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The differentiation and morphogenesis of neural tissues involves 
a diversity of interactions between neural cells and their envi- 
ronment. Many potentially important interactions occur with 
the extracellular matrix (ECM), a complex association of extra- 
cellular glycoproteins organized into aggregates and polymers. 
In this article, we discuss recent findings on neuronal interac- 
tions with the ECM and their roles in neural cell migration and 
neurite growth. First, we examine the expression and putative 
functions of the molecules of the neural ECM. Second, we dis- 
cuss cell surface molecules that mediate neural interactions with 
ECM components. Last, we address proteoglycans (PGs), a di- 
verse class of glycoproteins, present both as ECM components 
and as cell surface molecules, which may mediate neural inter- 
actions with their environment. 

The best-understood cellular interactions with the ECM are 
adhesive, mediated by binding between specific cell surface mol- 
ecules and cell binding domains of ECM components (Stritt- 
mater and Fishman, 199 1; Damsky and Werb, 1992). Cell- 
substratum adhesion is necessary for major cell movements of 
neuron morphogenesis, that is, the migrations of neural cells 
and their precursors and the migratory behavior ofgrowth cones 
at the extending tips of axons and dendrites. As cells move, 
adhesive molecules at the surface of the leading edge of a mi- 
grating cell or growth cone bind to ligands on other cell surfaces 
or ECM components. These bonds stabilize filopodia and la- 
mellipodia, and, in some cases, provide anchorage against which 
cytoskeletal filaments, associated with the plasma membrane, 
exert forces to pull the cell or growth cone forward. Thus, ECM 
has been primarily viewed as an adhesive substratum to provide 
traction for migrating cells and to stabilize the position and, 
perhaps, the state of differentiation of nonmotile cells. 

However, the interactions between neural cells and the ECM 
are not longer regarded as only adhesive or mechanical. Two 
points are now clear. First, some of these interactions are def- 
initely not adhesive, but, rather, they may even be antiadhesive 
(Chiquet-Ehrismann, 199 1). Second, evidence has accumulated 
to indicate that the cell surface molecules that mediate cell-cell 
and cell-ECM interactions (immunoglobulin superfamily, cad- 
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herins, integrins) modulate the same cytoplasmic second mes- 
senger pathways (e.g., cytoplasmic [CaZ+], protein kinases, ino- 
sitol phosphates), as do hormones, growth factors, 
neurotransmitters, and pharmaceuticals (reviewed in Damsky 
and Werb, 1992; Hynes, 1992; Hynes and Lander, 1992; 
Schweighoffer and Shaw, 1992; Thiery and Boyer, 1992). Thus, 
neural cell-ECM interactions are more complex than they were 
previously thought to be. These interactions may generate sig- 
nals that directly regulate locomotory activities, such as poly- 
merization of cytoskeletal components and associations of cy- 
toskeleton and plasma membrane, that produce extension and 
adhesion of lamellipodia and filopodia and generate mechanical 
force. In addition, these signals may act in cell nuclei to alter 
gene expression of proteins involved in neuronal migration and 
morphogenesis. 

Extracellular Matrix Molecules 
Organization and diversity of the ECM in developing neural 
tissues 
Embryonic neural tissues contain a dynamic ECM, composed 
of many types of molecules that have distinct patterns of spatial 
and temporal expression. Many ECM components, originally 
discovered in non-neural tissues, are also present in developing 
neural tissues, including fibronectin (FN), laminin (LM), vitro- 
nectin, collagens, PGs, tenascin, and thrombospondin (Rei- 
chardt and Tomaselli, 199 1). Some ECM components were orig- 
inally discovered in neural tissues, such as S-laminin and agrin, 
which are concentrated in the basement membrane at neuro- 
muscular junctions (Reist et al., 1987; Hunter et al., 1989a,b), 
and F-spondin, which is abundantly expressed in the spinal cord 
floor plate (Klar et al., 1992). 

Many ECM components are modular or mosaic proteins, 
composed of several polypeptide domains that can be differ- 
entially assembled as a consequence of alternative mRNA splic- 
ing (Engel, 199 1). These domains build characteristic motifs of 
polypeptide folding, and they are often named for the protein 
in which they were first recognized, for example, FN type I, II, 
III; epidermal growth factor (EGF)-like; immunoglobulin-like; 
carboxy-terminal LM globule (Fig. 1). The structural similarities 
of any domain type in different proteins are greater than peptide 
sequence similarities, and a pressing question is whether struc- 
tural similarity entails functional similarity for a domain. as it 
exists in different ECM and cell surface proteins. Alternative 
mRNA splicing permits multiple combinations of these struc- 
tural domains, thereby increasing the potential for functional 
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Figure 1. A schematic illustration of protein domains of some ECM cell surface molecules. For multichain proteins, only a single subunit is 
shown. For tenascin, the largest (230 kDa) form is shown. Integrin p4 and the Fl 1 receptor have been chosen as examples of the integrin and IgG 
receptor superfamilies, respectively. Perlecan is given as an example of an extracellular proteoglycan with multiple conserved domains. Fibronectin, 
tenascin, laminin, collagen, thrombospondin, and perlecan are predominantly ECM molecules, although they are in some cases found associated 
with cell surfaces. 

diversity. Several domain types (IN type III, immunoglobulin- 
like, EGF-like, thrombospondin type I) are known to mediate 
cellular interactions (Thiery and Boyer, 1992; Yamada and 
Kleinman, 1992). EN and tenascin exemplify ECM proteins for 
which alternate splicing produces different protein forms in dif- 
ferent spatial and temporal patterns (Kaplony et al., 1991; Pa- 
gani et al., 1991). 

Several ECM components are now known to be part of protein 
families, encompassing several evolutionary related genes. A 
prominent example is the family of LM-like proteins. LM, a 
potent stimulator of neurite outgrowth, is composed of a Bl, a 
B2, and an A chain (Reichardt and Tomaselli, 1991). Merosin 
combines a distinct A chain homolog with B 1 and B2 to generate 
a novel form, which also promotes neurite outgrowth, but has 
a different spatial and temporal expression than LM (Engvall et 
al., 1992). S-laminin, which contains a different Bl chain, has 
yet another pattern of expression, and although it is adhesive 
for motor neurons, it does not stimulate neurite outgrowth 
(Hunter et al., 1989b, 1991). With several possible homologs 
of each chain and multiple combinations of Bl, B2, and A 
homologs, the number of LM-like proteins may be quite large. 
Tenascin is another ECM component that represents a protein 

family. Tenascin (also known as cytotactin, Jl glycoprotein, 
hexabrachion, myotendinous antigen, and glioma mesenchymal 
ECM antigen) is present in many tissues and exists in altema- 
tively spliced forms (Jones et al., 1989; Spring et al., 1989). A 
related gene codes for J 1- 1601180, also known as janusin (Pes- 
hava et al., 1989), and a third form, restrictin, is expressed only 
in neural tissues (Norenberg et al., 1992). Since these proteins 
have multiple domains with adhesive and antiadhesive effects, 
the tenascin family may play many different roles. 

ECM components can also exist as cell surface components, 
as in the case of several members of the immunoglobulin su- 
perfamily. These molecules can be bound to cell surfaces by a 
glycosylphosphatidylinositol (GPI) membrane anchor, and are 
also released or secreted into the ECM (Sonderegger and Rath- 
jen, 1992). Neural cell adhesion molecule (NCAM) typifies a 
cell surface adhesion component that also exists extracellularly, 
in cerebrospinal fluid, and also associated with ECM compo- 
nents (He et al., 1987). Similarly, the isotypes chick axonin l/rat 
TAG- 1 and chicken Fl l/mouse F3 exist in multiple forms (Dur- 
bet et al., 1992). There may be great diversity of interactions 
involving these glycoproteins, since several bind in both a hom- 
ophilic and heterophilic manner to components of cell surfaces 
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and ECM (Kuhn et al., 199 1; Stoeckli et al., 199 1; Sonderegger 
and Rathjen, 1992). 

Spatial and temporal distribution of ECM components in 
developing neural tissues 

Immunohistochemistry and in situ hybridization with nucleo- 
tide probes have been used to examine the spatial and temporal 
expression patterns of ECM components in developing neural 
tissues, especially in regions of cell movements. These studies 
have shown that there is abundant ECM in the CNS and PNS, 
at times when neurons differentiate and migrate, and axons 
elongate. This ECM is transiently present, and it is substantially 
reduced by the end of development. Although the presence of 
ECM is clearly widespread, not all ECM components have been 
localized, and not all regions and stages have been surveyed in 
any one species. 

The complexity of the extracellular environment is revealed 
by examining the expression patterns of several ECM compo- 
nents in a single region over the course of development. For 
example, the developing subplate of the mammalian telenceph- 
alon is a transient layer, containing extracellular space through 
which neurons and growth cones migrate (Shatz et al., 1990). 
This region has a complex ECM, which includes FN, LM, chon- 
droitin sulfate proteoglycan (CSPG), and S-laminin (Sheppard 
et al., 1991; Hunter et al., 1992a). The combination of immu- 
nohistochemical evidence from embryonic tissues and immu- 
nocytochemical and biochemical studies of cultured cells sug- 
gests that embryonic glia synthesize most or all of this transient 
ECM. In the developing spinal cord a variety of ECM com- 
ponents and cell adhesion molecules, LM, S-laminin, collagen 
IV, heparan sulfate proteoglycan (HSPG), F-spondin, Ll, Fl 1, 
N-cadherin, neurofascin, and TAG- 1, are distributed in a com- 
plex spatial and temporal pattern (Shiga and Oppenheim, 199 1; 
Klar et al., 1992). Growth cones that migrate in this environ- 
ment encounter surfaces expressing diverse molecules, depend- 
ing on neuronal type, pathway, and developmental stage. Several 
ECM components, including S-laminin, F-spondin, and tissue 
plasminogen activator, reach their highest expression in the floor 
plate, a region that may be critical in spinal cord growth cone 
navigation (Hunter et al., 1992a; Klar et al., 1992; Sumi et al., 
1992). 

Another way to examine the pattern of ECM expression is by 
localizing a single ECM component in different regions and 
developmental periods. Comparison of the results may suggest 
roles that are played by a particular component. The LM homo- 
log S-laminin was discovered by virtue of its restricted presence 
in the neuromuscular synaptic basal lamina, as distinct from 
LM, which is present throughout the muscle basal lamina (Hun- 
ter et al., 1989a,b). In the telencephalic subplate, the neural 
retina, and the spinal cord, the distribution of S-laminin is more 
spatially and temporally restricted than that of LM (Hunter et 
al., 1992a,b). These differential patterns of S-laminin deposition 
suggest that its functions are distinct from those of LM. For 
example, while LM stimulates neurite elongation, S-laminin 
may promote the cessation of neurite elongation before syn- 
aptogenesis at motor end plates, and in the neural retina LM 
and S-laminin may have distinct effects on differentiation of the 
various retinal cell types. 

Immunohistochemical studies of the distribution patterns of 
tenascin indicate that, unlike S-laminin, it is broadly expressed 
in developing tissues (Chiquet-Ehrismann, 1990). The roles of 
tenascin are uncertain. One reason for this uncertainty arises 

from comparisons of immunohistochemical staining of different 
developing neural tissues. In the cerebral cortex tenascin may 
not be involved in neuronal migration or axonal growth, since 
it does not appear until after cortical layers and axonal pathways 
are established (Sheppard et al., 1991). However, in the post- 
natal cerebellar cortex, tenascin is present when parallel fibers 
are elongating throughout the molecular layers (S. Bartsch et al., 
1992). In the mouse, tenascin is present in the optic nerve and 
in peripheral nerves at the time axons are growing (U. Bartsch 
et al., 1992). Yet, tenascin is reported absent from both the early 
limb mesenchyme in regions penetrated by the first axons 
(Wehrle-Haller et al., 1992) and from the developing chick optic 
nerve (Perez and Halfter, 1993). Uncertainty about the role of 
tenascin also comes from in vitro studies that report tenascin 
can both promote and inhibit neuronal migration and neurite 
elongation (Faissner and Kruse, 1990; Wehrle and Chiquet, 1990; 
Chiquet-Ehrismann, 199 1; Lochter et al., 199 1). These diverse 
reports suggest that tenascin modulates axonal growth, but the 
mechanism is unclear. 

Studies of the distribution patterns of ECM components have 
also been carried out with invertebrate embryos (reviewed by 
Fessler and Fessler, 1989; Hortsch and Goodman, 199 1). In- 
vertebrate homologs of collagen IV, LM, tenascin, and vitro- 
nectin have been described in animal systems where genetic 
approaches can be applied to reveal functions of these known 
ECM components in neuronal morphogenesis (Kusche-Gull- 
berg et al., 1992; Mirre et al., 1992; Nakashima et al., 1992; 
Baumgartner and Chiquet-Ehrismann, 1993; Henchcliffe et al., 
1993). In addition, studies of invertebrates may lead to discov- 
ery of novel ECM components. For example, three monoclonal 
antibodies label the ECM of embryonic insect legs in a graded, 
nonuniform distribution (Norbeck et al., 1992), indicating that 
the protein antigens are present in spatial and temporal distri- 
bution patterns that make them candidates for substratum-bound 
axon guidance cues. 

Functions of ECM components in neuronal development 

In vivo approaches. These in vivo patterns of ECM distribution 
and expression indicate that many ECM components are present 
where they could modulate cell migrations and neurite growth. 
Until recently, attempts to identify the functions of ECM com- 
ponents in vertebrate neural development have mostly involved 
injecting antibodies and other reagents into avian and amphib- 
ian embryos, or exposing semiintact preparations, such as tissue 
slices, to these agents in culture. The results obtained include 
disruptions of neural crest cell migration in avian embryos 
(Bronner-Fraser, 1986, 1987; Bronner-Fraser and Lallier, 1988; 
Bronner-Fraser et al., 1992b), inhibition of granule cell migra- 
tion along glial fibers in cerebellar explants (Choung et al., 1987; 
Liesi et al., 1992), and abnormal patterns of regeneration at 
neuromuscular junctions (Mege et al., 1992). In contrast, injec- 
tions of anti-LM into avian embryos did not lead to any ob- 
servable defects in the projection of sympathetic preganglionic 
axons (Yip and Yip, 1992). 

Some of these findings implicate particular molecules, such 
as LM and tenascin, in cell migration and axon elongation, but 
how do injected antibodies disrupt morphogenetic cell move- 
ments? Do injected antibodies directly block a migratory mech- 
anism, or is the disruption more indirect? For example, do the 
antibody molecules bind to a molecule that is not normally 
involved in the process, thereby sterically blocking a nearby, 
but distinct, interaction that is involved in migration? Or does 
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antibody-induced disruption of cell-ECM interactions prompt 
a cascade of changes that indirectly disrupts nerve cell or growth 
cone migration? 

This concern about the ambiguity of results obtained by use 
of antibodies has been addressed by a recently developed tech- 
nique, chromophore-assisted laser inactivation (CALI), which 
uses a laser beam to inactivate a protein by high-energy transfer 
from a fluorochrome-conjugated antibody, bound to the protein. 
Using this technique, Jay and colleagues (Jay and Keshishian, 
1990; Schnipper et al., 1992) have presented results indicating 
that inactivation of particular axonal surface molecules, fasciclin 
I and fasciclin II, disrupts the stereotypic outgrowth of grass- 
hopper pioneer axons. Application of CAL1 to focal areas of 
embryos or semiintact preparations would permit a precisely 
controlled inactivation of a specific ECM component in a par- 
ticular region of cell migration or neurite elongation. 

Another technique that has come into use for probing the 
functions of ECM components in mammals is their deletion by 
gene knockout. Genetically engineered mice lacking the tenascin 
gene developed normally without obvious defects (Saga et al., 
1992). Notwithstanding the possibility of subtle defects, these 
results would indicate that tenascin is not essential for normal 
development (Erickson, 1993). It is possible, of course, that in 
the mutant mice the essential functions of tenascin, if any, are 
replaced by another member of the tenascin family, or that 
bypass mechanisms exist to ensure normal development in cases 
of accidental dysfunction. 

Invertebrate species have also been used to investigate the 
roles of ECM components in neural development. A mutation 
in the gene uric-6 of the nematode Caenorhabditis elegans dis- 
rupts circumferential axonal projections, but longitudinal pro- 
jections are unaffected (Ishii et al., 1992). The sequence of the 
uric-6 protein most closely resembles the LM B2 chain, and it 
is proposed that uric-6 codes for an ECM component of the 
epidermal basal lamina that is part of a dorsoventral axonal 
guidance system. As discussed below, another gene, uric-5, may 
code for a plasma membrane receptor for ECM proteins. 

In vitro approaches. In vitro studies can directly probe wheth- 
er an ECM molecule supports particular types of cell migration 
or axonal elongation. On the basis of such studies, thrombo- 
spondin, vitronectin, F-spondin, and the NC1 domain of type 
IV collagen have been included among ECM molecules that 
promote neurite outgrowth (Lein et al., 199 1; Neugebauer et al., 
1991; O’Shea et al., 1991; Klar et al., 1992; Osterhout et al., 
1992). Synthetic peptides and epitope-specific antibodies can 
probe neural interactions with individual structural domains of 
ECM components. For example, the adhesive and antiadhesive 
effects of different domains of tenascin have been identified, as 
well as the specific domains of tenascin that interact with dif- 
ferent nerve cell types (Lochter et al., 1991; Husmann et al., 
1992; Prieto et al., 1992). Synthetic peptides have been used to 
mimic individual structural domains of ECM proteins (Yamada 
and Kleinman, 1992). Neurite outgrowth is promoted on sub- 
strata treated with any of two heparin-binding and two potential 
fi 1 -integrin-binding peptides from the carboxyl-terminal glob- 
ular domain of the LM A chain (Skubitz et al., 1991). An ar- 
ginine-glycine-aspartate-containing peptide of the A chain also 
promotes neurite outgrowth (Tashiro et al., 199 l), and leucine- 
arginine-glutamate (LRE) sequence in LM and S-laminin may 
be a specific adhesive site for motor neurons (Hunter et al., 
199 1). A heparin-binding peptide and a potential integrin-bind- 
ing peptide from the carboxyl terminus of FN support neurite 

outgrowth from spinal cord and sensory neurons (Haugen et al., 
1992b). While this approach has identified potential functional 
domains, a strong possibility of artifacts exists. For example, 
the cell binding activity of heparin-binding peptides may be 
nonspecific ionic binding of negatively charged surface com- 
ponents to clustered, positively charged residues of the synthetic 
peptide. As another example of results with uncertain signifi- 
cance, the binding of neurons to the LRE peptide of LM and 
S-laminin occurs without the presence of extracellular Ca*+, but 
does not occur at physiological levels of extracellular Ca*+. The 
challenge is to devise experiments that demonstrate that a pep- 
tide sequence of interest actually participates in neuronal inter- 
actions with an intact ECM molecule. 

In vitro studies suggest that adhesivity is not the only factor 
to consider in understanding how the multiple domains of ECM 
components regulate neural cell and growth cone migrations 
(Lein et al., 1992). For instance, when retinal neurons are grown 
on substrata treated with LM and the adhesive cell surface mol- 
ecules L 1 and N-cadherin, no clear relationship is found between 
substratum adhesivity and growth cone shape, elongation rate, 
or neurite fasciculation (Lemmon et al., 1992). As another ex- 
ample, olfactory neurons, when presented a choice of migrating 
on FN or LM, prefer to migrate on LM. It is unknown whether 
this reflects a preference for a particular level of adhesivity or 
some other aspect of the neuronal interaction with LM. The 
existence of nonadhesive or even antiadhesive neuronal inter- 
actions with LM is indicated by the finding that neuronal ad- 
hesion to an FN-treated substratum is much reduced by the 
addition of as little LM as 1 part in 50 (Calof and Lander, 199 1). 
The immunoglobulin superfamily member F3/Fll, which is 
expressed both bound to cell surfaces and in soluble form, is 
also intriguing in the diversity of its in vitro effects. In soluble 
form it promotes neurite outgrowth (Durbec et al., 1992). On 
neuronal surfaces F3/Fll binds several members ofthe tenascin 
family (tenascin, J 1601180, and restrictin), and mediates the 
initial adhesion of neurons to a 51-160/l 80 substratum, fol- 
lowed by release of the neurons from the substratum (Zisch et 
al., 1992; Pesheva et al., 1993). These diverse responses show 
how the interactions of multiple neuronal surface components 
with several functional domains of an ECM component can lead 
to cascades ofeffects on cell behavior (Damsky and Werb, 1992; 
Schweighoffer and Shaw, 1992). 

Cell Surface Receptors of ECM Components 
The precise spatial and temporal distributions of both growth- 
promoting and growth-inhibiting ECM components are likely 
to play an important role in determining patterns of neuronal 
migration and neurite outgrowth during development. Equally 
important may be the distribution of cell surface receptors for 
ECM components on different classes of neurons that confront 
the same extracellular environment, or on the same class of 
neurons at different stages of their development. Different types 
of neurons will extend axons to different ultimate destinations 
in the embryo through roughly the same initial embryonic ter- 
rain. Regulation of receptor expression or modulation of recep- 
tor function in different classes of embryonic neurons could 
potentially generate unique profiles of affinity for extracellular 
molecules that contribute to the precise patterns of neural cell 
and growth cone migration seen in vitro. Several recent reviews 
have dealt with cell surface receptors for ECM components 
(Damsky and Werb, 1992; Ginsberg et al., 1992; Hynes, 1992; 
Schweighoffer and Shaw, 1992) and specifically with those re- 
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Figure 2. The cell surface proteins mediating cellular interactions with Iaminin (LM) and fibronectin (FN). Integrin &heterodimers recognize 
both LM and FN and transduce information to the cytoskeleton. The actin cross-linking protein cu-actinin (WA) binds to the cytoplasmic domain 
of the integrin @-subunit, as does talin (T), although with lower affinity. Talin binds vincuhn (V), which in turn also binds cY-actinin. Galactosyl- 
transferase (GalTuse) acts as a receptor for LM carbohydrate residues. Cell surface proteoglycans (PC) may also bind extracellular LM. A variety 
of nonintegrin laminin receptors have been described (for review, see Mecham, 199 1). Heparan sulfate (HS) is known to bind FN, and cell surface 
HSPG may act as a FN receptor. Tissue plasminogen activator ((PA) associates with the cell surface via a high-affinity tPA receptor. Neuronally 
derived plasminogen activator (PA)-like proteases have been shown to degrade PN. Target-derived soluble and substrate bound inhibitors (PAI) 
regulate PA activity. 

ceptors found in the nervous system (de Curtis, 199 1; Reichardt 
and Tomaselli, 1991; Hynes and Lander, 1992; Letoumeau et 
al., 1992). Here, we present recent findings involving neuronal 
receptors of ECM components. 

Integrins 
Distribution of integrins during development and regeneration. 
Members of the @l-integrin family are the best-characterized 
neuronal receptors for ECM components (Fig. 2; Hynes and 
Lander, 1992. However, our understanding of the spatial and 
temporal distribution of integrins in vivo is limited due to the 
lack of reagents that adequately distinguish the various repre- 
sentatives of the pl class. Antibodies that are specific for dif- 
ferent cu-integrin subunits have recently allowed the distribution 
of several integrins to be characterized in the nervous system. 
In adult avian tissues the (Y 1 LM/collagen receptor is restricted 
to smooth muscle and capillary endothelial cells, yet during 
stages of active neurite outgrowth it is transiently expressed in 
portions of both the CNS and PNS (Duband et al., 1992). The 
~y6 LM receptor is also developmentally regulated, although its 
distribution is somewhat broader and less temporally restricted 
than that of the cy 1 subunit. Integrin ot6 expression is noticeably 
more abundant on subpopulations of spinal neurons, particu- 
larly commissural axons and cell bodies (Bronner-Fraser et al., 
1992a). While the cu5 FN receptor is apparently not expressed 
by developing chick neuronal cells (Muschler and Hon.&z, 199 l), 
it has been implicated in axon outgrowth during regeneration. 
Both the &31 receptor and FN are strongly induced following 
injury in neuronal and non-neuronal cells of chick peripheral 
nerve (Lefcort et al., 1992). While these studies do not directly 
address the function of integrins in neuronal development, their 
temporal and spatial expression patterns are suggestive of the 
roles integrins may play. In contrast to the ubiquitous distri- 
bution ofthe pl subunit during development, specific a-subunits 
seem ideally situated to mediate axon outgrowth and regener- 
ation in particular subpopulations of neurons. The restricted 
spatial distributions ofdifferent integrins may account for recent 
observations indicating that there are different surface compo- 
nents that mediate cell-substratum interactions in comparisons 
between central and peripheral neurons (Haugen et al., 1992a) 

and between cranial and trunk neural crest cells (Lallier et al., 
1992). 

Regulation of integrin expression andfinction. The expression 
of integrins and their affinity for ligands are influenced by many 
factors, including cytoplasmic activators and repressors, cell- 
surface modulators, and ECM components (reviewed in Dam- 
sky and Werb, 1992; Ginsberg et al., 1992; Hynes, 1992; 
Schweighoffer and Shaw, 1992). Most of these factors have been 
described for cells of the hemopoietic system. Although mech- 
anisms of receptor modulation are likely to apply generally to 
members of the integrin class, there is little specific information 
concerning modulation of integrin function in neuronal cells. 
Recently, it was found that cvlpl -integrin of neural crest cells 
binds in the absence of divalent cations to LM substrata pre- 
pared in the presence of calcium. In contrast, neural crest cells 
require the presence of divalent cations for binding to LM sub- 
strata prepared in the presence of EDTA, heparin, magnesium, 
or manganese, and adhesion to LM under these conditions ap- 
pears to be mediated by a non-cul-integrin receptor (Lallier and 
Bronner-Fraser, 1992). These data suggest that the conforma- 
tion of LM can be affected by the concentration of divalent 
cations available in the extracellular space during its deposition, 
and that differences in LM conformation can alter both the 
receptor specificity and the cation dependence of subsequent 
integrin binding. The potential importance ofcation-dependent/ 
independent integrin function is suggested by the observation 
that cranial and trunk neural crest cells employ different inte- 
grins with different cation dependence to interact with LM, FN, 
and collagens I and IV (Lallier et al., 1992). Such differences in 
integrin specificity and function could underlie the differences 
in migration pathway choices made by these two classes of 
neural crest cells. 

The construction and expression of chimeric or truncated 
molecules has been a useful approach to determining the func- 
tion of integrins (Hibbs et al., 199 1; Dana et al., 199 1; Solowska 
et al., 199 1). In a recent study, chimeric cDNAs consisting of 
the extracellular and transmembrane domains of the (~2 colla- 
gen/LM receptor and the intracellular domains of the cu5 and 
cu4 FN receptors were expressed in rhabdomyosarcoma cells. 
All the chimeric receptors tested support cell attachment to 
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collagen and LM in short-term cell adhesion assays. Yet, there 
are marked differences in the ability of the various cytoplasmic 
domains to support specific cell behaviors (cell spreading, mi- 
gration, and exertion of sustained force) that are thought to 
depend on cell-substratum adhesion (Chan et al., 1992). These 
results indicate that cell-substratum attachment, as measured 
by a standard cell adhesion assay, may only poorly reflect the 
ability of a receptor to mediate cell behaviors that are important 
during development. Moreover, these results suggest that the 
highly conserved cytoplasmic domains of integrin a-subunits 
may interact with intracellular components in distinctly differ- 
ent manners to generate various types of “adhesive” cell be- 
haviors. 

There have been few analyses of integrin function in vivo. 
Antibody perturbation studies indicate a role for pl-integrins 
in neural crest cell migration (Bronner-Fraser, 1986), andgenetic 
analysis has shown that integrins are required for several aspects 
of Drosophila development (Leptin et al., 1989; Zusman et al., 
1990, 1993). A recent promising approach of Galileo et al. (1992) 
uses a retroviral vector to introduce integrin antisense mRNA 
into early neuroblasts of avian optic tectum. In cultured cells, 
this treatment reduces the levels of /31-integrin expression by 
40-60%. In embryos, reduction of p 1 -integrin expression in the 
early stages of neuroblast proliferation and migration has pro- 
found effects on subsequent development. Integrin-depleted 
clonal cohorts remain in the ventricular zone, failing to migrate 
into the tectal plate, and appear to be eliminated eventually. 
These results suggest that integrin-mediated processes are re- 
quired for neuroblast migration and that a direct or indirect 
consequence of integrin depletion is cell death. 

Nonintegrin LM receptors 

Cell surface pl,4-galactosyltransferase (GalTase) is an LM re- 
ceptor found in a variety of cell types, including neural crest 
(Runyan et al., 1986) PC12 cells (Begovac and Shur, 1990; 
Begovac et al., 1991), and primary sensory neurons (Riopelle 
and Dow, 199 1). GalTase mediates cell attachment and migra- 
tion by binding to terminal N-acetylglucosamine residues within 
the E8 domain of LM (Begovac and Shur, 1990). In a recent 
study of Hathaway and Shur (1992) the role of GalTase in 
neural crest migration in vivo was examined. GalTase is present 
on migrating crest cells and the basal surfaces of neural epithelia. 
Injection of anti-avian GalTase antibodies into early chick em- 
bryos results in specific defects of neural development: neural 
fold elevation and neural tube closure are perturbed and neural 
crest migration is delayed. Similar defects in neural tube closure 
and neural crest migration are observed in chick embryos after 
the injection ofantibodies directed against /3 1 -integrin (Bronner- 
Fraser, 1986) the HNK- 1 carbohydrate moiety (Bronner-Fra- 
ser, 1987) tenascin (Bronner-Fraser, 1988) LM/HSPG complex 
(Bronner-Fraser and Lallier, 1988) and the cell adhesion mol- 
ecules NCAM and N-cadherin (Bronner-Fraser et al., 1992b), 
suggesting that these elements of neural crest development are 
particularly sensitive to disruption of cell-cell and cell-substra- 
tum interactions. 

Nonintegrin cell surface molecules capable of binding to LM 
affinity columns and potentially mediating cell interactions with 
LM have been described (reviewed in Mecham, 199 1). One such 
protein, the 67 kDa elastin/LM receptor, binds LM with high 
affinity and is found on a variety of migratory cell types (par- 
ticularly tumor cells), including some neuron cells (G. Yang et 
al., 1992). While the distribution pattern of this molecule and 

its biochemical properties are consistent with its proposed func- 
tion as a LM receptor, cloning of the gene has proven to be 
difficult. Several attempts have been made to isolate cDNA 
clones, either with expression library screening using antibodies 
against the protein or with degenerate oligonucleotide probes 
based on peptide sequence from the purified molecule. These 
attempts have identified a highly conserved 1.3 kilobase (kb) 
transcript that predicts a protein of roughly 33 kDa without a 
signal sequence or transmembrane domain (see, e.g., Gross0 et 
al., 1991). Based on inferred peptide sequence (Gross0 et al., 
199 1) or biochemical analysis (Auth and Brawerman, 1992), 
the 33 kDa protein appears to be cytoplasmic, possibly a com- 
ponent of polyribosomes. However, a 20 amino acid synthetic 
peptide derived from the sequence of the 33 kDa protein does 
specifically bind LM with high affinity (Castronovo et al., 199 I), 
suggesting that the protein may share functional or at least struc- 
tural similarity with the 67 kDa cell surface LM-binding protein. 

The possibility of shared structural/functional homology be- 
tween cell surface LM-binding proteins and “unrelated” cyto- 
plasmic proteins is further illustrated by a second example, that 
of the 120 kDa LM-binding protein termed “crainin” (Smal- 
heiser and Collins, 1992a,b; Smalheiser et al., 1992). Crainin 
binds to LM in a divalent cationdependent manner and bears 
the HNK-1 epitope. Antibodies against crainin label cells un- 
dergoing axonogenesis and regenerating optic fibers. Crainin 
shows significant biochemical similarity and overlapping dis- 
tribution with another neuronal LM-binding protein, termed 
the 110 kDa LM-binding protein, and the two proteins are likely 
to be related (Pomeranz et al., 199 1). The first 18 amino acids 
of the 110 kDa protein are virtually identical to nucleolin, a 
nucleolar phosphoprotein involved in ribosome biogenesis 
(Kleinman et al., 1991). 

Other putative EC&f-binding proteins 
The gene encoding a 30 kDa heparin binding protein, ampho- 
terin, has been cloned from rat brain (Merenmies et al., 199 1). 
The function of amphoterin has not been completely analyzed, 
but several properties of the molecule suggest a role in neurite 
outgrowth. Antibodies against amphoterin block neurite out- 
growth by neuroblastoma cells on LM when added in solution 
and promote neurite outgrowth when plated as a substratum. 
Amphoterin colocalizes with tissue plasminogen activator (tPA) 
in filopodia and binds to both plasminogen and tPA in vitro. 
Binding of amphoterin to either tPA or plasminogen accelerates 
tPA-catalyzed plasminogen activation about 50-fold (Parkkinen 
and Rauvala, 199 1). Since numerous proteases degrade ECM 
components, amphoterin’s effects on tPA may facilitate me- 
chanical penetration of the ECM by growing axons. Alterna- 
tively, amphoterin may indirectly influence neurite outgrowth 
by accelerating proteolytic activation of growth factors that are 
sequestered in the ECM. Neural crest cells, for example, secrete 
an inactive form of transforming growth factor 0 (TGF-P) that 
can be activated by a urokinase-like plasminogen activator ac- 
tivity released from migrating neural crest cells (Brauer and Yee, 
1993). Activated TGF-@ influences the timing of neural crest 
migration and the adhesion of neural crest cells to ECM com- 
ponents (Delannet and Duband, 1992). Recently, it has been 
shown that amphoterin also binds the cell surface HSPG syn- 
decan [the low-affinity receptor for basic fibroblast growth factor 
(bFGF)], and that this interaction can be inhibited by heparan 
sulfate (HS) and heparin (Salmivirta et al., 1992). 

In the nematode, the uric-5 gene is required for the proper 
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Fizuve 3. The possible means by which 
proteoglycans (PC;) could mediate ccll- 
ECM interactions. Cell surface-associ- 
ated PG could act as a receptor for ex- 
tracellular molecules. including growth 

Cell-surface PG Facilitates or factors (G‘I-). PGs can be associated with 
Inhibits Receptor-ECM BindIng the cell surface either as membrane pro- 

teins or via receptors that bind either 
the PG core protein or GAG side chains. 
Extracellular PGs could thcmselvcs be 
ligands for cell surface rcccptors for 
ECM components. PCs at the cell sur- 
face can interact with matrix receptors 
to facilitate or inhibit cell-matrix bind- 
ing. In an analogous fashion, extracel- 

PG as Llgand lular PGs can interact with ECM pro- 
Extracellular PG Facilitates or teins to facilitate or inhibit their binding 
Inhibits Receptor-ECM Binding to cell surface receptors. 

migration of cells during development and the correct guidance 
of pioneer axons (Hedgecock et al., 1987). The uric-5 gene has 
been cloned and was found to code for a transmembrane re- 
ceptor-like protein with both immunoglobulin and thrombo- 
spondin type I domains. The molecule is expressed in migrating 
cells and pioneer neurons, and seems likely to function as an 
ECM component receptor (Leung-Hagenstcijn et al., 1992). 
Misexprcssion of the LUU-5 protein in six identified touch re- 
ceptor neurons is sufficient to misdirect the axons of these cells 
along a dorsal route similar to that taken by motor neurons 
endogenously expressing tlnc-5. The effect of me-5 misexpres- 
sion on axon outgrowth is dependent on uric-6, an LM-like ECM 
molecule that has been proposed as the ligand for uric-5 (see 
above); in the abscncc of ~nc-6, tlnc-5 misexpression alone is 
not sufficient to misroute touch receptor neurons dorsally (Ha- 
melin et al., 1993). These results strongly suggest that the LM- 
like molecule encoded by the uric-6 gene is the ligand for the 
uric-5 receptor. Moreover, these results provide the first evi- 
dence for the widely accepted notion that the route taken by a 
growing axon is determined by the specific receptors expressed 
by that cell. 

Several neuronal receptor-like protein tyrosine phosphatase 
(PTP) genes in Drosophila have recently been characterized (Tian 
et al., 199 1; Yang et al., 1991). The deduced proteins contain 
extracellular FN type III repeats and intracellular PTP domains. 
The expression of these genes is initially restricted to the axons 
and growth cones of early arising pioneer neurons. Although the 
function of these molecules is unknown, Yang et al. (199 I) 
proposed a model for modulation of growth cone guidance by 
cell surface receptor-PTPs based on the observation that de- 
phosphotylation increases the activity of some tyrosine kinases, 
for example, pp6@msrc. A receptor PTP could potentially regulate 
growth cone morphology by locally activating a kinase that in 
turn phosphorylates tubulin monomers, thereby inhibiting mi- 
crotubule polymerization. 

Proteoglycans in the Nervous System 
PGs, a class of glycoproteins that have a high content of gly- 
cosaminoglycans (GAGS), are present not only as ECM com- 
ponents, but also in cell surface, membrane-spanning (Nishi- 
yama et al., 199 l), soluble (Andres et al., 1989) and intracellular 
forms (Aquino et al., 1984; Rauch et al., 199 1). Due to the large 
number of PG species and their low concentrations, and to 
problems of fixing, staining, isolating, and purifying PGs, it has 
been difficult to characterize them until recently However, 

monoclonal antibody and molecular biological techniques have 
opened new avenues for the exploration of PGs and produced 
an explosion of information concerning PG localization, inter- 
actions, and functions in the nervous system (Fig. 3). PGs have 
been implicated in the regulation of cell morphology (Leppa et 
al., 1992) cell adhesion (Bidanset et al., 1992; Drake et al., 
1992; Faasscn et al., 1992; Iida et al., 1992; Minguell et al., 
1992) migration (Perris et al., 1991) proliferation (Ratner et 
al., 1988; Wright et al., 1989) differentiation (Trautman et al., 
199 l), cell-cell and cell-ECM interactions (P. Yang et al., 1992) 
neuronal polarity (LaFont et al., 1992) growth factor binding 
and presentation (Walicke, 1989; Turnbull et al., 1992) signal 
transduction (Nishiyama et al., 199 l), synapse stabilization and 
organization of adult brain (Hockfield et al., 1990; Fryer et al., 
1992; Rauch et al., 1992) and neurological disorders (Shioi et 
al., 1992). Given the complexity and diversity of PG structure 
(Margolis and Margolis, 1989; Ruoslahti, 1989; Schwartz and 
Smalheiser, 1989; Jackson et al., 1991) the functions of PGs 
are likely determined by many factors, including the molecules 
with which they interact, their spatial and temporal expression, 
and whether cells respond to the protein core of the PC, to the 
GAGS, or to both. 

PGs of‘the ECM 

Positive influence qf PGs on axon outgrowth. Certain PGs can 
either be permissive for (allow but not actively stimulate), or 
promote (actively stimulate) neuronal elongation (Davis et al., 
1985; Hantaz-Ambroise et al., 1987; Dow et al., 1991; Iijima 
et al., 1991; Noonan et al., 199 1; Sheppard ct al., 1991; Shiga 
and Oppenheim, 1991; Haugen et al., 1992b; Johnson-Green 
et al., 1992; Snow and Letourneau, 1992). For instance, astro- 
cytes, which provide a substratum to which nerve cells attach 
and elongate in viva and in vitro, express a number of PGs on 
their cell surface and also secrete them into the extracellular 
environment (Johnson-Green et al., 199 1). Ofthese, only HSPG 
enhances neurite outgrowth by sensory neurons on LN (John- 
son-Green et al., 1992). 

Both heparin and HSPG are necessary for axon guidance in 
the cockroach. Of six axon pathways analyzed, only the median 
fiber tract ofthe CNS, a homolog to the MP4 midline precursors 
in the grasshopper (Goodman and Schatz, 1993), and the path- 
way of the Til neurons of the PNS (Bate, 1976) are altered by 
exogenous heparin and HS or by treatment with heparinase II 
and heparitinase (Wang and Denburg, 1992). This alteration is 
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characterized by inappropriate pathfinding in both pathways 
and by reduced fasciculation in the Til pathway. Addition of 
other GAG moieties such as chondroitin sulfate (CS) A and C, 
dermatan sulfate (DS), hyaluronic acid, and keratan sulfate (KS) 
did not alter the outgrowth pattern. 

Another cell surface component, possibly a PG, important in 
insect axon guidance is anchored by GPI (Chang et al., 1992). 
Treatment of grasshopper embryos with bacterial phosphati- 
dylinositol-specific phospholipase C (PI-PLC), which cleaves 
the GPI anchor, causes a significant perturbation of highly ste- 
reotyped outgrowth of pioneer axons. Treatment with PI-PLC 
removes fasciclin I immunoreactivity and may also remove 
GPI-anchored PGs (Drake et al., 1992). 

PGs as inhibitors of axon outgrowth. Certain PGs either ac- 
tively inhibit, or are non-permissive substrata for, neurite out- 
growth (Carbonetto et al., 1983; Akeson and Warren, 1986; 
Damon et al., 1988; Muir et al., 1989; Verna et al., 1989; Snow 
et al., 1990a,b, 1991; Cole and McCabe, 199 1; Fichard et al., 
1991; McKeon et al., 1991; Oakley and Tosney, 1991; Oohira 
et al., 199 1; Brittis et al., 1992; Snow and Letoumeau, 1992) 
as well as for neural crest migration (Penis and Johansson, 1990; 
Perris et al., 1991). These PGs are often concentrated where 
axons do not grow in vivo (Snow et al., 1990b; Cole and McCabe, 
199 1; Brittis et al., 1992). In chick, a CSPG is expressed’in the 
posterior sclerotome, the perinotochordal mesenchyme, and the 
pelvic girdle, all of which are regions that axons avoid as they 
elongate toward the hindlimb (Oakley and Tosney, 199 1). More- 
over, the expression of a CSPG is spatially and temporally reg- 
ulated in the rat and chick retina and may direct retinal ganglion 
cell (RGC) axons toward the optic fissure by means of axon 
inhibition (Snow et al., 1991; Brittis et al., 1992). However, 
several PG types are expressed in the RGC layer where axons 
elongate (Halfter, 1992) in the photoreceptor layer (Landers 
and Hollyfield, 1992) in the optic nerve (Geisert et al., 1992) 
or by glial-like cells in the retina (Threlkeld et al., 1989) sup- 
porting the possibility of a multifunctional role for PGs in optic 
system development. 

Keratan sulfate proteoglycan (KSPG) plays an inhibitory role 
in the guidance of elongating axons (Snow et al., 1990a,b; Wu 
et al., 199 1). A KSPG, claustrin, isolated from embryonic chick 
nervous system, abolishes neurite outgrowth on growth-pro- 
moting substrata (Cole and McCabe, 199 1). Two additional 
lines of evidence suggest that claustrin may be an inhibitor of 
neurite outgrowth in vivo. First, claustrin is expressed in vivo in 
regions, such as the dorsal midline, which have been shown 
previously to act as a barrier to growth cone advance (Snow et 
al., 1990b; Wu et al., 1992). Second, enzymatic removal of KS 
from the KSPG molecule in vitro renders the PG permissive for 
axon outgrowth (Snow et al., 1990a). 

Although many examples exist of PGs inhibiting neurite out- 
growth, the mechanism(s) of inhibition is yet undefined. Recent 
data show that contact with CSPG raises intracellular calcium 
levels in growth cones. Thus, inhibition ofgrowth cone advance 
may occur via this second-messenger pathway. A rise in growth 
cone calcium is not observed after enzymatic removal of the 
carbohydrate moiety, suggesting that this portion of the PG is 
responsible for inhibition ofaxon elongation (Snow et al., 1993). 

PGs and neuronal polarity. Neurons are morphologically and 
functionally polar cells, having distinct axonal and dendritic 
processes (Goslin and Banker, 1989; Lein et al., 1992). PCs may 
be among the factors regulating the development of polarity in 
neurons. LaFont et al. (1992) have shown that CS and HS en- 

hance axonal outgrowth, while DS stimulates dendritic growth. 
DS selectively enhances neuronal adhesion and spreading con- 
comitant with abundant expression of the dendritic marker mi- 
crotubule-associated protein-2 (MAP2). Similarly, CSPG may 
regulate axonal initiation by RGCs (Snow et al., 1991; Brittis 
et al., 1992). 

PGs at the cell surface 
Thus far, we have considered the roles of ECM- and cell-as- 
sociated PGs in nervous system development. PGs are ex- 
pressed also on the cell surface, where they may function as 
receptors for ECM components (Rapraeger et al., 1986; Hoff- 
man et al., 1988) bind growth factors (Jackson et al., 1991; 
Thiery and Boyer, 1992) and mediate adhesion (Lewandowska 
et al., 1987; Hynes and Lander, 1992). HSPGs deserve special 
mention since (1) they act as a cell surface receptor for ECM 
components via their membrane- and matrix-anchoring do- 
mains within their protein core (Drake et al., 1992), (2) they 
bind growth factors (Andres et al., 1992) (3) they are involved 
in cell-cell and cell-substratum interactions (Haugen et al., 1990, 
1992b; Kallapur and Akeson, 1992) and (4) their expression is 
spatially and temporally regulated (David et al., 1992). 

PGs as cell surface receptors. To date, the best-characterized 
cell surface PG receptor of ECM components is syndecan, an 
HS/CS-containing integral membrane PG, first described as a 
surface component of mouse mammary epithelial cells (Saun- 
ders and Bernfield, 1988; Bemfield et al., 1992). Syndecan is 
associated with the intracellular actin cytoskeleton (Rapraeger 
et al., 1986). Syndecan was initially thought to be restricted to 
epithelial cells and lymphocytes. However, recent analysis in- 
dicates that a putative member of the syndecan family, N-syn- 
decan, is expressed by Schwann cells and in the CNS (Carey et 
al., 1992). N-syndecan expression is more abundant in neonatal 
than in embryonic or adult rat brain. Although N-syndecan 
shows limited homology to syndecan in the membrane-spanning 
domain, much of the molecule is not homologous to any known 
protein and a large segment ofthe gene encoding the extracellular 
domain has not been cloned. Thus, the importance of N-syn- 
decan as a nervous receptor for ECM components is unclear. 

PG binding of growth factors. The binding of growth factors 
to PGs has the potential for regulation ofcell behavior (Walicke, 
1989; Katoh-Semba et al., 1992). Acidic and basic FGF, for 
example, bind to heparin and HSPG, with HS appearing to act 
as a cofactor for binding of FGF to its cellular receptor (Yayon 
et al., 199 1). Heparin and HSPGs may protect FGF from deg- 
radation, provide an accessible store of FGF within the ECM 
or, at the cell surface, may help present growth factors to their 
appropriate receptors (Hondermarck et al., 1992). Syndecan has 
been suggested as a low-affinity receptor for bFGF (Honder- 
marck et al., 1992) facilitating the association of bFGF with its 
high-affinity receptor (Sutherland et al., 1991). A HSCSPG, 
betaglycan, binds TGF-P via the core protein, and bFGF by 
means of its HS chains (Andres et al., 1989, 1992). The binding 
of growth factors by PGs may also regulate neurite outgrowth, 
since interactions between bFGF and heparin, HS, or hyaluronic 
acid promote neurite outgrowth from hippocampal cells in cul- 
ture (Walicke, 1988). 

PGs, adhesion, and NCAM. PGs play complex roles in the 
adhesive interactions of neural cells. Best described are the 
HSPGs, which facilitate adhesion of many cell types to ECM 
(Bidanset et al., 1992; Iida et al., 1992; Minguell et al., 1992). 
Several studies have addressed the mechanisms by which HSPG 
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and heparin promote adhesion and neurite outgrowth, and have 
identified heparin-binding domains of several ECM compo- 
nents (Dow et al., 199 1; Noonan et al., 199 1; Skubitz et al., 
199 1; Haugen et al., 1992b). 

PGs may also modulate several cell adhesion molecules, in- 
cluding NCAM. For example, the CSPGs lD1, neurocan, and 
3F8, which bind directly to neurons, inhibit homophilic cell 
binding mediated by NCAM and neuroglia cell adhesion mol- 
ecule (Ng-CAM; Grumet et al., 1993). Another neuronal CSPG, 
cytotactin-binding PG, associates with cytotactin and may me- 
diate neuron-glia adhesion (Hoffman and Edelman, 1987). 

The heparin-binding domain (HBD) of NCAM mediates het- 
erophilic interactions of NCAM with cell surface HSPG. Two 
neural cell lines, one that expresses NCAM and another that 
does not, both adhere to a synthetic peptide that contains the 
amino acid sequence of the HBD of NCAM. A polyclonal an- 
tiserum against NCAM does not significantly inhibit cell ad- 
hesion to the HBD peptide. However, preincubation of the sub- 
stratum-bound HBD peptide with heparin causes a significant 
reduction in adhesion of the cells to the peptide. In addition, 
inhibition of synthesis of HSPG or removal ofcell surface HSPG 
decreases cell adhesion to the HBD peptide (Kallapur and Ake- 
son, 1992). Taken together, these results indicate that the HBD 
of NCAM does not mediate homophilic NCAM interactions, 
but rather mediates heterophilic interactions by binding to HSPG 
on the cell surface. 

In addition to containing a heparin-binding domain, NCAM 
incorporates an unusual polysaccharide, polysialic acid (PSA; 
Rutishauser, 1989; Hekmat et al., 1990; Landmesser et al., 1990; 
Acheson et al., 199 1). PSA is a linear homopolymer that, when 
hydrated, occupies a large volume and may exert steric effects 
at the cell surface that regulate interactions between other ad- 
hesive receptors. A model to account for the influence of PSA 
on intercellular space was compiled based on physiochemical 
measurements of cells, and suggests that changes in PSA on 
NCAM can alter the distance between apposing cell membranes 
by 25%. Cell surface-associated HSPG and CSPG did not in- 
fluence the space between cells, even though these molecules 
contain large hydrodynamic domains and are more highly neg- 
atively charged than PSA (P. Yang et al., 1992). It’s temporally 
and spatially regulated expression during initial motoneuron 
outgrowth through the limb plexus region is consistent with a 
role for PSA in axon outgrowth (Landmesser, 1978; Lance-Jones 
and Landmesser, 198 1; Tosney and Landmesser, 1985). PSA is 
important for sorting of axonal projections in the plexus, but 
not for selection of the appropriate muscle nerve (Tang et al., 
1992). 

PGs in disease 

Focus on PGs has expanded to encompass not only the roles 
played by these molecules in normal physiology, but also the 
pathology that can result from their abnormal metabolism. Sev- 
eral recent studies have implicated certain PGs in conditions 
involving aberrant axonal outgrowth, such as in CNS injury, 
and in the development and progression of Alzheimer’s disease 
(AD). 

In a model of injury to adult cerebral cortex in rat (McKeon 
et al., 199 1; Laywell et al., 1992) CSPG and tenascin are colocal- 
ized with astrocytes in the developing scar. Scar tissue does not 
support neurite outgrowth in vitro. Similarly, regenerating nerves 
stop at the dorsal root entry zone, shown recently to express 
CSPG (Pindzola et al., 1993). The results of these studies in- 

dicate that CSPG and/or tenascin may inhibit or modulate out- 
growth of CNS axons following injury in vivo. 

Recent data suggest that PGs may play a role in the devel- 
opment and pathology of AD. AD is characterized by deposition 
of P-amyloid protein in blood vessels, which can form senile 
plaques that are associated with senile dementia. P-Amyloid is 
suspected to arise from aberrant posttranslational proteolytic 
processing of a transmembrane glycoprotein, the amyloid pre- 
cursor protein (APP), which has a number of forms that arise 
from differentially spliced transcripts of a single gene (Golde et 
al., 1990; Cummings et al., 1992; LeBlanc et al., 1992; Luo et 
al., 1992; Suzuki et al., 1992). Both membrane-associated and 
soluble (secreted) forms of APP exist, and one report suggests 
that APP mediates the promotion of neurite outgrowth by NGF 
(Milward et al., 1992). Several studies suggest that the mem- 
brane precursor for AD @-amyloid protein is associated with an 
HSPG (Schubert et al., 1988; Kalaria et al., 1992; Su et al., 
1992). Shioi et al. (1992, 1993) report that APP also exists as 
the core protein of a CSPG secreted from the glial cell line C6. 
In C6, approximately 90% of the secreted form of APP occurs 
in the CSPG form, indicating that CS is likely to play a role in 
the biological function of the protein. Further, a dermatan sul- 
fate proteoglycan, decorin, exists in amyloid plaques and neu- 
rofibrillary tangles of AD and may be involved in abnormal 
neuronal growth (Snow et al., 1992). 

Conclusion 
Recent evidence has further augmented our awareness of the 
diversity and complexity of the involvement of the ECM in the 
movements of cells and growth cones during neural develop- 
ment. It is now clear that ECM components have both stimu- 
lator-y and inhibitory effects on nerve cell and growth cone mi- 
grations, and much remains to be learned about how interactions 
with the ECM generate transmembrane signals that regulate the 
cytoskeletal and membrane activities that drive these morpho- 
genetic movements. The application of cellular and molecular 
approaches has revealed an almost overwhelming number of 
potential interactions between ECM components and integrins, 
nonintegrin surface receptors, PGs, adhesive glycoproteins, pro- 
teases, and other ECM components. Future work will seek to 
elucidate the molecular domains that regulate and mediate the 
interactions of ECM components and cell surface molecules. 
Ultimately, the interactions of nerve cells with the ECM must 
be revealed in vivo, and so it augurs well that multidisciplinary 
strategies, involving cellular, biochemical, and molecular ap- 
proaches, are being devised to inactivate selected ECM and cell 
surface proteins, or their genes, within intact embryos. Tech- 
niques that effectively probe the function of individual com- 
ponents of neuron-ECM interactions will help to unravel the 
complex events of nerve cell migration and growth cone navi- 
gation. However, the apparent multiplicity and potential re- 
dundancy of interactions between neurons and the ECM will 
continue to challenge our attempts to advance our understand- 
ing. 
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