ings. To first identify the electrophysiological time windows of
interest, we performed an ERP analysis of reward-related activity,
contrasting reward versus no-reward outcomes, at our central
region of interest, which was based on previous studies (Ca-
vanagh et al., 2010; Cohen et al., 2011; Ullsperger et al., 2014; see
Materials and Methods).

Our analysis of event-related potentials revealed three signif-
icant events in the neural signal evoked by fully conscious (un-
masked) outcomes: an early FRN at frontocentral electrodes
(“early” event), which was followed by a second, more centrally
distributed negative component (“middle” event), and a final
parietal P3 component (“late” event; Fig. 4a; FDR corrected
across time, p < 0.05). Crucially, while masked outcomes also
elicited an early frontocentral FRN, neither the second negative
ERP component nor the P3 component could be observed in the
masked condition (FDR corrected across time, p < 0.05; Fig. 4b).

To relate the contributions of the different computational
modules identified in our best fitting model (Fig. 2, model 18) to
electrophysiological signatures of outcome-guided decision-
making, we then turned to a model-based analysis of the EEG
signal. In each participant, at each electrode and at each time
point, we estimated a multiple regression with the trialwise time
series of electrophysiological activity as the dependent variable,
and the trialwise time series of latent variables as independent
variables (see Materials and Methods). Three such independent
variables, derived from our best fitting model, were included in
this multiple regression: the signed prediction error; the unsigned
prediction error (typically interpreted as a measure of surprise;
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Pearce and Hall, 1980; Cavanagh and Frank, 2014); and a variable
indexing whether participants switched or repeated their choice
from the previous trial to the next trial, which is directly related to
the perseveration process (switch/stay behavior). Previous re-
search has shown the existence of temporally overlapping but
spatially separate contributions of the signed prediction error,
reflecting the valence of the prediction error (positive or nega-
tive) and the unsigned prediction error (the absolute degree of
expectation violation also referred to as surprise) to reward learn-
ing (Fouragnan et al., 2017).

In our model-based analyses, we focus on the three contigu-
ous time windows in which the model-free effects were most
pronounced (early, 100-300 ms; middle, 300-500 ms; late, 500 —
800 ms). The signed PE regression results showed two clear peaks
strongly overlapping in time with the early two ERP components
that were revealed in the model-free ERP analysis (Fig. 5a). For
both masking conditions, the signed prediction error was en-
coded in the early FRN (early time window: UM: 5,y = 6.8, p <
0.001; M: ¢35,y = 4.2, p < 0.001; difference: 5, = 3.0, p = 0.005).
Similar results were obtained for the mid-latency negativity
(middle time window: UM: 5,y = 11.2, p < 0.001; M: ¢35, = 3.0,
p = 0.005; difference: t5,, = 8.1, p < 0.001). In contrast, the later
P3 component appeared to reach significance only in the
masked outcome condition, although both conditions did not
differ significantly (late time window: UM: t5,, = 0.85, p =
0.40; M: 15, = 4.1, p < 0.001; Fig. 5a).

Analyses of the unsigned prediction error signals (i.e., the level
of surprise) revealed a rather different pattern of results. For both
masked and unmasked reward, and in line with previous findings
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(Mars et al., 2008; Fischer and Ullsperger, 2013; Fouragnan et al.,
2017), this variable was represented in the later P3-like compo-
nent [time window 300-500 ms: UM: t5,, = 5.5, p < 0.001; M:
tiany = 1.8, p = 0.08; time window 500—800 ms: UM: t5,, = 8.4,
p <0.001; M: t5,, = 2.2, p = 0.03; Fig. 5b (note that headmaps
are shown for the middle and late windows combined, 300—800
ms)]. In both time windows, the effects were stronger for un-
masked than masked rewards (all p values <0.001). No signifi-
cant effects were observed in the early time window (all p values
>0.3).

Finally, we observed a strong relation between switch/stay be-
havior on the next trial, closely related to the perseveration pa-
rameter in the modeling approach, and a broad central positivity
(Fig. 5¢). This effect was already present from the early time win-
dow onward and was always present regardless of reward visibil-
ity [time window 100-300 ms: UM: 5, = 2.9, p = 0.006; M: £ 5,
= 2.9, p = 0.006; difference: t5,) = —0.8, p = 0.4; time window
300-500 ms: UM: f5,, = 5.1, p < 0.001; M: 5, = 5.6, p < 0.001;
difference: ¢;,) = 0.5, p = 0.6; time window 500—800 ms: UM:
tny = 7.1,p <0.001; M: t(5,, = 3.8, p < 0.001; difference: t5,, =
2.2, p = 0.034; Fig. 5¢ (note that headmaps are shown for the
middle and late windows combined, 300—800 ms)]. Interest-
ingly, these effects were very similar for masked and unmasked
rewards until ~500 ms after stimulus presentation, and signifi-
cant visibility-related differences only started to emerge in the
late time window. Thus, a larger parietal positive component was
associated with an increased likelihood of switching the response
option on the next trial. This last analysis not only replicates
previous findings about the electrophysiological signature of
model-free switching behavior after fully conscious reward
(Chase et al., 2011; Fischer and Ullsperger, 2013), but also ex-
tends them to the case where reward visibility is very low.

Finally, we ran independent linear regressions with each of the
individual EEG regressor weights shown in the bar plots of Figure
5 (PE, surprise, switching), for masked and unmasked feedback,
for each of the three time windows of interest, as independent
variables and overall performance (percentage correct) as the
dependent variable, to explore what neural mechanisms correlate
with individual performance (18 regressions in total, Bonferroni
corrected). Results show that only the middle and late EEG-
switching effects from the unmasked feedback (Fig. 5¢) were pos-
itively correlated with performance (both p values <0.0005).

Discussion

We combined a reinforcement learning task, a masking proce-
dure, computational modeling and EEG recordings to investigate
the impact of reward visibility on different cognitive processes
involved in probabilistic reward-guided learning. In behavioral
analyses, we observed that participants switched their responses
after unmasked and masked unfavorable outcomes (no-reward)
more often than after favorable outcomes (reward; note that
masked feedback is not considered “unconscious” here). This
pattern of behavior is typically interpreted as evidence for learn-
ing. Next, we combined computational modeling with a model
comparison approach. We designed a set of 18 models, built on
mixtures of unmasked and masked modules, accounting for
reward-based learning and choice perseveration. Reward-based
learning was simply operationalized as prediction error-based
learning, in line with popular model-free reinforcement learning
algorithms (Sutton and Barto, 1998; Dayan and Balleine, 2002;
Berridge, 2004; den Ouden et al., 2013). We then systematically
compared the ability of these models to explain our participants’
behavior with a rigorous Bayesian model comparison approach
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(Daunizeau et al., 2014). In our model set, which comprised
models with and without learning modules from masked feed-
back, a model including both the masked and unmasked learning
modules was identified as the best model. This approach opera-
tionalized a clear testing of learning from masked outcomes and
provided clear evidence toward the existence of such learning.
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Our best fitting model also included mod-
ules for perseveration after masked and
unmasked rewards.

An analysis of the best fitting model
parameters revealed that learning rates
were significantly positive for both visibil-
ity modules, although smaller for the
masked feedback module. This confirms
that participants indeed used both un-
masked and masked (although to a lesser
extent) reward outcome to inform further
decisions. Our results show that the per-
severation parameter was also signifi-
cantly positive for both the visibility
modules, although perseveration was
smaller for the fully conscious module.
This indicates that participants were bi-
ased toward repeating previous choices,
independently of the outcome of their de-
cisions, an actually frequent observation
in human and nonhuman reinforcement
learning tasks (Lau and Glimcher, 2005;
Schonberg et al., 2007; Rutledge et al.,
2009; Seymour et al., 2012; den Ouden et
al., 2013). Although often given a low-
level interpretation and a connotation of
suboptimality (Voon et al., 2015), perse-
veration can also constitute the imple-
mentation of higher-level behavior: in our
task, it is likely that, within a block, partic-
ipants identified the “good” option based
on the integration of information over a
long sequence of trials, and therefore de-
cided to ignore irrelevant negative reward
by basing their choices only on their prior.
After masked reward, participants perse-
vered more than after fully conscious re-
ward, revealing that participants stuck to
their decision strategy, based on the inte-
gration of information over a longer se-
quence of trials, when full conscious
awareness of the outcome was (often)
lacking.

Regarding electrophysiological signa-
tures of reinforcement learning, we ob-
served three neural events evolving over
time that were modulated by unmasked
outcomes (reward vs no reward): an early
frontocentral FRN, a mid-latency central
negativity, and a late centroparietal P3
component. Crucially, only the fronto-
central FRN, which peaked ~200 ms after
outcome presentation, was also modu-
lated by masked outcomes. Many studies
have reported that this signal, closely re-
lated to the response-locked error-related
negativity and originating from the me-

dial frontal cortex (MFC; Debener et al., 2005; Hauser et al.,
2014), distinguishes positive from negative outcomes (Holroyd
et al., 2003; Hajcak et al. 2006; Cohen et al. 2007; Cavanagh et al.
2010; Chase et al. 2011; Pfabigan et al. 2011; Fouragnan et al.
2017) in reinforcement learning tasks (Holroyd and Coles, 2002).
This response may reflect a “fast alarm” signal (or alertness re-
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sponse; Fouragnan et al., 2017) that indicates the value of the
incoming evidence, which is then accumulated in later stages of
the decision-making process (Chase et al., 2011; Ullsperger et al.,
2014; Fouragnan et al., 2017), possibly reflected in the P3 ERP
component (O’Connell et al., 2012). The late parietal P3 ERP
component was observed only after fully conscious (unmasked)
reward. This signal has been reported to predict behavioral adap-
tation and the associated update of new stimulus—response asso-
ciations in memory (Chase et al., 2011; Ullsperger et al., 2014).
The P3 has also been related to decision formation and evidence
accumulation processes during perceptual decision-making
(Zylberberg et al., 2011; O’Connell et al., 2012; Fischer and Ull-
sperger, 2013; Ullsperger et al., 2014). Further, our ERP results fit
nicely with current theoretical models of conscious and uncon-
scious processes (Lamme, 2006; van Gaal and Lamme, 2012; De-
haene etal., 2014). Within these frameworks, the FRN may reflect
a fast feedforward and nonconscious high-level response,
whereas the P3 may reflect more conscious and longer-lasting
neural responses, potentially dependent on recurrent interac-
tions between distant brain regions (Dehaene and Changeux,
2011).

Although those first EEG analyses outlined important disso-
ciations between learning from reward at different levels of
awareness, it is rather difficult to connect these neural signals to
precise cognitive processes, using cross-trial averaging and tradi-
tional contrast-based ERP methods (Debener et al., 2005; Cohen
and Cavanagh, 2011; Pernet etal., 2011; Pfabigan etal., 2011). We
therefore ran additional regression analyses in combination with
computational modeling to investigate whether single-trial mea-
sures of reinforcement learning were influenced by the visibility
of probabilistic rewards (Cavanagh et al., 2011; Cohen and Ca-
vanagh, 2011; Pernet et al., 2011). We focused our investigations
on the EEG correlates of the following three main computational
variables: the prediction error (signed PE), the level of surprise
(unsigned PE), and switch/stay behavior on the next trial. This
analysis revealed a striking similarity of neural PE correlates after
both unmasked and masked reward outcomes, although weaker
for the latter. Both the early and mid-latency negative ERP com-
ponents were associated with PE computation (Fouragnan et al.
2017), whereas the parietal P3 was not. These findings support
previous results showing that the FRN reflects signed PE signals
(Holroyd and Coles, 2002; Overbeek et al., 2005), likely emerging
from dopaminergic projections to the MFC (Schultz, 2007; Jo-
cham et al., 2011; Park et al., 2012; Walsh and Anderson, 2012),
although the early response especially has also been linked to
noradrenergic and serotonergic modulations (for review, see
Fouragnan et al. 2015).

Interestingly, whereas the two early neural events coded for a
signed PE signal, the later P3 component was particularly mod-
ulated by the unsigned PE, reflecting the level of surprise. Al-
though this corroborates similar results obtained with different
techniques and methods (Mars et al., 2008; Fouragnan et al.,
2017), we crucially show here that the level of surprise is also
encoded in parietal EEG fluctuations elicited by masked reward
outcomes. Finally, the EEG switch/repeat correlations that we
report here are in line with those of previous studies showing that
trial-by-trial switch behavior can be observed at parietal channels
as a late positive P3 component (Chase et al., 2011; Fischer and
Ullsperger, 2013). In a previous study (Fischer and Ullsperger,
2013) in which the authors combined computational modeling
and RL, it has been shown that this neural event did not differ
when participants received actual reward about their choice or
merely fictive reward. Here we show that this effect likely repre-
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sents decision strategies that are formed over longer timescales.
Overall, these results show that several cognitive processes im-
portant for reward-based learning, namely PE computation, sur-
prise, and switch/stay implementation, are processed in the
human brain, and that these cognitive processes are temporally
and spatially dissociated in time (Fouragnan et al. 2017).

Future directions, open questions, and limitations

Although several crucial question about the role of feedback
awareness in reward-based learning were addressed here, several
interesting questions remain unanswered. First, the current task
design did not allow us to analyze what neural processes may
drive “correct switching behavior” versus switching behavior in
general, due to the low number of block reversals and therefore
the low number of possible correct switch trials (maximum, 11
trials/subject). Future studies may address this issue by incorpo-
rating more volatile reward environments, containing more
block reversals (and therefore correct switches), to address this
issue (Behrens et al., 2007). Another open question relates to the
isolation of the neural and cognitive processes underlying the
early versus mid-latency frontal ERP negativities. Previous stud-
ies have typically observed only one frontal negativity (the FRN),
instead of two (Cohen et al., 2011; for review, see Cavanagh and
Frank, 2014). At present, it remains unclear why this is the case,
and future work is necessary to unravel the task specifics that may
drive these differences between studies. The combination of both
EEG and fMRI, as performed previously (Debener et al., 2006;
Hauser et al., 2014; Fouragnan et al., 2017), may contribute to
this endeavor. Finally, future studies are crucial to explore what
factors may drive that the model-based single-trial regressions
yielded weaker (but often still significant) effects for the masked
condition compared with the unmasked condition. An interest-
ing option may be that on a subset of trials masked feedback
could have been completely missed by the system, such that no
prediction error could be generated (and represented in the
EEG).
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