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In this paper, we draw from recent theoretical work on active perception, which suggests that the brain makes use of an internal (i.e.,
generative) model to make inferences about the causes of sensations. This view treats visual sensations as consequent on action (i.e.,
saccades) and implies that visual percepts must be actively constructed via a sequence of eye movements. Oculomotor control calls on a
distributed set of brain sources that includes the dorsal and ventral frontoparietal (attention) networks. We argue that connections from
the frontal eye fields to ventral parietal sources represent the mapping from “where”, fixation location to information derived from
“what” representations in the ventral visual stream. During scene construction, this mapping must be learned, putatively through
changes in the effective connectivity of these synapses. Here, we test the hypothesis that the coupling between the dorsal frontal cortex and
the right temporoparietal cortex is modulated during saccadic interrogation of a simple visual scene. Using dynamic causal modeling for
magnetoencephalography with (male and female) human participants, we assess the evidence for changes in effective connectivity by
comparing models that allow for this modulation with models that do not. We find strong evidence for modulation of connections
between the two attention networks; namely, a disinhibition of the ventral network by its dorsal counterpart.
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Introduction
Perception is a fundamentally active process. Although this is
true across modalities, it is especially obvious in the visual system,
where what we see depends upon where we look (Wurtz et al.,

2011; Andreopoulos and Tsotsos, 2013; Ognibene and Baldas-
sarre, 2014; Parr and Friston, 2017a). In this paper, we consider
the anatomy that supports decisions about where to look, and the
fast plastic changes that underwrite effective saccadic interroga-
tion of a visual scene. We appeal to the metaphor of perception as
hypothesis testing (Gregory, 1980), treating each fixation as an
experiment to garner new information about states of affairs in
the world (Mirza et al., 2016, 2018; Parr and Friston, 2017c).
Building upon recent theoretical work (Parr and Friston, 2018),
which includes a formal model of the task used here, we hypoth-
esized that the configuration of a visual scene is best represented
in terms of expected visual sensations contingent upon a given
saccade (“what I would see if I looked there”; Zimmermann and
Lappe, 2016). This implies a form of short-term plasticity follow-
ing each fixation, as the mapping from fixation to observation is
optimized.

The purpose of this study is not to evaluate whether we engage
in active vision, as there is already substantial evidence in favor of
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Significance Statement

This work draws from recent theoretical accounts of active vision and provides empirical evidence for changes in synaptic efficacy
consistent with these computational models. In brief, we used magnetoencephalography in combination with eye-tracking to
assess the neural correlates of a form of short-term memory during a dot cancellation task. Using dynamic causal modeling to
quantify changes in effective connectivity, we found evidence that the coupling between the dorsal and ventral attention networks
changed during the saccadic interrogation of a simple visual scene. Intuitively, this is consistent with the idea that these neuronal
connections may encode beliefs about “what I would see if I looked there”, and that this mapping is optimized as new data are
obtained with each fixation.
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this (Yang et al., 2016; Mirza et al., 2018), but to try to understand
how the underlying computations manifest in terms of changes
in effective connectivity. Our aim is to establish whether there is
neurobiological evidence in favor of optimization of a generative
model (Yuille and Kersten, 2006) that represents visual conse-
quences of fixations as a series of eye movements are performed.

In the following, we describe our experimental setup, includ-
ing our gaze-contingent cancellation task. Through source
reconstruction, we demonstrate the engagement of frontal, tem-
poral, and parietal sources, and note the right-lateralization of
the temporal component. We then detail the hypothesis in terms
of network models or architectures and use DCM to adjudicate
between models that do and do not allow for plastic changes in
key connections. This model comparison revealed a decrease,
from early to late fixations, in the inhibition of neuronal popula-
tions in the ventral network by those in the dorsal network.

Network structure
The cortical anatomy of oculomotor control has been investi-
gated through functional neuroimaging, neuropsychological,
and structural connectivity studies. Figure 1 summarizes how
their findings converge upon a system that can be separated into
a bilateral dorsal frontoparietal network, and a right lateralized
ventral network. In brief, functional imaging experiments (Cor-
betta and Shulman, 2002; Vossel et al., 2012) during visuospatial
tasks reveal activation of the frontal eye fields (FEFs) and the

intraparietal sulcus (IPS) in both hemispheres, but greater in-
volvement of the right temporoparietal junction (TPJ) than its
contralateral homolog. The volumes of the white-matter tracts
connecting the components of the dorsal attention network are
comparable, whereas those connecting the ventral network
sources are of a significantly greater volume in the right hemi-
sphere (Thiebaut de Schotten et al., 2011). Neuropsychological
asymmetries reinforce this network structure, with right hemi-
spheric lesions much more likely than left to give rise to visual
neglect (Halligan and Marshall, 1998).

Neglect is a syndrome that manifests as a failure to attend to,
or perform exploratory saccades to (Karnath and Rorden, 2012),
one side of visual space and (often) appears to be a consequence
of a disconnection between the ventral and (right) dorsal net-
works (Bartolomeo et al., 2007; He et al., 2007). Given the dorsal
frontoparietal origins of cortico-collicular axons (Künzle and
Akert, 1977; Fries, 1984, 1985; Gaymard et al., 2003), frontal
control of eye position (Bruce et al., 1985; Sajad et al., 2015), and
the representation of visual stimulus identity in the ventral visual
(“what”) stream (Goodale and Milner, 1992; Ungerleider and
Haxby, 1994), this is consistent with the idea that the connection
between these networks is the neural substrate of an embodied
(oculomotor) map of visual space. It is worth noting that the
temporoparietal component of the ventral attention network is
not within the ventral visual stream. However, it has been asso-
ciated with target-detection operations (Corbetta and Shulman,

Figure 1. The anatomy of attention. Summary of the functional, neuropsychological, and structural characterizations of attention networks in the brain. Top, Left, The components of the dorsal
and ventral frontoparietal attention networks, as derived through functional imaging studies. The dorsal sources (blue) are bilaterally activated during visual attention tasks, whereas the ventral
(orange) network is lateralized to the right hemisphere. Bottom, Left, Summarizes lesion studies that demonstrate that lesions to the ventral network in the right hemisphere are associated with
visual neglect. Bottom, Right, The three branches of the superior longitudinal fasciculus; a white-matter tract that connects the sources of the attention networks. The plot on the top right indexes
the lateralization of these tracts by their relative volumes in each hemisphere. Notably, the third branch, which connects the ventral sources, is significantly right lateralized. Left images are reprinted
by permission from Springer Nature: Nature Reviews Neuroscience from (Corbetta and Shulman, 2002), and those on the right reprinted by permission from Springer Nature: Nature Neuroscience
from (Thiebaut de Schotten et al., 2011). The material in this figure is not included in the CC BY license for this article. STG, Superior Temporal Gyrus; VFC, Ventral Frontal Cortex; SPL, Superior Parietal
Lobule. ***p � 0.001.
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2002; Serences et al., 2005; Chica et al., 2011) that rely upon a
simple form of visually derived stimulus identity. Although our
focus is in the visual domain, we note that similar networks ap-
pear to be involved in auditory attention and neglect (Dietz et al.,
2014).

Synthesizing these theoretical and neuroanatomical con-
structs, we hypothesized that the coupling between the dorsal and
ventral attention networks changes with successive fixations in a
saccadic task. This hypothesis is based upon the idea that, as an
internal model of the task is optimized, the relationship between
fixation locations and their visual consequences should become
more precise (as demonstrated through simulation in (Parr and
Friston, 2018)). If this is the case, this could manifest in one of
two ways. The effective connectivity from the temporoparietal
cortex to the FEFs could increase over time. Alternatively, plastic
changes in connections in the opposite (dorsal-to-ventral) direc-
tion could decrease their effective connectivity to relieve descend-
ing inhibition of the ventral-to-dorsal projections arising from
superficial pyramidal cells. Ultimately, both of these would en-
hance the influence of ventral parietal over dorsal frontal regions.
We used an oculomotor cancellation paradigm, based upon the
classic pen-and-paper line cancellation task used to assess visual
neglect (Albert, 1973; Fullerton et al., 1986). In this task, patients
with neglect tend to cancel (by crossing out) lines on the right side
of a piece of paper but miss those on the left. Using magnetoen-
cephalography (MEG) and dynamic causal modeling (DCM) for
evoked responses (David et al., 2006) we assessed changes in
effective connectivity between dorsal frontal and ventral tem-
poroparietal sources during early and late cancellations (fixa-
tions) in healthy participants. Our task involved performing
saccades to targets on a screen that, once fixated, changed color
and were considered cancelled.

Materials and Methods
Experimental design and statistical analyses
Imaging and behavioral task. We recruited 14 healthy right-handed par-
ticipants (8 females and 6 males) between the ages of 18 and 35 from the
UCL ICN subject pool under minimum risk ethics. Participants were
seated in the MEG scanner (whole-head 275-channel axial gradiom-
eter system, 600 samples per second, CTF Omega, VSM MedTech),
with a screen �64 cm in front of them, showing the stimulus display
(size 40 � 29.5 cm). This was presented using Cogent 2000 (devel-
oped by the Cogent team at the FIL and the ICN and Cogent Graphics
developed by John Romaya at the LON at the Wellcome Department
of Imaging Neuroscience).

The sequence of stimuli is illustrated in Figure 2. Following a fixation
cross, a set of 16 black dots appeared on the screen, simultaneously, in
pseudorandom (using the MATLAB random number generator) loca-
tions. When a dot was fixated, it changed from black to red (i.e., was
“cancelled”). Participants were asked to look at the black dots, but to
avoid looking at the red dots. We tracked the eyes of the participants
while the dots were on screen using an SR Research eye-tracker (Eyelink
1000, operated using Psychtoolbox) sampling at a frequency of 1 kHz.
We divided the cancellation events into two categories: early (first 8) and
late (last 8).

Although almost all perceptual tasks call upon some sort of engage-
ment with the sensorium, this task emphasizes the active nature of visual
processing through making the visual element of the task as simple as
possible. This still calls upon optimization of beliefs under an internal
model, as formalized by Parr and Friston (2018). As outlined above, this
has some validity in relation to disorders in which active vision is im-
paired. However, it is worth noting that other approaches to studying
these processes, particularly those that focus on behavioral (as op-
posed to neurophysiological) measures (Yang et al., 2016; Mirza et al.,
2018), make use of more complicated visual stimuli, so that different

saccades afford different levels of information gain about a particular
scene category.

Our preprocessing steps (using SPM 12, http://www.fil.ion.ucl.ac.uk/
spm/software/spm12/) are specified in Figure 2. As participants generally
had no trouble in cancelling all 16 dots, we rejected all trials for which
they were unable to do so (assuming these were due to eye-tracker cali-
bration errors). We merged the epoched data from all participants, and
averaged the epochs corresponding to the first eight, and the last eight,
cancellations over all participants to create a grand average. This meant
we averaged over fixations preceded by saccades from all possible direc-
tions, ensuring any directional eye movement induced artifacts following
cancellation were averaged away. Using robust averaging provides an
additional protection against artifactual signals, as this iterative proce-
dure rejects those trials that deviate markedly from the mean response.
The average eye-speed is shown in Figure 2 (black dotted line) to illus-
trate that it falls to its minimum at about the same time as the target is
cancelled. The first principal component, across spatial channels, of the
averaged evoked response (to a cancellation) in each condition is shown
on the same plot. To further interrogate the changes in effective connec-
tivity, we additionally constructed grand averaged responses to each of
the 16 cancellations in a trial. These were used for the more detailed
model of (parametric) time-dependent responses described in the results
section.

Source reconstruction. In Figure 3, we show the reconstructed source
activity obtained using multiple sparse priors (Friston et al., 2008). This
scheme tries to infer the sources in the brain that generated the data
measured at the sensors. There are an infinite number of possible solu-
tions to this problem, but Bayesian methods attempt to find the simplest
of these. Our results, using standard settings (Litvak et al., 2011), show a
relatively symmetrical distribution of frontal and posterior cortical
sources, and a right lateralized (asymmetrical) temporal component.
While the inferred locations are more ventromedial than we might ex-
pect, based upon Figure 1, (likely because of the ill posed nature of the
MEG inverse problem). It is encouraging that we can recover sources that
are broadly consistent with the known anatomy, and lateralization, of the
attention networks (Corbetta and Shulman, 2002) from these data.

Dynamic causal modeling. DCM tries to explain measured electrophys-
iological data in terms of underlying neuronal (i.e., source) activity (Fris-
ton et al., 2003). This rests upon optimizing the model evidence (or free
energy) for a biophysically plausible neural mass model. The (log) evi-
dence that data y affords a model m is as follows:

ln p�y�m� � Eq�ln p�y,x,��m�
Ç
Generative model

� ln q�x,��m�
Ç

Approx. posterior

�

� Eq[ln p(y�x,�)]
Ç

Accuracy

� DKL�q�x,��m��p�x,��m��
Ç

Complexity

.

DCM makes use of a variational Laplace procedure (Friston et al., 2007)
to optimize beliefs (q) about neuronal activity (x) and the parameters (�)
that determine this activity (e.g., connection strengths) and the (likeli-
hood) mapping (e.g., lead field) from x to y. The lead field matrix maps
source activity to the measured sensor data on the scalp (Kiebel et al.,
2006). In maximizing model evidence, DCM finds the most accurate
explanation for the data that complies with Occam’s principle; i.e., is
minimally complex (as measured by the KL divergence between posteri-
ors and priors). By comparing different generative models, we can test
hypotheses about biologically grounded model parameters; here,
condition-specific changes in connectivity under a particular network
architecture.

The generative model we used is the canonical microcircuit model
(Bastos et al., 2012; Moran et al., 2013), which incorporates four distinct
neuronal populations (Fig. 4). These are spiny stellate cells, superficial
and deep pyramidal cells, and inhibitory interneurons. The connections
associated with each of these populations conforms to known patterns of
laminar-specific connectivity in the cerebral cortex (Zeki and Shipp,
1988; Felleman and Van Essen, 1991; Shipp, 2007), allowing us to distin-
guish between ascending and descending extrinsic (i.e., between source)
connections. This accounts for the prior probability density p(x,��m)
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that, supplemented with a lead-field provides a likelihood p(y�x,�) and
completes the forward or generative model.

As we were interested in changes in the coupling of the dorsal and
ventral attention networks, we specified our generative model as in Fig-
ure 5; incorporating the bilateral dorsal network and the right lateralized
temporoparietal contribution to the ventral network (consistent with the
source reconstruction above). The connections between the right TPJ
(rTPJ) and the left FEF probably involve an intermediate thalamic relay
(Guillery and Sherman, 2002; Halassa and Kastner, 2017), but this was
omitted for simplicity. Our hypothesis was that the connections between
the rTPJ and each FEF would change between early and late target can-
cellations (Parr and Friston, 2018). Figure 5 highlights these ascending

and descending connections. After fitting the full model (with modula-
tion of all four connections) to our empirical data, we used Bayesian
model reduction (Friston et al., 2017) to evaluate the evidence for models
with every combination of these condition-specific effects (early vs late)
enabled or set, a priori, to zero.

Results
Figure 6 reports the results of a model comparison between 16
(2 4) models that allowed for different patterns of search-
dependent changes in the forward and backward connections
between each FEF and the rTPJ. Given our grand average data,

Figure 2. Oculomotor cancellation task and preprocessing. Top, Left, The sequence of events for a given trial. First, a fixation cross is presented for 2 s. After this, a display with 16 black dots is
randomly generated and presented for 15 s. This is followed by a blank screen for 3 s. The dots were placed within an 8 � 8 grid (not visible to the participants), as shown at the bottom. When the
dots were visible on screen, we tracked the eyes of the participant. Whenever their gaze entered a square containing a black dot, this changed from black to red and remained red for the rest of the
trial. Participants were instructed to look at the black dots, and to avoid looking at red dots. Events were defined as the time at which the eye crossed into the square, causing a change in color (i.e.,
a cancellation). There were 15 of these trials per block, with 6 blocks per participant. The bottom left plot shows a histogram of the time intervals between saccadic dot cancellations, to give a sense
of the latency between saccades. These latencies are reported using a (natural) logarithmic time scale (with time in seconds) over the first 2.5 SD above and below the mean. The mean here is
	1.0597, corresponding to �3 cancellations per second (consistent with the 3– 4 Hz frequency of saccadic sampling; Hoffman et al., 2013). Right, The sequence of preprocessing steps used and
the first principal component of the ensuing evoked response. The evoked response to early cancellations is averaged from 6738 events, and the response to late cancellations from 6571.
Superimposed upon this is a trace of the eye speed in peristimulus time in arbitrary units. This is aligned so that zero corresponds to the average speed during the time in which the fixation cross was
present.
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Model 8 has a posterior probability of 0.827. This model allows
for changes in backward connections, and the forward connec-
tion from rTPJ to the right FEF, but not to the left FEF. This
provides evidence in favor of changes in the efficacy of dorsal-
ventral connections. Acknowledging that other models, although
improbable, were found to be plausible, we averaged our results

across models, weighting each model by its posterior probability.
Following this Bayesian model averaging, we still found striking
changes in the backward connections, which show a decrease in
effective connectivity for late compared with early cancellations.
As backward connections are (net) inhibitory, this corresponds
to a disinhibition of the superficial pyramidal cells, the origin of

Figure 3. Source reconstruction with multiple sparse priors. These images show the Bayes optimal source reconstruction under multiple sparse priors (and following application of a temporal
Hanning window) for the first eight cancellations (left) and the second eight cancellations (right) in a trial. This reveals a set of symmetrical sources in both the frontal and posterior cortical sources,
with a right lateralized temporal component. The striking asymmetry of these temporal sources (dashed circles) is encouraging, considering the known rightward lateralization of the ventral
attention network. Although we might expect the frontal sources to be more dorsal, this may reflect the ill-posed nature of MEG source localization; there are many possible combinations of sources
in 3D space that could give rise to the same pattern of activation over the 2D sensory array. The estimated responses show the greatest amplitude at �100 ms. In the left plot (showing the maximal
response for the first condition), the red lines indicate the reconstructed activity from the early cancellations and gray from the late cancellations. In the right plot (maximal response for the second
condition), red is late and gray is early. Bayesian credible intervals are shown as dotted lines for each response. The confidence associated with the posterior probability maps (PPM; Friston and Penny,
2003), in addition to the variance explained, are included in the top left of each plot, and the location at which the response is estimated is given at the bottom right.

Figure 4. The canonical microcircuit. The equations on the left of this schematic describe the dynamics of the generative model that underwrites the dynamic causal modeling in this paper. The
x vectors represent population-specific voltage (odd subscripts) and conductance (even subscripts). Each element of the x vectors represents a distinct cortical source. The notation a � b means the
element-wise product of a and b. The matrix A determines extrinsic (between-source) connectivity (here illustrated as connections between a lower source i and a higher source i
1), whereas G
determines the intrinsic (within-source) connectivity. Subscripts for these matrices indicate mappings between specific cell populations. For example, A1 describes ascending connections from
superficial pyramidal cells (source i) to spiny stellate cells (source i
1), whereas A3 describes descending connections from deep pyramidal cells (source i
1) to superficial pyramidal cells (source
i). Experimental inputs, in our case, the cancellation of the target on fixation, are specified by u. Right, The neuronal message passing implied by these equations. Red arrows indicate excitatory
connections and blue inhibitory. Superficial pyramidal cells give rise to ascending connections that target spiny stellate and deep pyramidal cells in a higher cortical source. Descending connections
arise from deep pyramidal cells that target superficial pyramidal cells and inhibitory interneurons.
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ascending connections, in the TPJ. In other words, the effective
connectivity during the later stages of the trial changed, com-
pared with that during the first few cancellations, to relieve the
inhibitory effect of the dorsal attention network on the source of
its input from the ventral network.

The effects of this disinhibition can be seen in the recon-
structed neuronal activities shown in Figure 7. During later can-
cellations, the activity of the superficial pyramidal cells in the
rTPJ has a greater amplitude than evoked during earlier fixations.
Figure 5 shows that this is the population inhibited by the de-
scending connections (labeled 3 and 4). These are the connec-
tions that show the greatest change (both relative and absolute,
despite being slightly weaker at baseline than the forward connec-
tions). Although the change in ascending synapses is small or
absent, the increase in activity in these forward projecting TPJ
cells has driven an increase in the amplitude of responses in all
populations in each FEF. The most dramatic effect is in the deep
pyramidal layer, which receives direct input from the superficial
TPJ cells. Figure 7 additionally shows the resemblance between
the activity in deep pyramidal cells in FEF and the simulated rate
of belief updating obtained under a Markov decision-process
model of the same behavioral task: for details, see Parr and Fris-
ton (2018). This model represents a formalization of the ideas
raised in the introduction; namely, that representations of visual
space depend upon beliefs about the sensory consequences of
actions. In brief, the differences in the rate of belief updating from
early to late fixations are due to the optimization of the mapping
from fixation location to the presence or absence of a target. More
precise beliefs later in the task enable faster and more confident
belief updates.

To explore the changes in coupling demonstrated above in a
more parametric way, we inverted a DCM that was identical to
that described above, but treated each cancellation as a separate
event. This meant that, in place of the relatively coarse division
into “early” and “late”, we could test hypotheses about paramet-
ric changes in connection strength over 16 sequential cancella-
tions. Figure 8 illustrates a model comparison that tests these
hypotheses, endorsing the pattern of changes found in Figure 6.
Because of the implicit model of time-dependent effects, this
enables us to plot the estimated changes in coupling throughout
the trial, as shown in Figure 8. These show a progressive decrease
in the strength of inhibitory backward connections, with a mod-
est increase over time in excitatory forward connections.

Discussion
The results presented here provide evidence in favor of short term
plastic changes in the connections between the dorsal and ventral
attention networks during the active interrogation of a simple
visual scene. This supports an enactive perspective on visual cog-
nition (Hohwy, 2007; Vernon, 2008; Bruineberg, 2017), as it is
consistent with the idea that we represent visual sensations as the
consequences of action, and that these contingencies may be
learned over a short time period. Although these results have
interesting implications for active vision, they also constrain the
way in which cortical neuronal circuits might implement infer-
ential computations. That the descending connections appear to
change the most is consistent with the idea that ascending signals
in the brain carry evidence for or against hypotheses represented
in higher areas. Although this appears counterintuitive, the evi-
dence afforded to a hypothesis about one variable (e.g., location

Figure 5. Network architecture. This schematic illustrates the form of the network model we used to test our hypothesis. The dorsal network is present bilaterally (FEF and IPS) and is connected
to the ventral network, represented by the TPJ, on the right. The TPJ receives input as it sits lower in the visual hierarchy than the FEF (Felleman and Van Essen, 1991). Our hypothesis concerns the
(highlighted) connections between the two networks. We compared models that allowed for changes or visual search-dependent plasticity in connections from the TPJ to left FEF (1), from the TPJ
to right FEF (2), from the left FEF to TPJ (3), from the right FEF to TPJ (4), and every combination of the above. The matrices on the right illustrate the specification of these connections. The A matrices
are the same as those in Figure 4 and represent extrinsic connections between sources (with subscripts indicating which specific cell populations in those sources). B specifies the connections that
can change between the early and late cancellations and C specifies which sources receive visual (i.e., geniculate) input. To ensure that the signs of the A (and C) connections do not change during
estimation, their logarithms are treated as normally distributed random variables. This ensures an excitatory connection cannot become an inhibitory connection and vice versa.
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on a horizontal axis) depends upon beliefs about other variables
(e.g., location in the vertical axis). In other words, dorsally rep-
resented beliefs about eye position, if represented in any factor-
ized coordinate system, must act to contextualize the ascending
signals from the ventral to dorsal network. As this is learned over
successive fixations, this contextualization (i.e., interaction be-
tween factors) leads to increasingly precise mappings between eye
position and its visual consequences; consistent with the disinhi-
bition we observed here. This is analogous to the increase in
amplitude of evoked responses following cueing in working
memory paradigms (Lenartowicz et al., 2010) that can be repro-
duced in silico by appealing to beliefs about the context of ascend-
ing signals (Parr and Friston, 2017b).

An interesting question that arises from this is what type of
coordinate system the FEF might use. The argument given above
applies regardless of the choice of coordinate system but depends
upon there being some factorization (Parr and Friston, 2017a).
This factorization could be representation of a horizontal and a
vertical axis (McCloskey and Rapp, 2000) or could be closer to a
wavelet decomposition, used in computational visual processing
(Antonini et al., 1992). The latter separates an image into differ-

ent spatial scales and resolutions. For
example, we might represent which quad-
rant of space we are looking at and which
subquadrant within that quadrant. Either
of these systems requires far fewer neu-
rons than we would need if we were to
independently represent each location in
visual space. This is an important aspect of
the normative (active inference) theory
on which the simulations in Figure 7 were
based. In brief, the sorts of generative
models used by the brain to infer the
causes of its sensory input are subject to
exactly the same imperatives used in
Bayesian model comparison; namely, the
brain’s generative or forward models
must provide an accurate account of sen-
sations with the minimum complexity.
Reducing the number of parameters via
factorization is, in theory, an important
aspect of minimizing complexity or re-
dundancy (Barlow, 1961, 1974; Tenen-
baum et al., 2011; Friston and Buzsáki,
2016). We used a decomposition of loca-
tion into quadrants to simulate the belief
updating shown in the bottom left of Fig-
ure 7, which enables us to reproduce vi-
sual neglect at different spatial scales (Parr
and Friston, 2018), consistent with neuro-
psychological observations (Ota et al.,
2001; Grimsen et al., 2008; Medina et al.,
2009; Verdonet al., 2010).

Visual neglect is increasingly recog-
nized as a disconnection syndrome (He et
al., 2007). Specifically, it can arise through
damage to the white-matter tracts that
link right dorsal frontal sources to ventral
temporoparietal areas (Doricchi and To-
maiuolo, 2003; Thiebaut de Schotten et
al., 2005). A disconnection of this sort
would preclude the changes we have ob-
served in these connections. From the

perspective of active inference, this means that saccades to the left
side of space represent poor perceptual experiments, as the ca-
pacity to learn from them is diminished (Lindley, 1956; MacKay,
1992; Denzler and Brown, 2002; Yang et al., 2016). We have
previously argued that syndromes in which active scene con-
struction is impaired, visual neglect being an important example,
may result from pathological prior beliefs about these action–
sensation mappings (Parr et al., 2018). An inability to change this
mapping following observation, perhaps because of white-matter
disconnection (Geschwind, 1965; Catani and ffytche, 2005),
means that actions that would otherwise engage (and modify) a
given connection afford a smaller opportunity for novelty reso-
lution (Parr and Friston, 2018). The failure to update this map-
ping is consistent with the impairments in spatial working
memory that have been elicited in saccadic tasks in neglect pa-
tients (Husain et al., 2001). In future work, we aim to follow up
this idea by temporarily disrupting changes in these (dorsal-
ventral) connections using transcranial magnetic stimulation.
We hypothesize that this will induce saccadic scan paths consis-
tent with those observed in visual neglect (Fruhmann Berger et
al., 2008; Karnath and Rorden, 2012). Encouragingly, this ap-

Figure 6. Model comparison and Bayesian model averaging. This figure shows the results of comparing models with different
combinations of condition-specific effects on the forward and backward connections between the right TPJ and the FEFs. We
performed this comparison using Bayesian model reduction (Friston et al., 2017), which involves fitting a full model that allows all
four connections to change and analytically evaluating the evidence for models with combinations of these changes switched off.
The top plots show the log posterior probabilities associated with each model, and the posterior probabilities. The winning model
(number 8) allows for modulation in Connections 2, 3, and 4 (Fig. 5). The bottom plots show that, for the later fixations, there is a
modest increase in the effective connectivity in Connection 2, but a decrease in 3 and 4. These values correspond to log scaling
parameters, such that a value of zero means no change. The bottom left plot shows these parameter (maximum a posteriori)
estimates for the full model (that allows for all connections). The bottom right plot shows the Bayesian model average of these
estimates (weighted by the probability of each reduced model to account for uncertainty over models). Bayesian 90% credible
intervals are shown as pink bars.
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Figure 7. Estimated neuronal activity. These plots show the estimated activity in each excitatory cell population. Dashed lines indicate the superficial pyramidal cells that give rise to ascending
connections and are inhibited by higher cortical sources. Ascending connections target the spiny stellate cells (dotted lines), and the deep pyramidal cells (unbroken lines). The latter give rise to
descending connections. The activity here is shown for early (blue) and late (red) cancellations, for each of the cortical areas shown in Figure 5. The bottom left plot (highlighted) shows the simulated
evoked responses obtained from the Markov decision-process model described by Parr and Friston (2017b), drawing from the process theory associated with active inference (Friston et al., 2016).
It is computed by taking the absolute rate of change of the sufficient statistics of posterior beliefs about the current fixation location, summed over spatial scales (please see the discussion for details).
Whereas the y-axis here is arbitrary, the x-axis extends to 250 ms, consistent with the theta frequency of saccadic eye movements. There is a striking resemblance between the simulated rate of belief
updating and the FEF neuronal activity estimated from our empirical data.
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proach has previously been used to induce other features of visual
neglect (Ellison et al., 2004; Platz et al., 2016), including changes
in line bisection and visual search performance following stimu-
lation of the right TPJ.

An additional direction for future research concerns the use of
more complex visual environments. In this study, we kept the
visual stimuli as simple as possible. However, many interesting
phenomena in active vision can be elicited using more sophisti-
cated, and often dynamic, manipulations. An advantage to using
stationary targets is that they induce scanning saccades as op-
posed to reactive saccades; of the sort associated with a suddenly
appearing target. The former are accompanied by greater in-
volvement of the frontal part of the dorsal network, whereas the
latter implicates the parietal part (Pierrot-Deseilligny et al.,
1995). Given that our hypothesis concerned the frontal regions of
the dorsal network, the use of static targets facilitated the involve-
ment of these regions. However, the inclusion of a second condi-
tion in which targets suddenly appeared would help us to further
interrogate the respective contributions of the frontal and pari-
etal cortices to these processes. We hope to pursue this in future
work.

Specifically, it would be interesting to probe the computa-
tional mechanisms that underwrite differences between scanning
and reactive saccades for both perception and neurobiological
measurements (Zimmermann and Lappe, 2016). This may relate
to the time required for belief-updating, which itself is likely to
depend upon the sorts of beliefs that are updated. Typically, cor-
tical areas that sit higher in the anatomical hierarchy (Zeki and
Shipp, 1988; Felleman and Van Essen, 1991; Shipp, 2007) are
thought to represent stimuli that evolve over longer time-periods
(Hasson et al., 2008, 2015; Kiebel et al., 2008; Murray et al., 2014),
in relation to early sensory cortices. Given that the FEFs are en-
gaged in control of scanning saccades, which occur at �3– 4 Hz, it
is plausible that the time-scale for updating beliefs about “where
I am looking” corresponds to this frequency. Speculatively,
short-latency reactive saccades may be driven by lower cortical
regions (e.g., parietal cortex) that represent the locations of fast-
changing stimuli and may not leave enough time for completion
of belief updating in frontal areas. As noted by one of our review-
ers, this might account for the changes in spatial perception of
stationary stimuli that follow adaptive changes in saccadic ampli-
tude, but the absence of this phenomenon when dynamic stimuli

Figure 8. Time-dependency of modulatory changes. The plots on the right are the same as those in Figure 6, but modeling a parametric effect of number of previous cancellations. For this model,
in place of the early and late conditions, we treated each sequential cancellation as a separate event. Because the model is parameterized in terms of log-scaling parameters, linear (i.e., [0,1,…,15])
parametric effects of time (number of previous cancellations) correspond to a monoexponential change in coupling [starting from a strength of exp(0), corresponding to 100%]. The two most
probable models are the same as in Figure 6, and the overall pattern of changes shown in the MAP estimates is the same (but with some evidence in favor of a small change in Connection 1). The plots
on the left show the estimated changes in each connection with successive cancellation events, as a percentage of their initial values. These indicate an increase in the strength of forward excitatory
connections over time, and a decrease in backward inhibitory connections.
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induce reactive saccades. This is because, under the view that we
represent visual space in terms of the visual consequences of sac-
cades, a failure to complete belief updating, in brain regions rep-
resenting alternative saccades, may preclude the sort of changes
in coupling between frontal and temporoparietal areas observed
here. Intuitively, this is sensible when constructing a motor map
of visual space: there is little point in including transient stimuli,
as they are unlikely to be there on looking back. This idea predicts
that there should be a diminished inhibition of return following a
reactive, as opposed to a scanning, saccade.

Conclusion
In this paper, we tested the hypothesis that the coupling between
dorsal and ventral frontoparietal networks is altered during visual
exploration. To do so, we used dynamic causal modeling based
upon a network motivated by pre-existing structural, functional,
and neuropsychological data. We found greatest evidence for a
model that allowed for modulation in connections from the dor-
sal to the ventral network. Bayesian modeling averaging revealed
a decrease in the effective connectivity of these connections, re-
sulting in a disinhibition of ventral sources by the dorsal attention
network. These results are consistent with the idea that the visual
data obtained following a saccade drive plastic changes, optimiz-
ing beliefs about the sensory consequences of a given saccadic
fixation. This has potentially important implications for syn-
dromes in which visual exploration is disrupted; notably, visual
neglect. We hope that understanding (and measuring) these
changes in effective connectivity in health will yield insights into
the pathophysiology of disconnection syndromes.
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Chica AB, Bartolomeo P, Valero-Cabré A (2011) Dorsal and ventral parietal
contributions to spatial orienting in the human brain. J Neurosci 31:8143.

Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-
driven attention in the brain. Nat Rev Neurosci 3:201–215.

David O, Kiebel SJ, Harrison LM, Mattout J, Kilner JM, Friston KJ (2006)
Dynamic causal modeling of evoked responses in EEG and MEG. Neuro-
image 30:1255–1272.

Denzler J, Brown CM (2002) Information theoretic sensor data selection for
active object recognition and state estimation. IEEE Trans Pattern Anal
Mach Intell 24:145–157.

Dietz MJ, Friston KJ, Mattingley JB, Roepstorff A, Garrido MI (2014) Effec-
tive connectivity reveals right-hemisphere dominance in audiospatial
perception: implications for models of spatial neglect. J Neurosci 34:
5003–5011.

Doricchi F, Tomaiuolo F (2003) The anatomy of neglect without hemian-

opia: a key role for parietal–frontal disconnection? Neuroreport
14:2239 –2243.

Ellison A, Schindler I, Pattison LL, Milner AD (2004) An exploration of the
role of the superior temporal gyrus in visual search and spatial perception
using TMS. Brain 127:2307–2315.

Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in
the primate cerebral cortex. Cereb Cortex 1:1– 47.

Fries W (1984) Cortical projections to the superior colliculus in the ma-
caque monkey: a retrograde study using horseradish peroxidase. J Comp
Neurol 230:55–76.

Fries W (1985) Inputs from motor and premotor cortex to the superior
colliculus of the macaque monkey. Behav Brain Res 18:95–105.

Friston KJ, Penny W (2003) Posterior probability maps and SPMs. Neuro-
image 19:1240 –1249.
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