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IGF-I and IGF-II Protect Cultured Hippocampal and Septal Neurons 
against Calcium-mediated Hypoglycemic Damage 
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Insulin and insulin-like growth factors I and II (IGF-I and IGF- 
II) have recently been shown to have biological activity in 
central neurons, but their normal functions and mechanisms 
of action in .the brain are unknown. Since central neurons 
are particularly vulnerable to hypoglycemia that results from 
ischemia or other insults, we tested the hypothesis that 
growth factors can protect central neurons against hypogly- 
cemic damage in vitro. IGF-I and IGF-II (3-100 rig/ml) each 
prevented glucose deprivation-induced neuronal damage in 
a dose-dependent manner in rat hippocampal and septal 
cell cultures. High concentrations of insulin (greater than 1 
rglml) also protected neurons against hypoglycemic damage. 
Epidermal growth factor did not protect against hypogly- 
cemic damage. Both IGFs and insulin were effective when 
administered 24 hr before or immediately following the onset 
of glucose deprivation. Direct measurements of intraneu- 
ronal calcium levels and manipulations of calcium influx 
demonstrated that calcium influx and sustained elevations 
in intraneuronal calcium levels mediated the hypoglycemic 
damage. IGF-I and IGF-II each prevented the hypoglycemia- 
induced elevations of intraneuronal free calcium. Studies 
with excitatory amino acid receptor antagonists and calcium 
channel blockers indicated that NMDA receptors did, and 
L-type calcium channels did not, play a major role in hypo- 
glycemic damage. Taken together, these findings indicate 
that IGFs can stabilize neuronal calcium homeostasis and 
thereby protect against hypoglycemic damage. 

Insulin and insulin-like growth factors I and II (IGF-I and IGF- 
II) are closely related polypeptides that are similar in their struc- 
tures and are believed to have overlapping biological functions 
(Rinderknecht and Humbel, 1976, 1978a,b; Humbel, 1984; 
Czech, 1985; Froesch et al., 1985; Rechler and Nissley, 1985; 
Baskin, 1987; Baskin et al., 1988; Garofalo and Rosen, 1989; 
Knusel et al., 1990; Sara and Hall, 1990). Insulin regulates the 
uptake, cellular transport, and intermediary metabolism of small 
nutrient molecules such as glucose, amino acids, and fatty acids 
in muscle and adipose tissues. Recently, insulin and IGFs (and/ 
or their mRNAs) have been localized in the CNS (Havrankova 
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et al., 1978; Sara et al., 1982, 1986; Rechler and Nissley, 1985; 
Baskin et al., 1988; Rotwein et al., 1988), suggesting that they 
may have biological activity in the brain. In brain cell cultures, 
insulin, IGF-I, and IGF-II promote neuronal survival, neurite 
outgrowth, and gene expression (Bhat, 1983; Lenoir and Honeg- 
ger, 1983; Mill et al., 1985; Recio-Pinto et al., 1986; Aizenman 
and DeVellis, 1987; Kyriakis et al., 1987; Avola et al., 1988; 
Knusel et al., 1990; Drago et al., 199 1). Insulin, IGF-I, and IGF- 
II are each associated with a distinct cell surface receptor (Rech- 
ler and Nissley, 1985). The IGF-I receptor is structurally and 
functionally similar to the insulin receptor in that it possesses 
an a-subunit that binds the hormone-like agent and a p-subunit 
that has a tyrosine-specific protein kinase (Ebina et al., 1985; 
Ullrich et al., 1985, 1986). The IGF-II receptor is different in 
structure from the IGF-I receptor or insulin receptor and ap- 
pears to be identical to an intracellular mannose-6-phosphate 
receptor (Morgan et al., 1986, 1987). 

Insulin, IGF-I, and IGF-II can be produced in cultured neu- 
rons and have been reported to occur in the brain (Binoux et 
al., 198 1; Weyhenmeyer and Fellows, 1983; Davies et al., 1986; 
Ballotti et al., 1987). mRNAs for both IGFs and insulin have 
been detected in many brain regions (Haselbacher et al., 1985; 
Young, 1986; Baskin et al., 1988; Rotwein et al., 1988). There 
is abundant evidence for the existence of receptors for insulin 
and IGFs in the brain (Raizada et al., 1982, 1988; Hill et al., 
1986; Burgess et al., 1987; Mendlesohn, 1987; Waldbillig and 
LeRoith, 1987; Bohanon et al., 1988; Lesniak et al., 1988; Garo- 
falo and Rosen, 1989). IGF-I receptor mRNA is widely dis- 
tributed in the brain, whereas insulin receptor mRNA is re- 
stricted to certain areas and appears to be coexpressed with the 
IGF-I receptor mRNA (Baron-Van Evercooren et al., 1991). 
Receptors for IGF-I and IGF-II have been found to be located 
in hippocampus (Lesniak et al., 1988; Araujo et al., 1989). IGF- 
II receptor mRNA distribution in brain has not been examined. 

A continuous supply of glucose is necessary for the normal 
functioning and survival of mammalian central neurons. Hy- 
poglycemia results in increased utilization of endogenous sub- 
strates, depletion of ATP, membrane depolarization, extracel- 
lular accumulation of excitatory amino acids, loss of neuronal 
ion homeostasis, and ultimately neuronal death (Siesjo et al., 
1988). Calcium normally serves physiologically important func- 
tions as a second messenger regulating neuronal plasticity (Lynch 
et al., 1983; Kater et al., 1988). However, excessive and sus- 
tained elevations in intracellular calcium are involved in neu- 
ronal degeneration caused by metabolic and environmental in- 
sults (Choi, 1988; Siesjo et al., 1988; Mattson, 1992). In the 
CNS, the excitatory neurotransmitter glutamate contributes to 
neuronal vulnerability to insults such as hypoglycemia and hyp- 
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oxia by enhancing calcium influx (Choi, 1988). The cellular and 
molecular mechanisms that normally protect neurons against 
such insults are largely unknown. In the present study we em- 
ployed hippocampal and septal cell cultures to test the hypoth- 
esis that IGFs can stabilize neuronal calcium homeostasis and 
protect central neurons against hypoglycemic injury. 

Materials and Methods 
Hippocampal and septal cultures. The hippocampal and septal culture 
methods employed were similar to those of Mattson and Kater (1988) 
and of Hartikka and Hefti (1988) respectively. Briefly, rat hippocampi 
and septal areas were obtained from 18 d Sprague-Dawley fetuses and 
incubated for 15 min in a solution of 2 mg/ml trypsin in-Ca2+/Mg2+- 
free Hank’s balanced salt solution buffered with 10 mM HEPES fHBSS: 
GIBCO). The hippocampi and septal areas were then rinsed once in 
HBSS, followed by a 5 min incubation in HBSS containing 1 mg/ml 
trypsin inhibitor (Sigma), and a final rinse in HBSS. Tissues were then 
dissociated by trituration through the narrowed bore of a fire-polished 
Pasteur pipette and were distributed to polylysine-coated plastic culture 
dishes (Coming) containing 2 ml of Eagle’s minimum essential medium 
(GIBCO) buffered with 10 mM sodium bicarbonate and supplemented 
10% (v/v) with fetal bovine serum (Sigma), 2 mM L-glutamine, 20 mM 
KCl, 1 mM pyruvate, and 40 mM glucose. The culture density was 80- 
120 cells/mm* of culture surface. Cultures were maintained at 37°C in 
a 6% CO,/94% room air, humidified incubator. All experiments were 
done with neurons that had been in culture for 8-l 5 d. In some exper- 
iments, glial proliferation was halted by exposing cultures to either 10 
/LM cytosine arabinoside (Ara-C) or 20 PM 5-lluoro-2’-deoxyuridine for 
2-3 d (culture days 3-5). 

Assessment of neuronal survival. Neuronal damage was assessed by 
our well-established morphological criteria, which correlate well with 
vital dye staining methods (Mattson et al., 1988). Briefly, cultures were 
visualized and photographed with a phase-contrast Nikon Diaphot in- 
verted microscope. Neurons were scored as viable if they had neurites 
that were uniform in diameter and smooth in appearance, and somata 
that were smooth and round to oval in shape. In degenerating nonviable 
neurons, neurites were fragmented and beaded, and the soma was rough, 
swollen, vacuolated, and irregular in shape. Subsequent to these mor- 
phological changes, the degenerated neurons detached from the culture 
substrate. Viable neurons in premarked culture regions (four regions of 
approximately 1 mm2/culture) were counted immediately prior to and 
18-24 hr following glucose deprivation. Statistical comparisons were 
done using pairwise Student’s t tests. 

Glucose deprivation and experimental treatments. Glucose depriva- 
tion was carried out by removing the culture maintenance medium and 
washing three times with glucose-free Locke’s solution. Locke’s solution 
contained (in mM) NaCl, 154; KCl, 5.6; CaCl,, 2.3; MgCl,, 1.0; Na- 
HCO,, 3.6; and HEPES buffer, 5. Calcium-deficient medium consisted 
of glucose-free Locke’s solution lacking added calcium. Cultures were 
washed thoroughly (six 2 ml washes) with calcium-deficient Locke’s 
immediately prior to glucose deprivation. Growth factors were prepared 
as 100-1000 x stocks in water and were added directly to the cultures. 
Cultures were pretreated with growth factor for 24 hr prior to the onset 
of hypoglycemia, and the growth factors were included in the glucose- 
free -medium during the period of hypoglycemia. Insulin (bovine) and 
calcitonin gene-related nentide (CGRP) were from Siama. while IGF-I 
and IGF-If (human, recombinant) and’epidermal gro-wth’factor (EGF, 
from mouse submaxillary glands) were from Boehringer Mannheim. 
o-y-Glutamylglycine (DGG), m-2-amino-5-phosphonovaleric acid 
(APV), 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), and 6,7-dini- 
troquinoxaline-2,3-dione (DNQX) were from To& Neuramin; these 
agents were prepared as stocks in Locke’s solution. Nifedipine, nimo- 
dipine, verapamil, diltiazem, flunarizine, lidoflazine, and trifluoperazine 
(Sigma) were prepared as 20-500 x stocks in dimethyl sulfoxide. Equiv- 
alent volumes of vehicle were added to control cultures and did not 
affect neuronal survival. 

Fura- measurements of intraneuronal calcium levels. For these stud- 
ies cells were grown in glass-bottom dishes (Mat Tek, Inc.) coated with 
0.05% polyethylenimine. Intraneuronal free calcium levels were mea- 
sured 14-16 hr after the onset of glucose deprivation. The procedures 
for fura- fluorescence ratio imaging were similar to those of our past 
work (Mattson et al., 1989). Briefly, the cells were loaded at 37°C for 
40 min with 4 PM fura- acetoxymethyl ester (Molecular Probes). The 

loaded cells were then washed two times with Locke’s solution con- 
taining 2.3 mM CaCl, (with or without glucose) and incubated an ad- 
ditional 60 min prior to, imaging to allow deesterification of the fura- 
2. Cells were viewed oni an inverted Nikon microscope with a fluoro 
40 x. NA 1.3 obiective and an intensified CCD Camera (Ouantex). A 
Quantex imaging system with QFM software was used to acquire and 
process the images. Intracellular free Ca 2+ levels were determined from 
the ratio of the fluorescence emission using two different excitation 
wavelengths (350 nm and 380 nm). Background fluorescence at each 
wavelength (background images were taken from regions of culture dish 
not containing cells) was subtracted from the cell image at that wave- 
length. The system was calibrated according to the procedures described 
by Grynkiewicz et al. (1985). Measurements were taken in neuronal cell 
bodies, and values represent the average free calcium level therein. 
Statistical comparisons were made using Student’s t test. 

Results 

IGF- I, IGF- II, and insulin protect hippocampal and septal 
neurons against hypoglycemic damage 

Incubation of rat hippocampal and septal cultures in glucose- 
free culture medium resulted in highly significant neuronal dam- 
age and death during 18 hr (hippocampal) or 24 hr (septal) 
exposure periods when compared with cultures maintained in 
medium containing 5-40 mM glucose (Fig. 1, Table 1). Ap- 
proximately 85-95% of rat hippocampal and septal neurons 
degenerated during these glucose deprivation periods (n = 4- 
10 separate experiments for each treatment condition, 3-4 cul- 
tures/experiment). When rat hippocampal and septal cultures 
were pretreated for 24 hr with 100 r&ml of either IGF-I or 
IGF-II and then deprived of glucose for 18-24 hr, there was a 
dramatic reduction in neuronal damage compared to glucose- 
deprived cultures not receiving a growth factor (Fig. 1, Table 
1). Neuronal survival was increased to approximately 70% in 
IGF-treated cultures as compared with 5-l 5% in the untreated 
glucose-deprived cultures (n = 4-l 0 separate cultures/treatment 
group; p < 0.001). Both IGF-I and IGF-II were able to sustain 
hippocampal and septal neurons for up to 40 hr in the absence 
of glucose (n = 4 separate cultures). Insulin at 100 rig/ml did 
not protect neurons against hypoglycemic damage (Table 1). 
The data presented in the dose-response curve in Figure 2 dem- 
onstrate that very low concentrations of IGF-I and IGF-II (l- 
10 @ml, approximately 150-l 500 pkf) can significantly protect 
against neuronal damage in both hippocampal and septal cul- 
tures. Insulin at concentrations up to 300 @ml (approximately 
60 nM) did not protect against hypoglycemic damage. However, 
higher concentrations of insulin (1 pg/ml or greater) did signif- 
icantly protect both hippocampal and septal neurons against 
hypoglycemic damage (Figs. 1, 2). EGF from 1 to 100 rig/ml 
failed to prevent neuronal damage after glucose deprivation. 
Similarly, no effects were observed with 100 nM CGRP. 

Since both rat hippocampal and septal cultures contained glia 
(predominately type I astrocytes; cf. Mattson et al., 1988) we 
determined whether reducing the number of glial cells in the 
culture would influence the protective effects of IGFs against 
glucose deprivation. Glial cell proliferation was inhibited by the 
addition of 10 PM Ara-C to the cultures (Fig. 3). Our preliminary 
experiments showed that adding Ara-C to hippocampal cultures 
reduced the number of astrocytes to less than 5-l 0% of the total 
cell number without significantly affecting the number of neu- 
rons. IGF-I and IGF-II were found to protect against neuronal 
death induced by glucose deprivation in glia-depleted cultures 
(Fig. 3). Similar results were obtained in septal cultures (data 
not shown). These data suggested that the neuroprotective ac- 
tions of IGF-I and IGF-II were not mediated by glia, although 
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Table 1. Effects of growth factors and calcium removal on neuronal 
damage induced by glucose deprivation in cultured rat hippocampal 
and septal neurons 

Neuronal survival 
(O/o of initial number) 
Hippocampus Septum 

0 glucose 6.2 f 2.6 9.84 k 2.5 
5 mM glucose 74.82 f 9.3* 80.82 2 &I* 

20 mM glucose 77.91 + 8.4* 79.38 2 7.2* 
40 mM glucose 83.75 k 9.4* 87.56 + 10.2* 
0 glucose + 100 @ml IGF-I 63.49 k 7.7* 81.22 k 9.8* 
0 glucose + 100 &ml IGF-II 59.89 f 6.3* 74.89 k 6.7* 
0 glucose + 100 &ml insulin 13.38 + 4.5 12.31 + 4.4 
0 glucose + 100 rig/ml EGF 14.29 ~fr 4.8 11.37 + 3.8 
0 glucose + 0 [Cal+] 0 15.62 iz 7.3* 81.48 IL 5.9* 
0 glucose + 100 nM CGRP 3.50 f 1.1 4.92 k 2.4 

Cultures were incubated in the presence of growth factors for 24 hr prior to 
exposure to glucose-free medium. Neuronal survival was assessed 18 hr (hippo- 
campus) or 24 hr (septum) following the onset of glucose deprivation. Values 
represent the mean f SEM of determinations made in 4-10 separate cultures per 
treatment group. 
* p < 0.00 I, as compared to corresponding values for treatments with 0 glucose, 
0 glucose + insulin, 0 glucose + EGF, or 0 glucose + CGRP. 

the possibility that the few remaining glia played a role in the 
action of the IGFs cannot be ruled out. 

IGFs protect neurons against hypoglycemic damage by 
preventing a loss of cellular calcium homeostasis 

Neuronal damage that occurs as the result of ischemia and ex- 
citotoxic insults results largely from aberrant elevations in in- 
tracellular calcium levels (Choi, 1988; Siesjo et al., 1988; Matt- 
son, 1992). We therefore determined whether hypoglycemic 
neuronal damage was calcium dependent, and whether IGFs 
and insulin modified hypoglycemia-induced calcium responses. 
Hippocampal and septal cultures were incubated in medium 
lacking extracellular calcium during the period of glucose de- 
privation in order to prevent calcium influx through the plasma 
membrane (cf. Mattson et al., 1988). Hypoglycemic damage was 
significantly reduced in the cultures maintained in the calcium- 
deficient medium as compared to cultures maintained in the 
normal medium that contained 2.3 mM Ca2+ (Fig. 3, Table 1). 
These data indicated that calcium influx was necessary for hy- 
poglycemic damage and suggested that glucose deprivation might 
result in a loss of neuronal calcium homeostasis. We therefore 
employed the calcium indicator dye fura- to determine the 
effects of hypoglycemia and growth factors on intraneuronal 
calcium levels. 

Glucose deprivation caused a highly significant three- to five- 
fold elevation in intraneuronal calcium levels in both hippo- 
campal and septal neurons during 14-l 6 hr periods (Table 2). 
IGF-I and IGF-II (100 rig/ml) each prevented the glucose de- 
privation-induced intraneuronal calcium increase. EGF did not 
prevent increase in intraneuronal calcium after glucose depri- 
vation (Table 2). The results demonstrated that a loss of neu- 
ronal calcium homeostasis accompanied the hypoglycemic 
damage, and that IGFs stabilized intracellular calcium levels. 

Involvement of excitatory amino acid receptors in 
hypoglycemic damage 

Ischemic neuronal damage in vivo (Simon et al., 1984) and in 
vitro (Goldberg et al., 1987) involves excitatory amino acid 

80 - 
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20 - 

HIPPOCAMPUS 

+ IGF-II 
4 Insulin 

3 30 300 3,000 30,000 
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1 SEPTAL AREA 

T 

“ ,  

0 0.1 ;'lb'.' . .' 100 l.&o 1o.k 
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Figure 2. Dose-response curves for the protective effects of growth 
factors on rat hippocampal (upper) and septal (lower) cultures deprived 
of glucose. Cultures that had been pretreated for 24 hr with different 
concentrations of growth factors were exposed to glucose-free medium, 
and neuronal survival was assessed 18 hr (hippocampal cultures) or 24 
hr (septal cultures) later. Values represent the mean and SEM of deter- 
minations made in three or four separate experiments. 

receptor activation resulting in calcium influx. Since calcium 
influx was involved in the hypoglycemic damage in the present 
study, we assessed the involvement of excitatory amino acid 
receptors in the degenerative process. The NMDA receptor an- 
tagonist APV (100 PM) and the broad-spectrum glutamate an- 
tagonist DGG (100 PM) each prevented the elevation in intra- 
neuronal calcium levels and neuronal damage induced by glucose 
deprivation (Fig. 4). The kainate/AMPA receptor-specific an- 
tagonists CNQX (100 PM) and DNQX ( 100 FM) did not protect 
against hypoglycemic damage in either hippocampal or septal 
cultures. APV, DGG, CNQX, and DNQX alone had no sig- 
nificant effect on neuronal survival in cultures maintained in 
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0 glucoaa + 
100 nglml EGF 

0 gbmsm + 
100 nglml Insulin 

0 gbmose + 
100 rig/ml IGF-II 

0 giuco*e + 
100 rig/ml ION 

0 glucou + 
0 calcium 

40 mM glucose 

5 mM glucose 

0 glucosa 

0 20 40 60 60 

Nwmnal Survival (% of lnttlal number) 

Figure 3. Evidence supporting a direct action of IGF-I and IGF-II in 
rat hippocampal neurons. Non-neuronal cell division was halted by a 
3 d exposure to 10 PM Ara-C. Cultures were then exposed to a growth 
factor for 24 hr followed by an 18 hr exposure to medium lacking 
glucose. Values represent the mean and SEM of determinations made 
in three or four separate cultures. *, p < 0.00 1 compared with 0 glucose 
alone, 0 glucose + insulin, and 0 glucose + EGF. 

glucose-containing medium (data not shown; cf. Mattson et al., 
1988; Facci et al., 1990). 

Efects of calcium channel blockers and kinase inhibitors on 
hypoglycemic neuronal damage 

Calcium influx through voltage-sensitive channels (Siesjo et al., 
1988) and overactivation of protein kinases (Favaron et al., 
1990; Mattson, 199 1) have been implicated in ischemic/exci- 
totoxic neuronal damage. Previous work indicated that blockers 
of L-type calcium channels could protect neurons against ex- 
citotoxicity (Weiss et al., 1990). It was therefore of interest to 
determine whether voltage-sensitive calcium channels and/or 
calcium-dependent protein kinases played a role in glucose de- 
privation-induced neuronal damage. The dihydropyridine ni- 
fedipine (100 PM), and verapamil (10 PM), did not protect hip- 
pocampal neurons against death caused by glucose deprivation 
(Fig. 5). Similarly, two other L-type calcium channel blockers, 
diltiazem (10 PM) and nimodipine (20 PM), were ineffective in 
protecting hippocampal neurons against hypoglycemic damage 
(data not shown). These concentrations of calcium channel 
blockers did not significantly affect neuronal survival in hip- 
pocampal cultures incubated in the presence of glucose (n = 4 
separate cultures). Similar results were obtained in septal cul- 
tures with these calcium channel blockers (data not shown). 
Taken together with the data above, these results indicated that 
calcium influx was responsible for the hypoglycemic neuronal 
damage, and that the damaging calcium influx occurred through 
the NMDA receptor channel and/or through non-L-type chan- 
nels. 

In order to determine whether calcium/calmodulin-depen- 
dent protein kinases were involved in the hypoglycemic damage, 
we employed calmodulin inhibitors that had previously been 
shown to protect neurons in several different paradigms of neu- 
ronal death (Rich and Hollowell, 1990; Mattson, 1991). Flu- 
narizine (10 PM) did not afford significant protection against 
hypoglycemic damage (Fig. 5). Two other calmodulin inhibitors, 
lidoflazine (10 PM) and trifluoperazine (100 nM), also did not 

Table 2. IGF-I and IGF-II prevent the increase in intraneuronal free 
calcium caused by glucose deprivation 

Intraneuronal calcium 
concentration (nM) 

Hippocampus Septum 

0 glucose 346 f 23 320 -c 20 
5 mM glucose 91 +- 13* 84 k 9* 

20 mM glucose 81 +9* 84 +- 8* 
40 mM glucose 89 t 10* 80 k 10* 

0 glucose + 100 r&ml IGF-I 68 k 8* 78 f 9* 
0 glucose + 100 @ml IGF-II 72 + 12* 83 k l* 
0 glucose + 100 rig/ml EGF 265 f 26 324 + 17 
0 glucose + 0 [Ca*+] 0 82 f 10* 79 f 8* 

Cultures were incubated in the presence of growth factors for 24 hr prior to 
exposure to glucose-free medium. Intraneuronal calcium levels were measured 
after 14-16 hr of incubation in the indicated conditions. Values represent the 
mean f SEM of determinations made in 20-40 neurons. 
* p < 0.00 1, as compared with cultures maintained in 0 glucose or 0 glucose + 
EGF. 

protect neurons against hypoglycemic injury (data not shown). 
Since recent evidence indicated that overactivation of protein 
kinase C (PKC) can result in neurodegeneration (Favaron et al., 
1990; Mattson, 199 1), we determined whether the PKC inhib- 
itor H-7 would modify hypoglycemic damage. H-7 (5 PM) did 
not prevent neuronal damage after 18 hr of glucose deprivation 
in hippocampal cell cultures (Fig, 5). Flunarazine, lidoflazine, 
and H-7, at the same concentrations as were added to glucose- 
deprived cultures, did not significantly affect neuronal survival 
in hippocampal cultures incubated in the presence of glucose; 
however, trifluoperazine did cause significant neuronal degen- 
eration (data not shown). These data indicate that blockade of 
calcium/calmodulin-dependent kinases and PKC will not pre- 
vent glucose deprivation-induced neuronal death. 

Discussion 

An increasing number of growth factors are being identified that 
protect central neurons against environmental insults. Previous 
work demonstrated protective effects of basic fibroblast growth 
factor (bFGF) and NGF against physical, ischemic, and/or ex- 
citotoxic damage (Hefti et al., 1985; Anderson et al., 1988; 
Mattson et al., 1989; Cheng and Mattson, 199 1). The present 
data demonstrated the potent protective effect of IGFs against 
hypoglycemic damage in hippocampal and septal cell cultures. 
Furthermore, we provided evidence that the neuroprotective 
action of IGFs results from their ability to stabilize neuronal 
calcium homeostasis. Since central neurons are particularly vul- 
nerable to ischemic insults, these data suggest that IGF may 
play a neuroprotective role under conditions of reduced energy 
supply. 

The protective effects of IGFs and insulin against glucose 
deprivation were concentration dependent and specific. Both 
IGF-I and IGF-II were effective in reducing neuronal death at 
concentrations l-3 rig/ml (approximately 150-450 PM), with 
half-maximally effective concentration of approximately 20 ng/ 
ml (approximately 3 nM). The dose-response curves for the two 
IGFs were remarkably similar. In contrast, insulin was only 
effective in protecting neurons against hypoglycemic damage 
when administered at levels 100-l OOO-fold greater than the IGFs 
(l-3 &ml; approximately 200-500 nM). These data are con- 
sistent with the possibility that the protective effect of insulin 
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Figure 4. Effects of NMDA and non-NMDA receptor antagonists on 
hippocampal neuronal death due to glucose deprivation. Cultures were 
exposed to the indicated treatments and neuronal survival was assessed 
18 hr following the onset of glucose deprivation. APV is an NMDA 
receptor-specific antagonist, CNQX and DNQX are non-NMDA re- 
ceptor-specific antagonists, and DGG is a broad-spectrum glutamate 
receptor antagonist. Values represent the mean and SEM of determi- 
nations made in three or four separate experiments. *, p < 0.001 com- 
pared to 0 glucose, 0 glucose + CNQX, and 0 glucose + DNQX. 

was mediated by IGF-I receptor since previous studies have 
demonstrated an approximately lOOO-fold lower affinity of in- 
sulin (as compared to IGFs) for IGF-I receptor (Ullrich et al., 
1985, 1986). Since insulin does not appear to bind to IGF-II 
receptor (Baskin et al., 1988) the growth or protective effects 
of insulin on CNS cells may be due to its binding to the IGF-I 
receptor. Autoradiographic studies indicated that there are IGF-I 
and IGF-II receptors, but no insulin receptors, in the hippo- 
campus (Bohanon et al., 1988; Lesniak et al., 1988). IGF-I 
receptors are concentrated in strata radiata and oriens, partic- 
ularly in region CA3, suggesting that they may be present on 
pyramidal neurons. In situ hybridization studies indicated that 
insulin and IGF-I receptor mRNAs are present in hippocampus 
(Baron-Van Evercooren et al., 199 1). We found that IGF-I and 
IGF-II were equipotent in protecting neurons against hypogly- 
cemia. When taken together with the fact that IGF-I has a higher 
affinity for IGF-I receptors than does IGF-II (and vice versa), 
our data suggest that hippocampal and septal neurons have both 
IGF-I and IGF-II receptors. 

Rat hippocampal cultures contain essentially all non-cholin- 
ergic neurons, whereas septal cultures contain a large population 
of cholinergic neurons (Hefti et al., 1989). Previous studies 
showed that IGFs and insulin elevated ChAT activity in septal 
cultures and dopamine uptake in mesencephalic cultures (Knu- 
se1 et al., 1990). No data were previously available concerning 
actions of IGFs and insulin in hippocampal neurons. Our data 
indicate that IGFs are likely to influence a rather large number 
of neuronal types in the brain. As with the IGFs, bFGF has 
been shown to support cell survival and neurite outgrowth in 
cultured neurons (including cholinergic and non-cholinergic) 
from various brain regions (Morrison et al., 1986; Walicke et 
al., 1986; Unsicker et al., 1987; Hatten et al., 1988; Walicke, 
1988). Intracerebral administration of bFGF prevents degen- 
erative changes of lesioned cholinergic neurons of the basal 
forebrain (Anderson et al., 1988). In contrast to IGFs and FGF, 
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Figure 5. Effects of calcium channel blockers and kinase inhibitors on 
hippocampal neuronal death resulting from glucose deprivation. lnhib- 
itors were included in the culture medium during an 18 hr period of 
glucose deprivation. Inhibitors were nifedipine (Nif), verapamil (ver), 
flunarizine (Flu), and H-7. Values represent the mean and SEM of 
determinations made in three or four separate cultures. Nifedipine, 
verapamil, flunarizine, and H-7 did not protect against the neuronal 
death (p > 0.05). 

the biological actions of NGF in the CNS seem to be limited 
to certain populations of primarily cholinergic neurons (Thoe- 
nen et al., 1987; Hefti et al., 1989; Snider and Johnson, 1989). 
On the other hand, we recently found that NGF and bFGF 
protected both rat hippocampal and human cortical neurons 
against hypoglycemic damage (Cheng and Mattson, 199 l), in- 
dicating that NGF, in addition to actions on peripheral neurons 
and central cholinergic neurons, can also directly affect central 
non-cholinergic neurons. Taken together, the available data in- 
dicate that IGF-I and IGF-II, as well as bFGF and probably 
NGF, affect both cholinergic and non-cholinergic central neu- 
rons. The extent to which the signal transduction systems for 
these different growth factors are different or overlapping re- 
mains to be determined. 

Insulin and IGFs are known to affect glial cells (Lenoir and 
Honegger, 1983; Avola et al., 1988). Glial cells, in turn, are 
known to provide trophic support for neurons (Mattson and 
Rychlik, 1990). In the present study, however, treatment of the 
cultures with Ara-C to prevent cellular proliferation only slightly 
reduced the neuroprotective effects of IGFs. This suggests that 
the neuroprotective effects of IGFs were mainly the results of 
direct actions on the hippocampal and septal neurons, although 
a role for glia was not completely ruled out. 

The mechanism of hypoglycemic neuronal damage is not 
completely understood, but appears to involve a loss of neuronal 
calcium homeostasis. In support of this mechanism, we found 
that removal of extracellular calcium prevented hypoglycemic 
damage. Contributing to the loss of calcium homeostasis was 
calcium influx triggered by activation of NMDA receptors since 
APV, a specific blocker of NMDA-type calcium channels, sig- 
nificantly reduced hypoglycemic damage. This possibility is con- 
sistent with previous data obtained in mouse cortical and rat 
cerebellar cultures wherein hypoglycemic damage was reduced 
by NMDA receptor antagonists (Monyer et al., 1989; Facci et 
al., 1990). Non-NMDA receptor antagonists (CNQX and 
DNQX) did not reduce hypoglycemic neuronal damage in the 
present study, indicating that activation of non-NMDA recep- 
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tors is probably not necessary for hypoglycemic damage. In 
addition, dihydropyridine blockers of L-type calcium channels 
(nimodipine and nifedipine), as well as verapamil and diltiazem 
did not reduce hypoglycemic damage, indicating that calcium 
influx through the L-type channel was not a major factor con- 
tributing to the loss of calcium homeostasis. Taken together, 
these findings suggest that calcium influx through the NMDA 
receptor channel was a major contributor to the degenerative 
effects of glucose deprivation. However, we cannot yet rule out 
the possibility that calcium influx through non-L-type calcium 
channels plays a role in hypoglycemic neuronal damage, since 
a substantial portion of high-threshold calcium current is resis- 
tant to dihydropyridines and w-conotoxin (Regan et al., 199 1). 

Both IGF-I and IGF-II prevented hypoglycemia-induced loss 
of neuronal calcium homeostasis. The specific system(s) for cal- 
cium homeostasis affected by IGFs is not clear. Previous work 
provided evidence that neuronal growth factors can stabilize 
neuronal calcium homeostasis. For example, NGF influenced 
the expression of calcium channels and calcium-extruding sys- 
tems in PC12 cells (Takahashi et al., 1985; Chalazonitis et al., 
1987; Masiakowski and Shooter, 1988; Streit and Lux, 1990). 
In addition, bFGF protected cultured rat hippocampal neurons 
against excitatory amino acid neurotoxicity (Mattson et al., 1989). 
The protective effect of bFGF is mediated at least in part by a 
suppression of the expression of an NMDA receptor protein by 
this growth factor (Mattson et al., 199 1; Michaelis et al., 199 1). 
In addition, bFGF may enhance the ability of neurons to reduce 
intracellular calcium levels following an excitatory challenge 
(Mattson and Rychlik, 1990). In a recent related study we found 
that NGF and bFGF protected rat hippocampal and human 
cerebral cortical neurons against neuronal damage caused by 
glucose deprivation (Cheng and Mattson, 1991). In the latter 
study we found that both NGF and bFGF prevented the loss 
of neuronal calcium homeostasis that normally mediated hy- 
poglycemic damage. Growth factors may also stabilize intra- 
cellular calcium levels in peripheral neurons. For example, in 
cultured sympathetic neurons NGF appears to influence neu- 
ronal systems for calcium homeostasis and these effects of NGF 
are correlated with its trophic action (Koike and Tanaka, 199 1). 
Taken together, the available data suggest that a general feature 
ofgrowth factor action may be to stabilize neuronal intracellular 
free calcium levels. 

Overactivation of protein kinases has been suggested to be 
involved in the neuronal damage that occurs in a number of 
neurodegenerative conditions. For example, ischemic brain 
damage is associated with altered PKC activity (Louis et al., 
1988), and administration of a PKC inhibitor was found to 
reduce ischemic damage (Joo et al., 1989). Overactivation of 
calcium/calmodulin-dependent kinase(s) and PKC have been 
implicated in the neurofibrillary degeneration that occurs in 
Alzheimer’s disease and related disorders (Mattson, 1990, 199 1). 
In the present study, calmodulin inhibitors (flunarizine, lidof- 
lazine, and trifluoperazine) and the PKC inhibitor H-7 did not 
protect hippocampal or septal neurons against hypoglycemic 
damage. Thus, we were not able to provide evidence supporting 
a role for calmodulin-dependent protein kinases or PKC in hy- 
poglycemic damage. These data suggest that these calcium-reg- 
ulated kinases may not be involved in hypoglycemic damage. 
However, since we did not directly assess kinase activity, we 
cannot rule out the possibility that the kinase inhibitors used 
did not completely block kinase activities. Clearly, further work 
will be required to understand the specific events triggered by 

glucose deprivation that lead to a loss of neuronal calcium ho- 
meostasis and cell death. 

The protective effects of IGFs against hypoglycemic damage 
demonstrated here are consistent with the possibility that IGFs 
play a neuroprotective role in vivo. In the developing nervous 
system IGFs may play a role in determining which neurons 
survive during the period of naturally occurring neuronal death, 
and in the process of synaptic organization. From a pathological 
standpoint, IGFs may also play a role in preventing neuronal 
death. The hippocampus and septal area are brain regions that 
are particularly vulnerable in acute (e.g., stroke) and chronic 
(e.g., Alzheimer’s disease) neurodegenerative disorders. The 
present data may therefore have implications for approaches to 
preventing neuronal damage in these disorders. 
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