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It is widely held that visual cortical neurons encode infor- 
mation primarily in their mean firing rates. Some proposals, 
however, emphasize the information potentially available in 
the temporal structure of spike trains (Optican and Rich- 
mond, 1987; Bialek et al., 1991), in particular with respect 
to stimulus-related synchronized oscillations in the 30-70 
Hz range (Eckhorn et al., 1988; Gray et al., 1989; Kreiter and 
Singer, 1992) as well as via bursting cells (Cattaneo et al., 
1981 a; Bonds, 1992). We investigate the temporal fine struc- 
ture of spike trains recorded in extrastriate area MT of the 
trained macaqoe monkey, a region that plays a major role 
in processing motion information. The data were recorded 
while the monkey performed a near-threshold direction dis- 
crimination task so that both physiological and psycho- 
physical data could be obtained on the same set of trials 
(Britten et al., 1992). We identify bursting cells and quantify 
their properties, in particular in relation to the behavior of 
the animal. 

We compute the power spectrum and the distribution of 
interspike intervals (ISIS) associated with individual spike 
trains from 212 cells, averaging these quantities across sim- 
ilar trials. (1) About 33% of the cells have a relatively flat 
power spectrum with a dip at low temporal frequencies. We 
analytically derive the power spectrum of a Poisson process 
with refractory period and show that it matches the observed 
spectrum of these cells. (2) About 62% of the cells have a 
peak in the 20-60 Hz frequency band. In about 10% of all 
cells, this peak is at least twice the height of its base. The 
presence of such a peak stronglycorrelates with a tendency 
of the cell to respond in bursts, that is, two to four spikes 
within 2-8 msec. For 93% of cells, the shape of the power 
spectrum did not change dramatically with stimulus condi- 
tions. (3) Both the ISI distribution and the power spectrum 
of the vast majority of bursting cells are compatible with the 
notion that these cells fire Poisson-distributed bursts, with 
a burst-related refractory period. Thus, for our stimulus con- 
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ditions, no explicitly oscillating neuronal process is required 
to yield a peak in the power spectrum. (4) We found no 
statistically significant relationship between the peak in the 
power spectrum and psychophysical measures of the mon- 
keys’ performance on the direction discrimination task. (5) 
For cells firing bursts, ROC (receiver operating character- 
istic) analysis shows that the “event” rate, where an event 
is either a single burst of spikes or an isolated spike, is on 
average a more sensitive measure of visual stimulus direc- 
tion than the total number of spikes, used previously (Britten 
et al., 1992), implying that the number of spikes in a burst 
is less stimulus dependent than the overall firing rate or the 
rate of bursts. 

[Key words: behaving monkey, extrastriate cortex (MT), 
oscillations, power spectrum, interspike interval analysis, 
bursting] 

What neural code is used by the brain to decipher sensory events 
and translate them into a percept of the visual scene? Because 
the mean firing frequency in response to a sensory stimulus is 
reproducible under identical stimulus conditions and varies pre- 
dictably and smoothly with such stimulus parameters as veloc- 
ity, contrast, orientation, and so on, it is widely held to be the 
primary variable relating neuronal response to sensory experi- 
ence (Lettvin et al., 1959, or the 5. dogma in Barlow, 1972). 
This belief is supported by the existence of a quantitative re- 
lationship between the firing rates of single cortical neurons and 
psychophysical judgements made by behaving monkeys (Wer- 
ner and Mountcastle, 1963; Barlow et al., 1987; Newsome et 
al., 1989a; Vogels and Orban, 1990; Zohary et al., 1990; Britten 
et al., 1992). Some electrophysiologists have focused on the idea 
that the detailed dynamics of the neuronal response may carry 
significant information (e.g., Poggio and Viernstein, 1964; Chung 
et al., 1970; Strehler and Lestienne, 1986; Optican and Rich- 
mond, 1987; Abeles, 1990; Eskandar et al., 1992; Zipser et al., 
1993; see also Bialek et al., 199 1). A great deal of attention has 
recently been given to the reports of stimulus-induced semisyn- 
chronous neuronal oscillations in the 30-70 Hz range in the 
visual cortex of the anesthetized cat (Eckhorn et al., 1988; Gray 
and Singer, 1989; Gray et al., 1989; Ghose and Freeman, 1992) 
and the awake monkey (Kreiter and Singer, 1992). Moreover, 
Gray et al. (1989) report that oscillating neurons up to 10 mm 
apart can be phase-locked with a phase-shift close to zero; that 
is, these neurons usually fire within +- 3 msec of each other (for 
a review, see Singer, 1994). 

Only a few reports have focused on the possible significance 
of bursting for neuronal coding. Cattaneo et al. (198 la,b) report 
that complex (but not simple) cells in area 17 of anesthetized 
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and alert cats frequently respond with bursts. They show that 
the frequency of bursts (or “grouped spikes”) varies strongly 
with the spatial frequency and orientation of sinusoidal drifting 
gratings, while the frequency of “isolated spikes” only weakly 
depends on these parameters, encoding rather the contrast of 
the stimulus. Bonds (1992) found in his analysis of cat striate 
neurons that the structure of spike trains-in his case the fre- 
quency and duration of bursts-can vary substantially on the 
basis of how the firing rate was generated. For instance, presen- 
tation of stimuli at nonoptimal orientations at high contrasts 
yields bursts that are shorter than those generated by lower- 
contrast stimuli at optimal orientations. LegCndy and Salcman 
(1985) hypothesized functional significance for burst-firing pat- 
terns in spontaneously active striate neurons of alert cats, but 
by their definition, bursts included mostly long periods (0.5-2.0 
set) of significant elevation in firing rate. Finally, Crick (1984) 
postulated that the neuronal expression of selective visual at- 
tention is the production of bursting in a subset of thalamic 
neurons. This bursting, in combination with a short-term and 
transient alteration in the synaptic strength (as proposed by von 
der Malsburg, 198 l), could lead to the short-term formation of 
transient cell assemblies at the level of cortex (see also Crick 
and Koch, 1990, 1992). 

Motivated by these findings and proposals, we investigated 
the temporal properties of cortical cells in the awake and be- 
having monkey. The data were obtained from an ongoing series 
of experiments linking the responses of neurons in extrastriate 
area MT (or V5) to the psychophysical performance of trained 
monkeys (Newsome et al., 1989a,b, Britten et al., 1992). MT is 
specialized for the analysis of visual motion, as indicated by its 
preponderance of directionally selective neurons (Zeki, 1974; 
Maunsell and Van Essen, 1983) and by the motion-specific ef- 
fects oflesions and electrical microstimulation in MT (Newsome 
and Pare, 1988; Salzman et al., 1992). The monkeys were trained 
to discriminate the direction of motion in a stochastic visual 
display while the responses of MT neurons were simultaneously 
recorded. As reported previously, the responses of individual 
MT neurons, considered simply to be the total number of spikes 
occurring during the period of visual stimulation, can provide 
a remarkably accurate account of a monkey’s performance on 
the near-threshold direction discrimination task. Single-neuron 
responses, analyzed by a method based in signal detection the- 
ory, provide a good description of psychophysical threshold and 
of the shape of the psychometric function relating performance 
to the strength of the motion signal (Newsome et al., 1989a; 
Britten et al., 1992). In addition, small trial-to-trial variations 
in the strength of a neuron’s response to identical, weak motion 
stimuli can be significantly correlated with the directional judge- 
ments made by the monkey on the same trials (Newsome et al., 
1989b). In all prior analyses ofthese data, however, the temporal 
characteristics of the spike train were ignored. 

We now analyze this single-cell database with an eye toward 
describing the temporal structure of MT responses and uncov- 
ering any relationship between the temporal structure and the 
psychophysical performance of the animal. We only consider 
data from well-isolated single neurons, leaving the analysis of 
other data, including well-isolated pairs of simultaneously re- 
corded neurons (Zohary et al., 1992) and multiunit data, to a 
future report. We find that the temporal structure of MT re- 
sponses is characteristic for each neuron and does not change 
in a stimulus-specific manner. Spikes are distributed almost 
randomly in time for some neurons, but are highly nonrandom 

for other neurons, being characterized by occasional “bursts” 
in which spikes are tightly clustered in time. Both firing patterns 
are well described by simple models that require no intrinsically 
oscillatory process. A signal detection analysis indicates that 
bursting neurons convey more information about the direction 
of motion in the stimulus if bursts are considered to be indi- 
vidual signaling events. 

Some of these results are briefly described elsewhere (Bair et 
al., 1992, 1993). 

Methods 
We first summarize the methods used to obtain the spike trains and 
then describe the data analysis techniques. Given the importance of 
applying the underlying mathematical transformation correctly, we jus- 
tify our analysis in detail. 

Data collection 
Experimental methods for the collection of the original data are de- 
scribed in detail by Britten et al. (1992). Three adult macaque monkeys 
were trained to report the direction of motion in a dynamic random 
dot display in which a certain fraction, c, of the dots moved coherently 
at a common speed in one direction, while the remaining dots moved 
in random directions and at random speeds. For c = 0 all dots moved 
randomly, for c = 1 all dots moved in a common direction, the neuron’s 
preferred direction, and for c = -1 all dots moved in the opposite 
direction. For a given block oftrials, the random dot stimuli were placed 
within the receptive field of a single MT neuron, and the coherent motion 
signal was randomly presented in the preferred direction of the MT 
neuron (c 2 0) or in the direction 180” opposite (null direction, c 5 0) 
and the fraction of dots, 1~1, carrying the coherent signal was varied 
randomly from trial to trial to cover a prespecified range of coherence 
values near psychophysical threshold. For a typical experiment, at least 
2 10 trials were performed: 15 trials at each of six preferred and six null 
direction motion coherence levels plus 30 trials at c = 0 (random noise). 
Far more data were obtained for some experiments since additional 
blocks of trials were run as long as the cell remained well isolated. 

An individual trial began with the onset of a fixation point presented 
on an oscilloscope 57 cm distant from the animal. After the monkey 
directed its gaze toward the fixation point, the random pattern appeared 
within the receptive field of the MT neuron for 2 sec. The monkey 
attended to the random dot display and judged the direction of the 
coherent motion signal while maintaining its gaze on the fixation point. 
At the end of the viewing interval, the fixation point and the random 
dot stimulus were extinguished, and two light-emitting diodes (LEDs) 
appeared corresponding to the two possible directions of the coherent 
motion signal. The monkey indicated its decision regarding the direction 
of motion by making a saccadic eye movement to the appropriate LED, 
correct choices were rewarded with water or juice. The monkey’s eye 
movements were monitored continuously throughout the experiment 
using a scleral search coil system (Robinson, 1963). 

Action potentials were recorded extracellularly from 216 MT neurons 
while monkeys performed the direction discrimination task. Thus, phys- 
iological data and psychophysical data were obtained on the same trials. 
On each trial the physiological data consisted of a spike train recorded 
continuously during the fixation interval, the 2 set visual stimulation 
interval, and the intertrial interval. The time ofoccurrence ofeach action 
potential was recorded with a resolution of 1 msec. In the previous 
analysis (Britten et al., 1992) psychophysical data were compiled into 
psychometric functions relating percentage of correct choices to the 
strength of the motion signal. A psychophysical threshold, c,,,,.,, was 
measured for each experiment, where threshold was considered to be 
the motion coherence level that supported 82% correct performance. 
This psychophysical threshold characterizes the perceptual sensitivity 
of the monkey to the motion signals under the specific conditions of 
each individual experiment. Neuronal sensitivity was measured from 
the responses to preferred and null direction motion obtained over a 
range of coherence levels; responses were considered to be the total 
number of spikes that occurred during the 2 set visual stimulation 
interval. Using a method based on signal detection theory, a “neuro- 
metric function” was computed that expressed the theoretical perfor- 
mance of an ideal observer who judges the direction of motion in the 
visual stimulus based only on the responses of the MT neuron being 



2872 Bair et al. - Power Spectra of Bursting MT Neurons 

Figure 1. Aliasing in the power spec- 
trum S(f) of a suike train. The ideal 
spike tr& (a) is g sequence of &fimc- 
tions at arbitrary time instants, but in 
recorded spike train data (e), spikes are 
assigned to sampling points. To go from 
a to ewe convolve with a I-msec-wide 
binning function (b) to yield c and then 
multiply by a 1 kHz sampling function 
(d) to yield (e). To the right are power 
spectra for the special case where a is 
random (Poisson). Ignoring the DC 
component, A is flat. Convolving with 
b multiplies the power spectrum by the 
square of the sine function, yielding C 
as the spectrum of c. Sampling in this 
special case corresponds to adding up 
infinitely many copies of the sin@ at 1 
kHz intervals (E), which yields a flat 
power spectrum (not shown) like A. The 
thick curve in E demonstrates the con- 
tribution to the final power spectrum 
from the true spectrum, while the thin 
curves (shifted sincz functions) show the 
contribution from aliasing. There is rel- 
atively little aliasing for IfI < 200 Hz. 
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analyzed. Computed performance of the ideal observer was plotted as 
percentage correct choices as a function of motion coherence, and “neu- 
rometric” thresholds, c,,,,, were extracted in the same manner described 
for psychometric thresholds. In general, MT neurons were remarkably 
sensitive to the motion signals in the stochastic display. In roughly half 
of the experiments, the neurometric function was statistically indistin- 
guishable from the psychometric function measured on the same set of 
trials. Across the entire set of experiments, information based on count- 
ing the total number of spikes correlated well with the monkeys’ be- 
havior, and the geometric mean ratio of neuronal threshold to psycho- 
physical threshold was 1.19 (Britten et al., 1992). One goal of the present 
study is to determine whether some temporal characteristics of MT 
spike trains correlate with either the monkeys’ perceptual performance 
or our prior measurements of neuronal sensitivity based on integrated 
spike counts. 

From the initial database of 216 cells, four are not considered here. 
Three of these were not recorded for the full 2 set (~044, ~045, wO46), 
and the fourth cell showed an abrupt change in firing rate during the 
experiment and was presumed to be damaged (jO36). 

Data analysis 
Computation of power spectra. For a real and continuous function F(t) 
observed between t = - T and t = + T, the associated continuous Fourier 
transform (FIT) E at the frequency f is given by 

+CC 
F(f) = _m e-z2rJF,(t) dt. 

s (1) 

where FT(t) = F(t) for 1 t 1 5 T, and 0 outside the observation interval. 
The autocorrelation function associated with FT is given by 

R(t) = lim L 
s 

+7 

r-,2T --r FAtl)FAtl + t) dt,. (2) 

Following the Wiener-Khintchine theorem, the Fourier transform of 
the autocorrelation is equal to the power spectrum, that is, 

S(f) = s_+y e-z2-fiRT(t) dt, (3) 

or 

S(f) = lp~~(fPYn, (4) 

where * denotes the complex conjugate. It can be seen that the power 
spectrum is always real and symmetric. 

However, given the discrete sampled nature of our spike trains, we 
require the use of the discrete Fourier transform with the two associated 

problems of (1) the variance inherent in the estimate of the discrete 
power spectrum and (2) aliasing due to a finite sampling interval. We 
perform Fourier transforms on spike trains using the standard FFI 
algorithm and compute one-sided estimates of the power spectra1 den- 
sity using overlapping data segments and windowing (Press et al., 1988). 
To emphasize the difference between the true power spectrum S(f) and 
one the we compute on the basis of the sampled data, we denote the 
latter by S’(fi. The data submitted to the FFT algorithm is a sequence 
of 1 s and OS, where each 1 represents an action potential in a spike train 
sampled at 1 kHz. Transforming a 2-set-long spike train yields a one- 
sided spectrum with a frequency resolution of about 0.5 Hz from 0 up 
to the Nyquist frequency of 500 Hz. 

Because we are only interested in studying broad trends in the data 
over a relatively wide band of frequencies, we do not require such high- 
frequency resolution. Furthermore, the variance associated with the 
estimation of the power spectrum can be reduced by using larger-fre- 
quency bins, that is, by sacrificing frequency resolution. Thus, we break 
the 2-set-long trial into smaller segments, typically using 12 overlapping 
data segments of 256 msec duration, thereby utilizing 1664 msec of the 
2000 msec spike train. We always begin the first segment at 336 msec 
to eliminate from analysis the transient response to the onset of the 
stimulus; however, we find essentially no difference in the results when 
the analysis is performed using the entire 2 set spike train (not reported 
here). For each 256 msec segment, a two-sided power spectrum was 
computed. Given the fact that the power spectrum is always symmetric, 
we normalize the two-sided spectrum to a one-sided spectrum with 128 
entries lying at equally spaced intervals between 0 and 500 Hz (with Af 
= 4 Hz). 

To improve the spectral estimate further, a triangular Parzen window 
was applied to each segment to reduce spectra1 leakage arising due to 
the finite duration of spike trains (Harris, 1978). Since windowing would 
otherwise throw away data at the ends of each segment, it becomes 
important to use overlapping segments. In addition to the averaging 
due to data segmentation and symmetry for a single 2-set-long trial, we 
usually-unless stated otherwise-average the power spectra over all 
trails for a particular c for an individual cell. Since we average in the 
frequency domain, our method is not sensitive to the exact phase re- 
lationship of the response with respect to stimulus onset. When com- 
puter-generated data are shown, averages are over the equivalent of 
1000 trials of 2000 msec duration each. 

While we can reduce the variance in the spectra by averaging, we 
cannot avoid aliasing due to temporally sampled data. To what extent 
does aliasing play a dominant role in shaping our spectra? A continuous 
abstraction of a spike train is a set of occurrence times for action po- 
tentials that are idealized as Dirac b(t) impulse functions. In recording 
these occurrence times, the continuous function is not sampled in the 
usual manner; rather, the action potentials are shifted to nearby sam- 
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Figure 2. Spike train statistics for four area MT neurons responding to c = 0.256 motion. Each column (u-d) corresponds to a different cell, and 
the cells are arranged from most bursting (a) to least bursting (d). The fop row shows 500 msec segments of spike occurrence times. The distributions 
of intervals between spikes are shown by the IS1 histograms in third row. Over 50% of intervals fall in the 1, 2, or 3 msec bins in IS1 (a) while less 
than 2% do so in IS1 (d) (note scale change for IS1 in c and d). For a and b IS1 insets (horizontal axes begin at 10 msec and remain aligned with 
main histogram) expand the vertical axis to show the peak near 20-30 msec, which corresponds to intervals between bursts. Power spectral densities, 
S’(f) (bottom row), have peaks in the 20-60 Hz range for the cells (u-c), which have peaks in the IS1 below 4 msec. The dip in S’(j) at low 
frequencies (arrow in d) indicates the presence of a refractory period for spikes or bursts. All four cells fire at roughly similar average rates (40-60 
spikes/set; see PSTHs, second row) and the response is relatively maintained following the transients during the first 200 msec of stimulation. Plots 
are based on averages from 15 trials (a, b), 60 trials (c), and 30 trials (d). Frequent burst firing causes PSTHs (a and b) to be excessively noisy. 

pling points. I f  this were not the case, then most action potentials would 
be missed altogether. This type of sampling is a form of data binning 
in which each bin has width equal to the sampling interval and the 
assumption is made that at most one event occurs per bin. Given a 
sampling interval of 1 msec, this is a reasonable assumption for most 
neurons. We present a modification of Schild and Schultens’ (1986) 
analysis of aliasing in binned data for poststimulus time histograms 
(PSTHs) to understand what effect this has on the spectrum. 

Figure 1 summarizes this analysis for a special case that has a simple 
and revealing solution. The left column illustrates how the binning 
process that converts the continuous spike train (in a) into sampled 
data (in e) is described as a convolution with a boxcar function (in b) 
followed by multiplication with a comb function (in d). We assume the 
special case where the continuous spike train is totally random (Poisson) 
and therefore has a flat power spectrum (in A) with a &function at the 
origin (which we ignore here; see Stochastic models, in Results). Con- 
volving with the boxcar in the time domain corresponds to multiplying 
the power spectrum by the square of a sine function [sine(x) = sin(x)/ 
x; in Fig. lc]. Multiplying by the comb function in time corresponds 
to convolving the power spectrum with a comb with inverse spacing, 
which replicates and sums copies of the sin@ function at 1 kHz intervals 
(Fig. 1 C). The sum of the original sin? plus the infinite number of sin@ 
functions shifted by 1 kHz is a flat spectrum, which is what we started 
with; however, only the copy of the sin? centered at zero is contributing 
to the true power spectrum, while the other shifted copies are contrib- 
uting aliased frequencies (Fig. 1E). In this case, frequencies below about 
200 Hz are relatively uncorrupted and this is the frequency range that 
concerns us. As discussed below, the power spectrum of most cells in 
the database is relatively flat, especially at higher frequencies. The worst 

cases of aliasing occur for neurons that have very regular spike trains 
(Schild and Schultens, 1986), at least an order of magnitude more regular 
than we observe here. 

Quantification of spectrum shape. In Experimental results (below), we 
utilize a scheme for classifying cells based on the shape of their power 
spectra (for a related approach, see Ghose and Freeman, 1992). The 
classification of a cell depends upon the classification of its set of power 
spectra, one at each c value. Here we describe in detail how to compute 
the set of spectra for a cell, and how to classify the cell based on that 
set. 

The estimated power spectral density for a cell at a given c, S:(j), is 
computed as the average of the spectra for all spike trains recorded at 
that c value normalized by their average spike rate. For this normal- 
ization, the computation of average spike rate must take into account 
the effect of the overlapping data windows and the shape of the Parzen 
window. These corrections are particularly important for spike trains 
with very few spikes. If  the individual spike trains were Poisson, then 
the expected value of each normalized spectrum would be 1.0 at all 
nonzero frequencies. This normalization reduces the variance in 5’: due 
to fluctuations in spike rate from trial to trial while preserving rela- 
tionships between peaks and dips within each spectrum. 

As discussed in Experimental results, many cells have peaks in their 
spectra in the region below 60 Hz (see Fig. 2, cells a and b, bottom), 
and we wish to measure the height of that peak with respect to the 
associated dip or lowest baseline level at higher frequencies [see arrows 
on s’(j), Fig. 2, cell a, bottom left] and at the same time determine if 
the peak is present for all c. The location of the peak (if one exists) is 
computed by sliding a fixed-width window along the set of spectra while 
looking for the frequencyf, (at the center of the window) that maximizes 
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Figure 3. Frequency histograms for our database of 2 12 MT cells for 
P, the measure of the shape of S’(f), and two measures of burstiness, 
B and 8, averaged over trials for all c. The top two plots show that the 
distribution of cells with respect to the statistics P and B (the fraction 
of the IS1 in the 1, 2, and 3 msec bins) is primarily a continuum. The 
dip near 1.0 in the distribution of P is an artifact of the classification 
of cells as burst or nonburst (see Methods). All burst cells have p > 1 .O; 
nonburst cells, p < 1 .O; and mixed cells that are neither one or the other 
have P near 1.0. The distribution of B has a long left tail due to cells 
that rarely fire a second spike within 3 msec. The bottom plot shows 
the distribution for a second measure of burstiness, B, the fatio of the 
2 msec bin to the 5 msec bin in the ISI histogram. B and B are highly 
correlated for our database, but we use B since it is less sensitive to 
noise than the ratio measure. 

the integral within the window summed over all S:. The constraint 20 
Hz < f, < 60 Hz is used to keep the window away from the peak atf 
= 0 (i.e., the DC component) and to avoid scanning higher frequencies 
where peaks are absent. The average value of S: within the window 
will be called the peak level, P,. A second sliding window is used in a 
similar, but minimizing, procedure to find the lowest point, or baseline 
level, at higher frequencies. The location ofthe lowest point is quantified 
byf,, the center of the window, and the average value within the window, 
Ph, will be called the baseline level. We constrainf, to be greater than 
f, and less than the cutoff frequency, 500 Hz. All windows are seven 
spectral bins wide (3.9 Hz/bin) and therefore sacrifice accuracy of lo- 
calization for noise immunity. 

Once the peak frequency f, and the baseline frequency fb are deter- 
mined, a cell is classified as a burst cell (below we explain the link 
between peaks and burst firing) if for at least 90% of all c values P, > 
Ph, that is, if at nearly all coherence levels, the spectrum has a peak in 
the 20-60 Hz range. If  a cell fails to be classified as a burst cell, then 
we attempt to localize a dip in the power spectrum [see arrow on S’(fl, 
Fig. 2, cell d, bottom right, which has a dip near 20 Hz] using another 
sliding window. We take fd to be the center frequency of the seven-bin 
window that minimizes the integral within the window summed over 
all c, where 20 Hz < fd < 500 Hz. We take the average value of the 
spectra within a window centered at fd to be P+ We classify a cell as 
nonburst if for at least 90% of all c values Pd < 1 .O, that is, if at nearly 

all coherence levels the spectrum has a dip below the expected baseline 
level (which manifests itself at high frequencies) for a Poisson-like spike 
train, which is 1 .O due to our spike rate normalization. This definition 
would result in classifying a cell with Poisson-distributed spikes (that 
therefore has a flat power spectrum) as neither burst nor nonburst, but 
since all cells studied here show evidence of refractory periods, this case 
does not occur in practice. Note that for a pacemaker cell “oscillating” 
in the 20-60 Hz band, P can become arbitrarily large as the oscillation 
becomes increasingly regular. 

I f  a cell fails to be classified as either burst or nonburst, it is classified 
as mixed since at some c values it lacks a significant peak, while at 
others it lacks a significant dip, in the 20-60 Hz range. To avoid clas- 
sifying a cell based on too little data, trials with less than six spikes in 
the 336-2000 msec time window are discarded, and c values with less 
than eight valid trials are not represented in the set of spectra. Finally, 
a classification is made only when there are at least three different c 
values with valid S:. Typically, there are six S: for c < 0, six for c > 
0, and one for c = 0. 

A measure of the shape of the power spectrum, P, is associated with 
each classified neuron. For burst cells, the ratio ofthe peak to the baseline 
is used: P = P,.,,, = PDIPb. For nonburst cells, the ratio of the dip level 
to the ideal baseline, 1 .O, is used: P = P.,,,.,, = Pa The value for mixed 
cells depends on the subcategorization; that is, P follows the definition 
for burst if S: had a peak for the majority of c values but follows the 
definition for nonhurst otherwise. When discussing the shape of power 
spectrum, we will simply refer to P when the particular definition is 
understood from context. 

Other methods. The PSTHs are computed from the single-trial data 
by averaging over all trials with identical stimulus conditions, using a 
bin width of 10 msec. They are normalized to show spike rate rather 
than counts per bin. Interspike interval (ISI) distributions are computed 
with 1 msec bin width. Power spectra, S’(f), are usually normalized to 
match continuous spectra under the assumption that spikes can be 
described as Dirac d-functions. In this case, the vertical offset is roughly 
proportional to the spike rate, and for nonburst cells, the flat level at 
higher frequencies is usually an accurate reflection of the spike rate, as 
in Figure 12. Under the second spike-rate normalization (discussed 
above), spectra are divided by the average spike rate so that all are 
nearly the same height to allow comparison of shapes, as in Figure 5. 

Vertical truncation of histogram plots is indicated by open histogram 
bars near the top of the graph (Figs. 2, bottom; 5, upper left; 15, both 
ISI plots and lower right; 18, lower left and right). 

Results 
Experimental results 
We begin by describing the population of MT cells with respect 
to two statistical measures of the temporal fine structure of spike 
trains: the IS1 distribution and the power spectrum S’(f). The 
first measure is an order-independent statistic since it contains 
no information about the temporal order in which the intervals 
occur. For instance, all short intervals could have occurred at 
the beginning of each trial and all long intervals at the end, or 
each short interval could have been followed by a long one. The 
estimate S’(f) is order dependent since it depends on temporal 
relationships between events at scales beyond single intervals. 
Although many different S’(j) may be associated with a par- 
ticular IS1 distribution, we find for this database that the shape 
of the IS1 distribution predicts the shape of the power spectrum 
quite well, and that the tendency of a cell to fire bursts of action 
potentials is the basis for the prediction. 

Estimates of the IS1 and S’(f) are shown in Figure 2 for four 
cells from the database. Segments of typical spike trains from 
each cell are shown at the top, and below them, the PSTHs show 
that the average firing rate is relatively constant throughout the 
period over which we compute the ISIS and power spectra, from 
336 to 2000 msec. Although not shown here, including the initial 
transients had little effect on the shape of S’(f). The autocor- 
relation functions, R’(t) (not shown), for these cells do not show 
ringing, even when the associated spectrum S’(f) has a prom- 
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Figure 4. Log(P) is plotted against B 
for burst (solid circles), nonburst (cross- 
es), and mixed (open circles) cells. 
Among burst cells, the correlation is 
strong between log(P) and B, as shown 
by the fit from linear regression (line). 
Hypothetical cells firing Poisson spike 
trains would fall along the horizontal 
line p = 1, separating the burst and non- 
burst cells. Mixed cells straddle this line 
and are neither strongly burst nor non- 
burst. Since B often has a small but sys- 
tematic variation with spike rate, val- 
ues shown here are computed by 
averaging only over trials with re- 
sponses that are statistically indistin- 
guishable from those at c = 0. Results 
are verv similar when values are aver- 
aged o;er trials for all c. The arrows 
show the points corresponding to the 
four cells of Figure 2. 

inent peak of the type seen in Figure 2 (cell a, bottom). Only a 
single cell showed strong ringing in R’(t), and this was for c = 1. 

Bursting cells 

We were intrigued by the persistent tendency of certain cells to 
burst frequently, that is, to discharge a group of two to four 
tightly clustered action potentials with ISIS of no more than 3 
msec (see, in particular, the IS1 histogram in Fig. 2, cells a and 
b). Cells that respond frequently in this manner to the visual 
stimulus show a bimodal IS1 histogram with a pronounced peak 
at short, that is, l-3 msec, intervals and a second, much lower 
and broader, peak at longer intervals (see IS1 insets in Fig. 2, 
cells a and b). The first peak is caused by the interval distribution 
within a burst, while the second peak is partly due to intervals 
between bursts (interburst intervals, IBIS) and partly due to 
intervals between isolated spikes. 

Figure 2 illustrates the trend in burstiness observed in our 
data, from strongly bursting (cell a) to weakly bursting (cell c) 
and nonbursting cells (cell d). Figure 2 also reveals a second 
and correlated trend, that some cells have a peak in their power 
spectrum between 20 and 60 Hz (cells a and b, somewhat in 
cell c), while others (cell d) have a spectrum that is flat with a 
dip at low frequencies (except at the origin f = 0). The mean 
center frequency of the peak in the estimated spectrum S’ for 
all cells with such a peak is 41 Hz (with an SD of 9 Hz), so in 
the remainder of this article, we will refer to this frequency range 
as the 40 Hz band, with the understanding that the location of 
the peak varies from cell to cell. Of 212 cells analyzed, 71 had 

relatively flat averaged spectra, S’(f), with a dip at low fre- 
quencies, and 13 1 had peaks in the 40 Hz range of their averaged 
spectra. The remaining 10 cells had too little data to judge 
accurately the shape of the spectrum. 

As described in Methods, we classified the cells as either burst 
or nonburst based on the shape of their power spectra using a 
scheme that takes into account the possibility that the spectra 
might change as the stimulus motion coherence c varies. The 
criteria for this classification were designed to be strict so that 
cells that did not always, regardless of stimulus direction and 
coherence, behave as burst or nonburst would be classified as 
mixed. Of 2 12 cells, 10 were eliminated from classification be- 
cause they did not meet the minimum standards for number of 
spikes, trials, and coherence levels. Of the remaining 202 cells, 
125 were classified as burst, 61 as nonburst, and 13 as mixed 
(in three cases, visual inspection disagreed with the classification 
algorithm, so these cells were dropped from consideration). It 
is striking that 93% of the cells were classified as either burst or 
nonburst because it indicates that this rough categorization is 
stimulus invariant. 

As also discussed in Methods, we define a measure P of the 
shape of the power spectrum. For burst cells, P is defined as the 
ratio of the height of the peak in the 40 Hz range to the level 
of the baseline dip at higher frequencies (see arrows on S’(f), 
Fig. 2, cell a). For nonburst cells, P is defined as the ratio of the 
level of the dip at low frequencies (see arrow on S’(J), cell d) 
to the flat level at higher frequencies. For an ideal Poisson cell, 
P = 1 regardless of the classification as burst or nonburst; for a 
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Figure 5. Power spectra, S’(f), are 
shown for motion coherence values 
ranging from highly coherent preferred 
direction motion (c = 0.5 12) to highly 
coherent null direction motion (c = 
-0.5 12) for the burst cell (a) and the 
nonburst cd) cells from Figure 2. Spec- 
tra are alsb shown for background, ihat 
is, spontaneous activity, and fixation 
conditions. The spectra vary little, ex- 
cept that the dip below 20 Hz becomes 
more prominent when spike rate in- 
creases. This can be explained by the 
potentially greater effect of a refractory 
period at higher spike rates. These spec- 
tra are normalized by spike rate. 
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pacemaker cell “oscillating” in the 20-60 Hz band, P becomes 
arbitrarily large as the oscillation becomes increasingly regular. 

With P as a measure of the shape of S’, we developed a 
measure of burstiness based on the ISI. Given the well-known 
distinction between bursting and nonbursting cells based on 
intracellular current injections in rodent slice preparations (Mc- 
Cormick et al., 1985; Connors and Gutnick, 1990), we attempt- 
ed to find a metric that would classify all of our cells into two 
(or more) segregated groups according to the degree of bursti- 
ness. For this purpose, we introduce the measure B as the per- 
centage of the IS1 histogram in the 1, 2, and 3 msec bins. 

The variable B is similar to other proposed measures of bur- 
stiness that are based on the proportion of the IS1 distribution 
below a cutoff value (Cattaneo et al., 198 1 b; Abeles, 1982). We 
also considered another measure of burstiness, 8, based on the 
ratio of the number of intervals in the 2 msec IS1 bin to the 5 
msec IS1 bin. This variable has the potential advantage that it 
is able to distinguish between a bursting cell with a bimodal IS1 
histogram and a very fast firing cell that has a unimodal IS1 
histogram concentrated below about 10 msec. However, B is 
quite sensitive to fluctuations in the trough between the peaks 
of a bimodal histogram, and its value is less stable. We will use 
B as the measure of burstiness here but point out that B and 8 
tend to be highly correlated, at least for our database. 

Nonburst 

0 
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Frequency (Hz) 

Figure 3 shows the frequency distribution for these three sta- 
tistical measures for all cells averaged over all stimulus condi- 
tions. We interpret the histogram for P to represent a unimodal 
distribution. The dip at unity is an artifact of our classification 
system because P is based on regions of the power spectrum 
that are chosen for maximizing the peak-to-trough ratio or min- 
imizing the trough-to-baseline ratio for burst and nonburst cells, 
respectively. The long left tail of the distribution for B shows 
that many cells have less than 1% of their intervals shorter than 
or equal to 3 msec, such as cell d of Figure 2. The distribution 
for l? is spread over many orders of magnitude and shows a 
hint of bimodality. Overall, however, it is difficult to segment 
the data into two classes based on these histograms, since many 
burst and nonburst cells fall in overlapping regions in the his- 
tograms for B and 8. We stress, therefore, that the burst and 
nonburst classifications are primarily tools for defining two ends 
of what appears to be a continuum. 

For burst cells, P changes relatively little with stimulus con- 
dition and appears to reflect primarily an intrinsic property of 
these cells in an alert and trained monkey. As we show next, in 
such cells P is highly correlated with B. For nonburst cells, B 
often changes systematically with spike rate and is therefore not 
as revealing about intrinsic properties. 

The close connection between bursting and the shape of the 
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power spectrum is illustrated in Figure 4. Here the value of B 
for individual cells is plotted against the associated P. The values 
shown here are averaged over trials at c = 0 and trials at other 
low c values for which the monkey’s and the neuron’s responses 
were statistically indistinguishable from responses at c = 0. The 
three groups, burst, nonburst, and mixed, are plotted together 
in Figure 4. For the burst cells (solid circles), there is an obvious 
strong correlation between log(P) and B, with the line indicating 
an empirical, exponential fit: P = eO.OXs. Thus, the more a cell 
tends to fire action potentials in tight bursts rather than as iso- 
lated spikes, the higher the peak in its power spectrum in the 
40 Hz band. We will explore the reasons for this behavior further 
in Stochastic models, below. Cells with purely Poisson-distrib- 
uted spikes would fall along the horizontal line P = 1.0, with 
low firing rates near the origin, and higher firing rates to the 
right. The strong correlation evident here between B and P 
justifies classifying cells as either “burst” or “nonburst” based 
on the shape of the power spectrum. 

Relation of the 40 Hz peak to prior measures of neuronal and 
psychophysical performance 

Previous analyses of this data set have identified several inter- 
esting parallels between the psychophysical performance of the 
monkeys and the responses of single MT neurons. In all of these 
analyses, the response of a neuron was considered to be the total 
number of spikes occurring during the period of visual stimu- 
lation (Newsome et al., 1989a,b; Britten et al., 1992). We now 
consider to what extent temporal structure, here the presence 
and amplitude of the 40 Hz peak in the power spectrum, reflects 
any aspect of the visual stimulus or the monkey’s behavior. 
Specifically, we ask the following questions. (1) Does the prom- 
inence of the peak vary with the strength of the motion signal, 
c? (2) Is the peak affected by the behavioral state of the animal? 
(3) Does the spectral peak develop or change with time during 
the course of a 2-set-long trial? (4) How is the peak correlated 
to prior measurements of cell sensitivity based on total spike 
counts? (5) Is the size of the peak correlated with the monkey’s 
decisions concerning direction of motion for a particular stim- 
ulus condition? 

We suggested in a previous section that the burstiness of a 
cell, quantified by the ratio P, is largely independent of the 
strength of the motion signal in the visual stimulus c. Quali- 
tatively, this point is supported by the spectra illustrated in 
Figure 5, computed for one burst and one nonburst cell, which 
appear fairly constant in shape for varying values of c, and by 
Figure 6, which shows the mean and SD for P as a function of 
c for a burst and nonburst cell. 

To analyze the relationship of P and c quantitatively, we first 
conducted a one-way ANOVA for each neuron to determine 
whether P varied significantly within the range of c tested, 118 
of 202 neurons (58%) failed to show heterogeneity by this test 
(p > O.OS), and we conclude that P is completely independent 
of c for these cells. For the remaining neurons we performed a 
multiple regression analysis to determine whether c influenced 
Pin a systematic manner. For the great majority of our neurons, 
the mean response increased with c, causing changes in the shape 
of the power spectrum that are related to the presence of the 
refractory period (see Stochastic models, below). We therefore 
included mean firing rate as a coregressor in our multiple re- 
gression analysis to disentangle the effects on P of c and mean 
firing rate. 

Only 20 of 202 MT neurons (10%) showed a significant re- 
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Figure 6. For most cells, P does not change substantially over the 
range from c = 0 to values well above the threshold level. The average 
value of P over all trials at each coherence level is plotted for a strongly 
bursting cell (top) and a strongly nonburst cell (bottom). Error bars show 
SDS. 

lationship of P and c (multiple regression, p < 0.05); the slope 
of this relationship was negative for 13 cells and positive for 
the remaining seven cells. For all neurons, furthermore, the slope 
of the regression line relating P to c was sufficiently small that 
the classification of a cell as burst (mean P > 1) or nonburst (P 
< 1) was unambiguous. It appears, therefore, that c has no strong 
or systematic impact on P for our population of MT neurons 
considered as a whole. In most of our subsequent analyses, 
therefore, P is averaged across c to obtain a single index of 
burstiness for each cell. 

Is the spectral peak influenced by the behavioral state of the 
animal? To answer this question, we computed the index of 
burstiness, P, for spike trains obtained under three different 
behavioral conditions. In the “choice” condition, the animals 
attended to the random dot stimuli with the intent of making 
a discrimination. The same visual stimuli were presented in the 
“fixation condition,” but the animals were only rewarded for 
maintaining fixation on a visual target; no discrimination was 
required. Finally, the “background” refers to spontaneous neu- 
ronal activity that was acquired during the interval between 
trials. 

The index of burstiness, P, did not vary between the “choice” 
and “fixation” conditions for the 82 cells for which “fixation” 
data was available (paired t test, p > 0.05), suggesting that the 
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Figure 7. A comparison of neuronal 
threshold to the shape of the power 
spectrum. There is no significant cor- 
relation (r = 0.045, p = 0.61) between 
lodc,.,,) and loa( Neuronal thresh- _ __ 
old, c,,,, is the coherence level that sup- 
ports 82OYo correct decisions by an ideal 
observer counting total number of 
spikes. P is the ratio of the height of the 
peak (dip) in the 40 Hz band of s’(fl . . . .  ̂
to the baseline level for burst (nonburst) nn1 I 

0 

0 

0 

8 

0 

0 

0 

cells. We obtain similar results when 
correlating P against measures of the 
animal’s psychophysical performance 
on motion discrimination (not shown). 
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monkey’s intent to make a discrimination had no effect on the 
spectral peak. There was a significant change in P between the 
choice and background conditions (paired t test, p < 0.05), but 
the effect was quite small: P decreased by an average of 3% for 
burst cells (n = 122) and increased by an average of 8% for 
nonburst cells (n = 59). We therefore infer that P is substantially 
independent of behavioral state, a conclusion that is supported 
by visual inspection of power spectra like those illustrated at 
the bottom of Figure 5. 

We next inquired whether the spectral peak developed or 
changed with time during the course of a 2 set trial. Analyzing 
the evolution of the shape of the power spectrum is difficult due 
to the small amount of data that most spike trains contain in a 
period as short as a few hundred milliseconds. The average spike 
rate over our entire database is 19 Hz (with an SD of 18 Hz), 
so the exact placement of any one spike will have a large con- 
tribution toward the overall shape of the power spectrum for 
short windows. Because of this, we address a special case of this 
question that allows averaging over trials. This method is there- 
fore limited to detecting changes that are locked to the stimulus 
onset. 

We divided each trial (starting 336 msec after the onset of 
the stimulus to eliminate initial transients) into six equal time 
windows that overlapped by one-third of their width. The av- 
erage value of P was computed from individual spectra for all 
windows of similar time lags that fulfilled a minimum spike 
criterion of five spikes per window. Only 10% of burst cells and 
2 1% of nonburst cells showed a significant correlation between 
P and time (Spearman rank-order correlation coefficient, p -c 
0.05). Of those cells, P increased by an average of 11% and 14% 
for burst and nonburst cells, respectively. Because P shows no 
correlation with time during the trial for 86% ofcells and changes 
little for the other cells, we compute only one spectrum per trial 
in other analyses. 

In a prior analysis of this data set, signal detection theory was 

l.bo 
Spectrum shape (P) 

S.iO 

used to compute a neuronal “threshold” that expressed the sen- 
sitivity of each neuron to motion signals in the display (Britten, 
et al., 1992; see Methods). Threshold was defined to be the 
coherence value at which the neuron signaled the direction of 
motion with a criterion level of reliability. Thresholds varied 
widely among neurons in the data set, and we therefore tested 
for the hypothesis that burstiness as measured in the present 
analysis could be systematically related to the measure of sen- 
sitivity computed in the prior study. Figure 7 shows cell thresh- 
old plotted against the index of burstiness, P, for all neurons 
that yielded a reliable estimate of P. The scatterplot contains 
no structure signifying a relationship between the two measures, 
an impression that is confirmed by calculation of a correlation 
coefficient (r = 0.045, p = 0.6 1). 

Psychophysical threshold also varied across these experi- 
ments since the testing conditions were changed to match the 
preferences of each cell (Britten et al., 1992). For some purposes, 
therefore, it is useful to express the sensitivity of each neuron 
relative to psychophysical sensitivity by calculating for each 
experiment the ratio of neuronal to psychophysical threshold. 
To determine whether P is related to cell sensitivity expressed 
in this manner, we calculated a correlation coefficient between 
the log of the “threshold ratio” and log(P), but again we found 
no relationship (r = 0.097, p = 0.28). Thus, the prominence of 
a peak in the 40 Hz region of the power spectrum does not 
correlate with prior measures of cell sensitivity. 

Finally, we asked whether the prominence of the peak varied 
in a systematic way with the decision made by the monkey on 
successive presentations of a given motion condition. Previous 
analyses have demonstrated a trial-to-trial covariation between 
neuronal response and psychophysical decision when the re- 
sponse is considered to be the integrated spike count (Newsome 
et al., 1989b; K. H. B&ten, W. T. Newsome, M. N. Shadlen, 
S. Celebrini, J. A. Movshon, unpublished observations). We 
therefore wondered whether a measure of temporal structure in 
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the spike train, P, would be similarly correlated with perfor- crease and decrease among the nonburst cells were both 10% 
mance. on average. 

As in the prior analysis, we eliminated the influence of the 
visual stimulus itself on the monkey’s decisions by carrying out 
the analysis only for c = 0 (completely random motion) and 
other small coherence levels for which neither the monkey nor 
the neuron discriminated the direction of motion at levels great- 
er than chance (effectively random motion). On these trials, the 
monkey “guessed” the correct direction since the visual stimulus 
itself contained no effective information about the correct choice. 
For each cell we computed the difference between the average 
value of P for trials on which the monkey decided in favor of 
the neuron’s preferred direction and the average value of P when 
the monkey decided in favor of the null direction. We found no 
statistically significant difference in P between these two con- 
ditions for either burst or nonburst cells (paired t test, p > 0.05), 
and we therefore conclude that the prominence of the spectral 
peak in our data set and for our stimulus conditions is not related 
to the monkey’s behavioral choice. 

Treating bursts as events 

We previously appealed to the neuronal threshold, ccc,,, as a 
measure of an ideal observer’s ability to decide the direction of 
motion of the stimulus based on the output of the neuron (New- 
some et al., 1989a; Britten et al., 1992) assuming that the rel- 
evant neuronal output is the number of spikes fired during the 
stimulus period without considering whether those spikes oc- 
curred in bursts or as isolated action potentials. What happens 
if we quantify the neuron’s output by the number of “events,” 
where an event is either a burst or an isolated spike, and re- 
compute an associated neuronal threshold, c,,,,? One could well 
argue on biophysical grounds that a burst of spikes could be 
more powerful in evoking a postsynaptic response than the same 
number of isolated spikes. 

We found a similar result when testing whether P was cor- 
related with correct versus incorrect decisions by the monkey 
at the coherence level closest to the monkey’s psychophysical 
threshold, c,,,,,, (typically at c = 0.128). At this level, there are 
a significant number of incorrect response trials, and yet the 
monkey is not simply guessing. Again, we found no statistically 
significant difference (paired t test, p > 0.05) for either burst or 
nonburst cells, and therefore conclude that the prominence of 
the spectral peak is not related to correct and incorrect responses 
by the monkey. 

Since it is a widely held belief that changes in temporal struc- 
ture (such as an increase in burstiness) can result from cell 
damage caused by the electrode, we tested for a change in P 
from trial to trial over the course of the experiment. We found 
that 13% of burst cells showed a significant increase in P, 67% 
on average, during the experiment, while 12% showed a signif- 
icant but small (only 8% on average) decrease in P. Among 
nonburst cells, 20% showed a significant increase, while 18% 
showed a significant decrease in P. The magnitudes of the in- 

Consistent with our definition of B, events are delined as the 
longest sequences of spikes with all ISIS less than or equal to 3 
msec (values between 3 and 8 msec give very similar results). 
With this definition, single isolated spikes as well as bursts are 
counted as individual events. A nonburst cell will have nearly 
the same number of events as spikes, while a burst cell will have 
many fewer events than spikes. Figure 8a compares the tuning 
of a strongly bursting cell’s response measured in spikes/second 
(upper curve), events/second (middle curve), and spikes/event 
(lower curve). Typical of our database, spikes/event is not tuned 
with c; therefore, the curve for events is similar to that for spikes, 
but scaled down by the average number of spikes per event, 
here 2.5. In Figure 86, the thick line shows the events/second 
curve scaled up by 2.5 spikes/event so that it overlays the spikes/ 
second curve. From the relatively smaller SDS for normalized 
events/second, it is clear that for this cell events/second is a 
more useful neuronal signal for predicting the direction of co- 
herent motion. 

Because the neuronal code that carries motion information 
in cortex is not known, and since likewise we do not know 
whether neurons postsynaptic to the one recorded differentiate 

Figure 8. One example of how count- 
ing events rather than spikes can yield 
better direction discrimination. Events 
are defined to be either isolated spikes 
or bursts (groups of spikes with all in- 
tervals 5 3 msec). a, The tuning of mean 
spike rate [&c)], mean event rate h+(c)], 
and the number of spikes per event 
h,+(c)] is plotted relative to motion co- 
herence for the strongly bursting cell 
j001. &c) and &c) are tuned with c, 
but rx(c) is flat at about 2.5 and is treat- 
ed as a constant, pX, in the text. b, Fo- 
cusing on the region around c = 0, p&) 
(thin line) is plotted against w,,,(c) (thick 
line, offset), computed by multiplying 
p,,,(c) from a by fiX = 2.5 spikes/event. 
It is apparent by the smaller SDS and 
similar slope that pM(c), and thus event 
rate, is a better basis for predicting c 
than is raw spike rate. Error bars show 
SDS. 
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Figure 9. Comparing neuronal thresholds based on spike rate to those based on weighted event counts. For 41 burst cells (p 2 1.5), frequency 
histograms show the threshold ratio of &, to cc,,,. In the upper six histograms, EC,,, is computed from ROC analysis based on the number of single 
spikes plus 01 times the number of bursts. The greatest leftward shift in the distribution (numbers in parentheses show means), representing the 
largest average improvement in neuronal threshold, is achieved for (Y = 1, which corresponds to using r,,,(c), event count, as the neuronal signal. 
(The counts near 0.5 indicate cells for which the neuronal thresholds were roughly halved by this procedure.) For 2 5 (Y 5 3, this procedure is very 
similar to counting individual spikes, since bursts are composed of typically two or three spikes. Histograms for (Y = 0.75, 1 S, and 3.0 (not shown) 
have means 0.944, 0.940, and 1.02, respectively. As (Y - co, single spikes are ignored and only bursts are counted. The bottom two histograms 
show results from two schemes that weight events based on the number of spikes per event raised to the power 8. The square root yields an 
improvement in threshold since it reduces the effect of variance in the number of spikes per event, while squaring emphasizes the variance, and 
worsens the thresholds. Overall, these plots indicate that an ideal observer with knowledge of the arrangement of spikes in bursts will be better 
able to predict the direction of motion, particularly at near-zero coherence levels, than an observer knowing only the total number of spikes. 

between bursts and isolated spikes, we tried various schemes 
for weighting the contribution of events to the output signal 
based on a function of the number of spikes per event. First, 
we weighted isolated spikes, that is, single-spike events, as 1 
and bursts, events of multiple spikes, as (Y, with LY varying be- 
tween 0.5 and 8. We also used a different weighting scheme, 
where each event, irrespective ofwhether burst or isolated spike, 
is weighted according to its number of spikes raised to a power, 
p. Note that @ = 0 corresponds to the first weighting scheme 
with (Y = 1, and p = 1 corresponds to our original scheme, which 
does not differentiate between bursts and isolated spikes. In 
addition, we consider p = % and p = 2. 

To assess the advantage of these schemes, we recomputed 
neuronal thresholds based on the modified output signals for 
the 41 burst cells where the peak in the power spectrum was at 
least 50% above the baseline (p 2 1.5). More weakly bursting 
cells are ignored because we expect no effect when isolated spikes 
greatly outnumber bursts. Figure 9 shows the frequency histo- 
gram of Lt~cccll, where L, is the neuronal threshold based on 
the modified signal. The shifts of the distributions are significant 
(p < 0.05) for all histograms shown except for cy = 0.5. Leftward 
shifts indicate that the thresholds improved (became lower) when 
the modified signal was used in place of spike count. The greatest 
improvement occurred for 01 = 1 (i.e., p = 0) and corresponds 
to a 7.5% decrease in threshold. For three cells, thresholds were 
roughly cut in half. In other words, allowing an ideal observer 

to count bursts as single events enhances his ability to predict 
the direction of motion of the stimulus, on average. 

Weighting bursts more heavily (a > 1) or less heavily (a = 
0.5) than single spikes did not improve thresholds. Squaring the 
number of spikes within the burst also led to higher (worse) 
thresholds, while taking the square root yielded an improve- 
ment. 

Based on these results, and on the relative variance-to-mean 
ratios for event count and spike count seen in Figure 8, we 
believe that the improvement, particularly for LY = 1, is due to 
a reduction in relative variance that occurs by ignoring the num- 
ber of spikes within events. This effect is easily demonstrated 
by a simple stochastic model. Consider the model that a bursty 
spike train is governed by two distributions, that of the number 
ofevents Nand that of the number of spikes per event X. Assume 
that N is Poisson distributed with rate parameter am, a func- 
tion of stimulus coherence, and that X is distributed with mean 
pLx and variance a:. Using basic results from the theory of 
branching processes (Feller, 1968) the mean of S, the number 
of spikes per trial, is then 

lIs(4 = PN(C)~X, (5) 

and the variance (see Appendix for proof) is 

4x4 = 4c)(& + dA (6) 

where we use the fact that p,,,(c) is both the mean and variance 
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of the Poisson distribution for N. Rather than comparing the 
neuronal output signal S, based on spikes, directly to the event 
count N, we consider the random variable A4 = pXN, which has 
the same mean as S, that is, 

/44(c) = hmx. (7) 

This corresponds to multiplying the event/second curve in Fig- 
ure 8a by 2.5 spikes/event so that it lies directly on top of the 
spikes/second curve and allows direct comparison of the sizes 
of the SDS (i.e., Fig. 8b). The variance of the scaled-up event 
count A4 is given by 

44(c) = k.k)wz,, (8) 

which no longer has the term from Equation 6 involving the 
variance of the number of spikes within an event. Therefore, 
counting events rather than spikes should allow an observer to 
better predict the direction of motion of the stimulus under the 
conditions of this model. The critical condition here is that the 
number of spikes per event is independent of stimulus condition, 
and this appears to be the case, as demonstrated in Figure 8, 
for most of the bursting cells, particularly at near-threshold 
coherence levels. This is further supported by our observation 
that P changes little with coherence level. 

o!,,,,,,,,,,,,,,,,,,,, 
0 50 100 150 200 

Frequency (Hz) 

Figure 10. Derived power spectra S,,,,, for a random (Poisson) spike 
train with refractory period. The power spectrum S,,,,,, for a Poisson 
process with a refractory period modeled as a Gaussian-shaped de- 
pression in the renewal density (see Eq. 15) is plotted for 0 = 1, 2, 4, 
and 8 msec at X = 40 Hz. As the length of the refractory period increases, 
the trough becomes deeper at lower frequencies. This model for S(f) 
only holds if X 5 1/(42?rc). Outside of this range (i.e., if the inverse of 
the mean spike frequency is on the order of the refractory period), the 
spectrum develops a peak at that inverse of the mean refractory period, 
and the renewal density can no longer be modeled as a constant minus 
a Gaussian. Stochastic models 

What stochastic models of neuronal firing can give rise to the 
observed power spectral densities and IS1 distributions? To an- 
swer this question completely would require a detailed under- 
standing of the biophysics of individual cortical cells as well as 
the dynamics and connectivity of the network in which the MT 
cells from which we recorded are embedded. Instead, we focus 
on the statistical properties of the discharge frequency of indi- 
vidual cells in a qualitative manner, bypassing the need for 
detailed single-cell or network models. We believe that this 
method is justified by our results; we can model the power 
spectra and IS1 distributions using very simple two- or four- 
parameter distribution functions. 

Poisson-distributed action potentials 

Our starting point is the fundamental result that the power 
spectrum of a random, Poisson train of action potentials is flat 
at all frequencies except for a &peak at the origin. This agrees 
with our intuition that all spectral components should be equally 
represented in a completely random spike train. To be more 
precise, we will model a spike train as a shot-noise processflt), 
where the function h(t) describes the shape of a single shot, here 
at first a single action potential, and S,(j) is the associated 
energy spectrum. A train of infinitely many action potentials is 
given by 

action potential is adequately described by a &impulse function, 
that is, h(t) = 6(t), S,(J’) = 1, the above equation reduces to 

S(f) = x + 2?rX26(f). (11) 

The interspike interval (ISI) probability density function for this 
case is given by 

ISI = X e-Aaf At > 0. (12) 

Thus, if we observe a Poisson spike train for a sufficiently long 
time, its ISIS should be distributed according to a single decaying 
exponential. 

We will also make use of a more general expression for the 
power spectrum that includes cases where the occurrence of an 
action potential is dependent on the last time an action potential 
was initiated. We embody this dependency in the renewal den- 
sity function p(t). Assume that a spike was generated at time t,. 
The probability for the next spike to occur between t, + t and 
t, + t + dt is given by p(t)dt (for details, see Perkel et al., 1967). 
The power spectrum of shot-noise with this dependency among 
the “shots” is 

e-““fip(t) dt 1 , (13) 

g(t) = E h(t - t,). (9) for all valuesf# 0 (see Appendix L in Champeney, 1973). For 
,=-cc a Poisson process, the probability of spiking per unit interval 

We assume here that the spike train is generated by a stationary 
is always constant and is characterized by the mean rate; thus, 

and ergodic process. If the spikes occur at random, that is, 
p(t) = A. 

without any memory of the previous spike but with an average 
Neurons, however, do not fire totally without memory, be- 

firing rate X. the power spectrum of such a random spike train 
cause for a variable time following the generation of an action 

is (Champeney, 1973) 
potential the spiking threshold is elevated, making it more dif- 
ficult to discharge the cell (absolute and relative refractory pe- 

(10) 
riods). 

The effect of a refractory period can be modeled analytically 
where the average value of g is related to h(t) by (g(t)) = X I 
h(t)dt. In the familiar case where we assume that an individual 

with the help of the renewal density function. The shape ofp(t) 
can, indeed, be measured directly by computing the probability 
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Figure II. Comparison of spike train statistics for nonburst cell e047 to those for a simple numerical model. The statistics for the neuron (left 
column) were computed by averaging over 15 trials at c = 0.128. The spikes (top truce) are less clustered than random, as demonstrated by the 
absence of short intervals in the IS1 and the dip at low frequencies in S’(f). The corresponding numerical model (right column) consists of a 
computer-generated Poisson process (mean rate, 86 Hz) superimposed with a Gaussian-distributed refractory period (mean, 5 msec; SD, 2.0 msec; 
truncated at 0 and renormalized). The model does not account for initial transients in the data and averages over the equivalent of 1000 2-sec- 
long trials, so the PSTH is flat and all plots are less noisy for the model. The levels of PSTH and power spectrum (above 200 Hz) demonstrate 
that the resulting process has an overall mean rate matching that of the neuron. The absence of short intervals in the ISIS and the dips at low 
frequencies in the power spectra are in close agreement between the neuron and the model. This model is not intended to be a best fit for the data, 
but rather a demonstration that the location and size of the dip are qualitatively accounted for by a random process with a stochastic refractory 
period of appropriate duration. The solid curve superimposed on the neuron’s spectrum (bottom left) corresponds to the analytical power spectrum 
for a Poisson process with a refractory period (Eq. 15) with X = 58 Hz and (T = 3.5 msec. Again, this qualitatively accounts for the dip. 

for the observed cell to fire an action potential in the short time 
interval t, + t and t, + t + dt, assuming that it had fired at time 
t,. For the binary data we have here (per sampling interval of 
At = 1 msec, either zero or one spike can occur), p(t) is directly 
proportional to the autocorrelation function R(t). For our non- 
bursting cells (e.g., Fig. 2, cell d), R(t) (not shown) is well fitted 
by a constant minus a small Gaussian around the origin, indi- 
cating a reduced probability of firing around t = 0. We therefore 
assume for the renewal density 

p(t) = x - Xe-v*/Zo’). (14) 

Replacing p(t) into Equation 13 yields the power spectrum of 

an infinite train of Poisson-distributed &impulses with refrac- 
tory period 

S Polrro”(f) = X( 1 - vZ&+“J~)‘), (15) 

forf f 0. In order to ensure that SPOlssOn is always positive, the 
maximum firing rate must be limited: X I I/($&J). This spec- 
trum, parameterized by two parameters, the mean rate X 
and the width of the refractory period u, is constant for large 
values off but dips toward its minimum at f = 0. Figure 10 
shows S,,,,,,,(f) for X = 40 Hz and for u = 1, 2, 4, and 8 msec. 
A longer refractory period causes a deeper trough at low fre- 
quencies. Note that this result appears at odds with intuition, 
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since a refractory period seems to demand a peak in the neigh- 
borhood of the inverse of the smallest ISI. However, this is only 
true if the firing rate X is so high that the mean time between 
spikes approaches the refractory period. In that case, Equation 
15 no longer describes the resulting spectrum. Clearly, in the 
case of a fixed absolute refractory period, the mean spike rate 
must be no greater than the inverse of the refractory period. 
The additional factor of l/\/z;; arises because of the Gaussian 
depression in the renewal density used to model a stochastic 
refractory period. 

We also numerically simulated this situation using Poisson- 
generated shot-noise (with a mean spiking rate X = 58 Hz) and 
a Gaussian-distributed absolute refractory period (of 5 msec 
mean, 2 msec SD, and truncated below zero). In other words, 
each time a spike was generated, the Gaussian distribution spec- 
ified the refractory period associated with that particular spike. 
After this refractory period, the probability for the next spike 
to occur is a constant XAt. We compare in Figure 11 the spectrum 
and IS1 distribution from an MT cell with a relatively flat spec- 
trum and a dip at low frequency against this simple model. Both 
the synthetic and the experimentally recorded spike trains (see 
Fig. 11, top) are subject to the same analysis. The associated 
PSTH is flat for the computer-generated process since our model 

Figure 12. A comparison of power 
spectra, s’(fl (data points) for six non- 
bursting MT cells and their correspond- 
ing analytical curves, &,,,,.(fl (solid 
lines), based on the expression for a 
process with randomly (Poisson) dis- 
tributed spikes and a refractory period 
(Eq. 15). These examples illustrate the 
ability of the simple analytical model 
to account qualitatively for the location 
and size of the dip in the power spec- 
trum over a broad range of firing rates. 
The particular shape of the dip is often 
fit poorly since the form of the renewal 
density may not match the Gaussian 
shape imposed by analytical model (see 
Eq. 14). The different levels of the var- 
ious power functions reflect the differ- 
ent mean spikes rates. The parameters 
of the analytical expressions are shown 
in the table. 

320 400 

does not account for the transient component of the neuron’s 
response. It is obvious that the IS1 distribution and power spec- 
trum for the synthetic process are very similar to those for the 
MT cell. In particular, both spectra show a dip at low frequen- 
cies. 

We superimposed the analytical expression S,,,,,,,(f) (with X 
= 58 msec, u = 3.5 msec) onto the power spectrum for the 
neuron (Fig. 11); it appears to provide an excellent fit to the 
computer-generated and the measured spectra. We performed 
this fitting procedure of S’(fl against the two-parameter func- 
tion S Poisson(f) of Equation 15 for 61 nonburst MT cells. Six 
examples of the fits are shown in Figure 12 for neurons with 
various firing rates, and the values of X and (r for all nonburst 
cells are shown in Figure 13. As expected, the refractory period 
shortens as firing frequency increases. Altogether, we find it 
remarkable that such a simple stochastic model of cell firing 
accounts for the shapes of the power spectra of many cells in 
our database. 

Poisson-distributed bursts 

Can we use a similar model to account for the 4 1 MT cells with 
a peak in their power spectrum whose amplitude is at least 50% 
higher than the baseline? To answer this question, we consider 
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within the bursts are generated by a Poisson process (similar to 
a model proposed by Smith and Smith, 1965) then the power 
spectrum would remain flat above 200 Hz, rather than gradually 
rising as seen at the bottom of Figure 15. 

The right column of Figure 15 shows the resultant IS1 and 
power spectrum, which are matched against similar functions 
for a bursting MT cell (Fig. 15, left column). What is surprising 
is that the synthetic data shows a peak in the power spectrum 
at about 31 Hz, without any underlying oscillations. How can 
this occur? A simple analytical model proves to be insightful. 

We again appeal to the power function of an infinite train of 
shot-noise [where each individual shot is described by h(t)], with 
refractory period modeled with the renewal density&) (Eq. 13). 
While before we assumed that individual spikes can best be 
described using a 6(t) function, we now model a burst by a boxcar 
of amplitude A and half-width L centered around the origin. 
We set L to the half-width of the typical burst and A to normalize 
the area of the boxcar to account for the number of spikes within 
the typical burst. The energy spectrum associated with such an 

’ ’ I ’ ’ I event is given by the square of a sine function, that is, by 
80 120 

h (spikedsec) (16) 

Figure 13. The distribution of parameters for fits of nonburst cells’ 
spectra to the analytical model of the power spectrum of a Poisson 

The power spectrum of such Poisson events with a refractory 

process with a refractory period (see Eq. 15). The refractory period period is 
parameter o is plotted against the mean firing rate X for 61 nonburst 
cells (data points). The solid line shows the boundary outside of that 
the model no longer holds, that is, for which X > 1/(\/27ru). To the 

S,,,,(f) = $ sin’yyLf+l - +j&@(&), (17) 
upper right of this line, the firing rate becomes too high to support the 
corresponding refractory period under our model of the renewal density. forf + 0. 

We superimposed S,,,,(f) onto the neuron’s spectrum in Fig- 
ure 15 (lower left) and found that both functions show a peak 

the IBI (interburst interval) distribution; if bursts occur at ran- at the same frequency. The reason for the peak is the fact that 
dom but with a fixed absolute refractory period, their distri- S,,,,, is the product ofsinc(f)*, a decreasing function off around 
bution should correspond to a shifted exponential, that is, IBI(Af) the origin, and an monotonically increasing function, 1 - e-f’. 
= ye- tiar+~o) for t 2 to and 0 elsewhere, where to is the duration Figure 16 shows the estimated power spectrum S’(f) as well as 
of the absolute refractory period and y is the mean rate for the associated best fit on the basis of Equation 17 for five burst 
bursts. If, on the other hand, bursting cells are pacemakers, that cells. The analytical model does not account for variations in 
is, if they regularly fire in bursts at a fixed interval, the IBI the burst width and occasional isolated spikes. Also, due to the 
should be sharply peaked around y. Figure 14 shows the average use of the boxcar function to mimic bursts, we have no control 
normalized IBI distribution for 37 cells (those with p 2 1.5 and over the fine structure of the spikes within the burst and there- 
more than 200 IBIS). The logarithm of the distribution appears fore S,,,,(f) does not match well at high frequencies. What is 
linear in the normalized (see Fig. 14 caption) time range of 40- important in this model is that the spectrum ofthis point process 
160 msec and falls off at shorter intervals, consistent with a shows a peak, in the absence of any underlying oscillator model. 
numerical model (thick curves) of Poisson-distributed bursts A similar result may be obtained in this case by using IBIS drawn 
with a burst-related refractory period that we develop in the from a broad Gaussian distribution with a mean value close to 
next paragraph in terms of a single neuron. 25 msec. More neuronal data would be required to distinguish 

To emulate the data for a single neuron shown in the left between the appropriateness of these models. 
column of Figure 15, we synthesize the following point process. To emphasize the fact that the presence of bursts-in com- 
Similar to the previous section, we generate “events” using a bination with a refractory period-can lead to a peak in the 
Poisson process (with X = 32 Hz) with a Gaussian-distributed power spectrum, we used all 210 trials at different values of c 
refractory period (of mean 16 msec and 7 msec SD; this distri- for one particular cell, jOO1, and replaced every occurrence of 
bution was truncated below zero and renormalized). Each event a burst by a single spike, located at the center of the burst (Fig. 
was then replaced with a burst of action potentials, that is, 17). The associated power spectrum changes dramatically in 
&functions, where the length of the burst in milliseconds was character, from the usual peaked one to a flat spectrum with a 
approximately Gaussian distributed (mean, 5.2 msec; SD, 1.1 dip at low frequency, compatible with the notion that once 
msec) and the spikes within the burst were chosen with ap- bursting has been accounted for, what remains are Poisson- 
proximately Gaussian spacing (mean, 1.8 msec; SD, 0.5 msec). distributed events modulated by the presence of a refractory 
The mean rate X and the Gaussian refractory distribution were period. If bursts would tend to occur every 25 msec or so, then 
chosen to fit the measured IBI distribution. The parameters of this procedure should have led to a spectrum with a large peak 
the Gaussian distribution for the length of the burst and the around 40 Hz. For our data, bursts account satisfactorily for 
density within the burst were also chosen to fit the neuronal the peaks in the power spectrum. This is also witnessed by the 
data. If this model is simplified by assuming that the spikes rate of burst occurrence X, shown in the table in Figure 16, where 
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Figure 14. The average IBI distribution for 37 burst cells (p 2 1.5; four cells with too little data were discarded) and a numerical model. Individual 
IBIS were computed from all trials at c = 0.5 12 (c = 0.256 for four cells) using the 8 msec criterion (see Results), normalized to have mean IBI 
equal to 60 msec (the population mean) by compressing or stretching the abscissa while preserving area, and smoothed with a Gaussian (u = 3.0 
msec) to eliminate isolated zero values. The average of logarithm of the IBI (thin line; error bars show SD) is roughly linear from 40-160 msec. 
Since the mean IBI varied from 20 to 100 msec over the 37 cells, the linear range of 40-160 msec in the plot corresponds to ranges from 13-53 
msec to 65-265 msec in actual time. Two thick curves show IBI distributions from a numerical model of a Poisson burst-generating process with 
Gaussian-distributed burst-related refractory period (IL = 17 msec, CJ = 8 msec, as in Fig. 15; see Results). Model curves are shown for X = 10 and 
100 burstskec. By varying A, the model accounts for the slope and approximate shape of the normalized IBIS while holding constant the parameters 
of the stochastic refractory period. The variance of the data is smallest near the intersections of the model curves, consistent with the notion that 
varying the model parameters induces little change in the IBI in these regions. The model somewhat overestimates the fraction of intervals in the 
linear range of 40-l 60 msec. Beyond 160 msec, values become undefined due to frequent zeros in the individual IBI histograms. 

A is distributed between 10 and 20 Hz, below the range where 
the peaks appear in the corresponding spectra. 

Discussion 
The intent of the research reported here is to study some aspects 
of the time structure of spike trains recorded in cortex of the 
behaving monkey on the basis of the power spectral density, an 
order-dependent measure, and the IS1 histogram, an order-in- 
dependent measure. Furthermore, we would like to assess 
whether knowing anything about the time course of the cell’s 
discharge can lead to more accurate predictions concerning the 
stimulus or the monkey’s response than simply counting spikes. 
In this investigation, we have confined our analysis to data from 
well-isolated single units. 

Random, nonbursting cells 
We found that about one-third (71) of our MT cells can be 
adequately described by a Poisson process of mean spiking rate 
X with a refractory period (modeled here by a Gaussian-distrib- 
uted refractory period), in the sense that the experimentally 
determined power spectra s’(j) and IS1 distributions match the 

analytically (and numerically) determined ones (Eq. 15, Fig. 11). 
In particular, the power spectra are flat, with a dip toward low 
temporal frequencies. Spikes from these cells do not occur in 
bursts; that is, they are almost always at least 4 msec (and usually 
much more) apart. We wish to point out that a Poisson process 
with refractory period is almost the simplest statistical descrip- 
tion possible, with only two degrees of freedom, yet it appears 
to describe the measured discharge patterns relatively well. To 
our knowledge this is the first time that such a process is iden- 
tified by its characteristic power spectrum. 

In a related study (Softky and Koch, 1992, 1993) we com- 
puted the coefficient of variation C, associated with the spike 
trains from the same data set of nonbursting MT cells (nor- 
malized for their nonstationary firing rates) as well as from Vl 
cells in the behaving monkey responding to bars and other tex- 
tured stimuli (Knierim and Van Essen, 1992) and found values 
OfC, = 1, consistent with a Poisson process. We also analyzed 
the number of spikes occurring in different trials in response to 
the same stimulus and found that the variance in the number 
of spikes scales approximately as the average number of spikes 
to the 5/4 power (Softky and Koch, 1993). In a pure Poisson 
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Figure IS. Comparison of spike train 
statistics for burst cell jOOl to those from 
a simple numerical model. The statis- 
tics for the neuron (left column) were 
computed by averaging over 15 trials 
at c = 0.256. The spikes (top trace) are 
more clustered than random, as dem- 
onstrated by the excess (62%, truncated 
on plot) of-intervals in the 1, 2, and 3 
msec bins of the ISI. The PSTH is nar- 
titularly noisy because spikes occur in 
bursts. The corresponding numerical 
model (right column) is an extension of 
that used for nonburst cells (see Fig. 11) 
in which each spike generated from an 
underlying Poisson process with refrac- 
tory period is now replaced by a burst 
of spikes where the burst length and the 
temporal structure of spikes within the 
burst are chosen to match the data (see 
Results). Similar to the nonburst mod- 
el, this is not intended to be a best fit 
to the data, but a demonstration that a 
process tiring bursts randomly with a 
burst-related refractory period can ac- 
count qualitatively for the location, size, 
and shape of the peak near 33 Hz and 
the dips near the origin and at higher 
frequencies. The solid curve superim- 
posed on the neuron’s spectrum (bot- 
tom left) corresponds to the analytical 
power spectrum given by Equation 17 
with X = 20.4 events/set, v  = 12.5 msec, 
A = 550 spikes/set, and L = 2.55 msec. 
This cell is one of the 10% of cells whose 
peak in the 40 Hz range is twice as tall 
as the dip at higher frequencies. 
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process, the variance should be equal to the mean, while for a 
fractal point process the variance can be larger than the mean 
(Teich, 1992; Usher et al., 1994). A number of studies have 
used this measure as indicative that the firing of cortical cells 
in striate and extrastriate monkey cortex are consistent with a 
description of spiking as a Poisson process (Tolhurst et al., 1983; 
Parker and Hawken, 1985; Vogels et al., 1989; Zohaxy et al., 
1990; Snowden et al., 1992). Thus, at least for long spike trains 
in the trained monkey, the associated IS1 and the power spec- 
trum are compatible with the notion that the underlying point 
process can be described by an almost memoryless Poisson 
process with refractory period. 

Bursting cells 
More complex temporal dynamics are shown by the large frac- 
tion of cells (13 1 of 2 12) that frequently discharge in bursts, that 
is, two to four spikes within 2-8 msec or less (see the raster plots 
in the top row of Fig. 2). The fraction of the total number of 
spikes in a train that are less than 3.5 msec apart (our measure 
of “burstiness,” B) ranges from an extreme value above 60% to 
0. Unfortunately, we were not able to separate our 2 12 cells into 
two clearly segregated subpopulations using this or a related 
measure, since the distribution of cells varies continuously from 
strongly bursting to nonbursting (Fig. 3). Thus, any grouping of 
cells into “bursting” and “nonbursting” will be arbitrary to some 
extent. However, the amount of burstiness associated with in- 

dividual cells remains relatively constant for all visual stimuli 
tested and, in particular, is independent of motion coherence 
(Figs. 5, 6, and our definition of P in Data analysis in Methods). 
Furthermore, we found no systematic relationship between bur- 
stiness and the onset or the duration of the experiment for the 
majority of cells. Finally, it should be remembered that due to 
the perceptually demanding nature of the experiment, the mon- 
key had to be highly alert throughout each trial. These obser- 
vations argue against the possibility that the bursting is related 
to the onset of drowsiness or sleep. 

Intracellular current injection into cells in rodent slices of 
sensory-motor cortex has revealed three distinct types of neu- 
rons (McCormick et al., 1985; Connors and Gutnick, 1990; 
Agmon and Connors, 1992). The majority of these in vitro cells 
respond to the sustained current by a train of action potentials, 
which adapt within 50-100 msec to a more moderate discharge 
rate (“regular-spiking” cells). A second class of neurons, only 
infrequently recorded from, is capable of high discharge rates 
with little or no adaptation (“fast-spiking” cells). A third set of 
neurons respond to the depolarization by generating a short 
burst of two to four spikes, followed by a long hyperpolarization. 
This cycle of burst and hyperpolarization persists for as long as 
the current stimulus persists (“intrinsically bursting”). In slice 
tissue, the regular-spiking cells correspond to pyramidal neu- 
rons, fast-spiking cells to GABAergic nonspiny stellate cells, and 
the intrinsically bursting cells to layer V pyramidal cells (Agmon 
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Figure 16. A comparison of power 
spectra, S’(j) (data points), for five 
strongly bursting MT cells and their 
corresponding analytical curves, S,.,(f) 
(solid lines), based on the expression for 
a shot-noise process with randomly 
(Poisson) distributed bursts (modeled 
as boxcar functions) with a burst-relat- 
ed refractory period (Eq. 17). The pa- 
rameters of the fits are shown in the 
table: h is the mean rate of the shot- 
noise, q is the refractory period param- 
eter, A is the height of the boxcar func- 
tion (i.e., the spike rate within bursts), 
and L is the half-width of the boxcar 
function (i.e., the half-width of the 

01 , , , , , , , , , I ’ I r I burst). The analytical curves do not fol- 
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and Connors, 1992). Because only little is known about the 
distribution of these cell types in the monkey, we can at present 
only speculate to what extent our “bursting” cells in MT cor- 
respond to these layer V intrinsically bursting cells characterized 
in slice preparations. However, the evidence presented above 
certainly suggests that the propensity of our MT cells to respond 
with bursts is not dependent on the nature of the visual stimulus, 
but rather appears to be an intrinsic property of certain cells. 

What is the statistical distribution of bursts? We converted 
spike trains of some bursting neurons into “bursting trains” by 
the simple rule that a burst was defined as the longest subtrain 
with no IS1 greater than 8 msec (using values as low as 3 msec 
here made only very little difference in the result). The resulting 
IBI distributions (see Fig. 14 for average) are not readily com- 
patible with a neuronal process that generates bursts at any fixed 
temporal interval. In most cases, the IBI distributions can be 
fitted assuming a Poisson distribution of bursts combined with 
a Gaussian-distributed burst refractory period (e.g., cell jOO1; 
see Figs. 14, 15). In some cases, the IBI has a long tail, arguing 
against a simple exponential decay. We suspect that occasional 
excesses of long IBIS is partly the reason that the Poisson IBI 
model (thick curves, Fig. 14) somewhat overestimates the frac- 
tion of IBIS in the range of 40-160 msec. The relatively short 
duration of the trials considered here does not allow a conclusive 
study of intervals that fall beyond the 160 msec (normalized) 
value in Figure 14. We never observed narrowly peaked IBIS, 

actions potentials (see Results). 

suggesting that individual MT cells are not acting as pacemakers. 
This is partly, however, a question oflinguistic convention, since 
any cell having an IBI distribution with a single peak (such as 
that shown in Fig. 14) might in principle be considered to “os- 
cillate” at the inverse of this peak. We do not, however, find 
this to be a very helpful definition. 

Cells with a peaked spectrum 

About two-thirds of all our MT cells (13 1 of 2 12) have a single 
peak in their power spectra in the 40 Hz range (mean, 41 Hz; 
SD, 9 Hz; Figs. 2, top row; 15). Such a peak in the power 
spectrum is not, however, associated with ringing or oscillatory 
behavior in the Fourier transform of S’(f), that is, the auto- 
correlation function R’(t). Only in a single cell (jOO1) during 
very high levels of motion coherence did we ever observe an 
oscillatory response in R’(t). This appears to be quite different 
from the study of Kreiter and Singer (1992), who report that a 
large fraction of MT cells in the awake monkey show oscilla- 
tions. 

What simple statistical model of neuronal firing can give rise 
to a peak in the power spectrum? We show that the power 
spectrum of a Poisson process with a Gaussian-distributed re- 
fractory period is monotonic increasing, leveling off toward a 
constant value at higher frequencies (Eq. 15). The spectrum 
associated with a boxcar-like burst is [sin(f)/fl’, a monotonic 
decreasing function around the origin. The power spectrum of 
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Figure 17. A demonstration that a 
peak in the power spectrum may be due 
to the presence of bursts, rather than 
regularity in their temporal alignment. 
When bursts from a neuron (upper im- 
pulse plot) are replaced by single spikes 
(lower impulse plot), the peak in the 
original power spectrum (upper spec- 
trum) disappears,(lower spectrum). A 
burst is defined as the longest subtrain 
ofconsecutive action potentials with no 
IS1 greater than 8 msec (using 3 msec 
gives a very similar result). Each burst 
is considered to be an event at the mean 
occurrence time of all action potentials 
within that burst. This SUDDO~~S our no- 
tion that the bursts them&Ives are ran- 
domly placed (with a burst-related re- 
fractory period) and are not locked to 
a regular oscillatory pattern. 

I I II ! I I ,I1 I I ,I I, I I,lIlI,lII, 

I I 

Time (msec) 

8 

P 66 

g 

0 

a process that randomly fires bursts followed by a refractory 
period is then given by the product of these two equations (Eq. 
17). Given that one function is increasing with f and the second 
one decreasing, the product of the two will have a local maxi- 
mum. In our case, if bursts are treated as boxcar functions that 
are about 4 msec wide, occur at a frequency of between 10 and 
20 Hz, and are followed by a refractory period of between 10 
and 25 msec (see table, Fig. 16), the peak in S’(f) lies in the 
20-50 Hz range (Fig. 15). These values were obtained from the 
distribution of the bursts themselves and can also be justified 
on biophysical grounds (Connors and Gutnick, 1990). We find 
it surprising to what extent simple analytical models can account 
for the observed IS1 distributions and power spectra of bursting 
cells at frequencies less than 100 Hz. Our computer simulation 
of such a firing process, which differs from the analytical model 
by resolving the boxcar bursts into individual impulses and the 
renewal density into a stochastic refractory period, gives a better 
match of S’(f) at higher frequencies. 

If the occurrence of every burst in a spike train is replaced 
by a single action potential throughout the entire spike train 
(and isolated action potentials remain single spikes), the power 
spectrum s’(fl totally changes its character (Fig. 17), from a 
spectrum with a peak to a flat spectrum with a dip at low fre- 
quencies, compatible with our notion that bursts themselves are 
distributed according to a Poisson distribution with a burst- 
related refractory period. If, for instance, the peak in the spec- 

Frequency (Hz) 

trum is due to periodically occurring bursts, our procedure should 
have revealed a spectrum with a clear peak, rather than the flat 
spectrum with a dip. We believe that our method of replacing 
bursts with “events” is a useful diagnostic tool for removing 
the confounding influence of bursts on the power spectrum, 
revealing the underlying dynamics. 

Another way in which a neuronal “oscillator” model differs 
from our “random burst” model is in the distribution of IBIS; 
the former gives rise to an IBI distribution tightly clustered 
around the inverse of the oscillation period, while the latter 
model is associated with a decaying exponential IBI modified 
by a refractory period. 

As discussed in the previous section (Bursting cells), our data 
are consistent with the random burst model (Fig. 14); however, 
the two models are difficult to distinguish when the oscillator 
model becomes less regular. We can show using computer-gen- 
erated data what is expected in the case of the oscillator model. 
Figure 18 demonstrates the appearance of the IS1 and spectrum 
S’(f) in the case of a neuron which fires isolated spikes (top) or 
bursts (bottom) with an approximately Gaussian IS1 or IBI. In 
the case of isolated spikes, the power spectrum remains flat with 
a dip related to the apparent refractory period induced by the 
Gaussian IS1 for distributions with a broad range of SDS (g z 
12 msec). Once the SD becomes smaller (Fig. 18, top; g = 7 
msec), a prominent peak arises in the spectrum (see Fig. 18, 
upper right arrow) related to the inverse of the mean of the 
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shows a similar 
result, except that the isolated spikes are replaced by bursts (see 
the bimodal ISI distributions) and the peak due to small values 
of 0 is superimposed on the peak due to bursts, explained in 
Poisson-distributed bursts in Results. The narrow, that is, more 
localized, peak should be associated with oscillations since it 
arises due to the regularity of the IS1 and not due to the inter- 
action of bursting with the refractory period. Localized peaks 
in the power spectrum, although not observed in our data, are 
associated with ringing in the cross-correlogram that has been 
reported in data from other laboratories. 

Treating bursts as signaling events 

Because of the possible special relevance of bursts to signaling 
in the brain (e.g., Koch and Crick, 1994) we evaluated to what 
extent bursts convey a different message from that conveyed by 
a collection of individual spikes. Following Cattaneo et al. 
(198 la,b) and Bonds (1992), we plotted the tuning curve as a 
function of motion coherence for three different measures of 
cell response (Fig. 8a): spikes/second, events/second-where an 
event is either a burst of spikes or an isolated spike-and spikes/ 
event. Different from Bonds (1992) the average spikes/event 
(which includes individual spikes) does not vary with motion 
coherence c. Furthermore, if the event/second response is scaled 
up by the mean number of spikes per event, it closely follows 

Figure 18. The difference between 
peaks in the power spectrum due to reg- 
ular oscillation and peaks due to bursts. 
The top six plots show computer-gen- 
erated data for the Gaussian IS1 model 
with a mean of 25 msec. The left col- 
umn shows a series of ISI histograms 
in which the SD, 6, of the Gaussian 
distribution is varied. For c > 12 msec, 
there is no observable peak in the power 
spectra (right column), only a dip due 
to the apparent refractory effect im- 
posed by the Gaussian. At 0 = 12 msec, 
a peak is just beginning to form at 40 
Hz (the inverse of the mean of the ISI), 
and as 0 decreases further, the peak 
(shown by arrow for g = 7 msec) rapidly 
increases in size. A similar progression 
occurs for the Gaussian IBI model (bot- 
tom set of six plots) in which spikes from 
the Gaussian IS1 model are replaced by 
bursts. However, in the Gaussian IBI 
model, the spectrum has a broad bulge 
that sweeps up to a peak near 40 Hz 
due to the structure of the bursts (see 
Fig. 17), and this peak is present for all 
values of 6. A narrower peak appears 
above the broad peak due to bursts only 
when the variance of the Gaussian IBI 
becomes small. We therefore make a 
distinction between a peak in the power 
spectrum that is due to the local tem- 
poral structure of bursts and a peak that 
is due to a very narrow ISI or IBI dis- 
tribution, which is a sign of regularity, 
that is, oscillation, in the timing ofspikes 
or bursts. It is common to see sharp 
peaks of the type pointed to by the ar- 
rows when neurons respond to artifacts 
in a stimulus, such as the 60 Hz refresh 
rate of a cathode-ray tube. 

the spike rate tuning curve (Fig. 8b). Thus, events or bursts per 
se have the same overall dependency on c as does the spike rate. 
However, due to elimination of the variability in the number 
of spikes per event when using event count, the variance of the 
scaled-up curve, pM(c), is less than the variance associated with 
the mean spike rate, am, in particular around low values of 
motion coherence. 

Because of the reduced variability of this measure, we expect 
it to be a more reliable indicator of the direction of motion of 
the stimulus. This intuition is confirmed by our analysis. We 
repeated the original ROC analysis (based on signal detection 
theory) of Newsome et al. (1989a) but allowed more flexibility 
in defining the signal on which the ideal observer would operate. 
They assumed that an ideal observer (referred to as the “Stan- 
ford” observer) counts each action potential in the 2-set-long 
spike train from an MT cell and uses this number as the basis 
for his analysis. We added a twist to this by weighting bursts 
differently from single spikes. While each isolated action po- 
tential contributed 1 toward the final sum, all spikes in a burst 
make a total contribution of cy. Setting (Y = 1 implies that the 
entire burst only contributes as much as a single, isolated action 
potential toward the final decision. 

The result, as shown in Figure 9, is unambiguous. Setting (Y 
= 1, corresponding to using the event rate as the neuronal signal, 
improves the neuronal threshold for most of the 4 1 strong burst 
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cells we analyzed here. The mean improvement was 7.5%, and 
in three cells the thresholds dropped by roughly a factor of 2. 
In other words, the “Caltech” ideal observer who distinguishes 
spikes from bursts can-for these cells-determine the correct 
direction of motion (using a statistical criterion) at a lower level 
of coherence c than the “Stanford” observer. (Y = 0.5 and 2 gave 
smaller improvements (as did LY = 0.75 and 1.5; not shown). 
As a is made larger (a + co), bursts are more and more em- 
phasized at the expense of single isolated spikes and the thresh- 
olds increase by 53%. The threshold also increases when bursts 
are weighted by the square of the number of spikes in each burst 
(p = 2). Weighting events by the square root of the number of 
spikes per event (p = 0.5), on the other hand, decreases thresh- 
olds (Fig. 9) since it decreases the variability contributed to the 
final signal. 

From the point of view of our fictitious pair of ideal observers, 
the Caltech observer does better than his Stanford counterpart 
by replacing each occurrence of a burst of spikes by a single 
spike. In this sense it can be said that a crude measure of the 
temporal organization of spike trains does better in terms of 
signal detection theory than a simple spike count. This is not 
to say, however, that more sophisticated measures of temporal 
organization, possibly taking account of the simultaneous ac- 
tivity of many neurons, cannot do better yet (e.g., Aertsen et 
al., 1989; Richmond and Optican, 1992; Singer, 1994). 

We do not know at this point the code that neurons postsyn- 
aptic to MT cells use to decide whether the stimuli move in one 
or the other direction. The fact that the neuronal threshold of 
many cells is frequently lower than the psychophysical threshold 
of the entire animal (Newsome et al., 1989a) requires an expla- 
nation as to why the animal does not do better than it does 
(invoking correlated activity among cells and population coding; 
Britten et al., 1992). Our results point to an additional expla- 
nation: if bursts are substantially more efficient in elevating 
postsynaptic firing rate than isolated spikes, corresponding to CY 
> 1, thresholds would increase and averaging over many cells 
would be required in order to mimic the psychophysical thresh- 
olds. It is important at some point that this question be resolved 
experimentally, possibly using a combination of in vivo slice 
techniques with behavioral studies, 

Functional considerations 

What is the function of bursts? Why should cortex have two 
types of long-range projection cells, one signaling isolated spikes 
and the other responding frequently with bursts of spikes? It 
has been argued (Koch and Crick, 1994) that bursting neurons 
are much more efficient at accumulating calcium in their axonal 
terminals than cells that fire isolated spikes (i.e., four spikes 
within a 10 msec interval cause a much larger increase in in- 
tracellular calcium at the end of the last spike than four spikes 
within a 40 msec interval). Because intracellular calcium ac- 
cumulation in the presynaptic terminal is thought to be mainly 
responsible for various forms of short-term potentiation (in par- 
ticular, facilitation and augmentation; Magleby, 1987) it may 
well be that the primary function of bursting neurons is to induce 
this non-Hebbian (i.e., nonassociative) type of synaptic plastic- 
ity at its postsynaptic targets outside of the cortical system. In 
essence, the burst of spikes could turn on short-term memory, 
which would then decay over several seconds (see also Crick, 
1984). One might then expect there to be a relationship between 
bursting and short-term learning. 

It is important to know whether our “bursting” cells corre- 

spond to the “intrinsically bursting” cells identified by intra- 
cellular current injection. The latter cells appear to be confined 
(at least in rat and guinea pig slice) to layer V (Agmon and 
Connors, 1992). In rat area 17, these cells have been shown to 
project outside cortex, in this case to the ipsilateral superior 
colliculus, while the remaining pyramidal cells in layer V project 
to the contralateral striate cortex (Kasper et al., 1991). Recent 
in vivo recordings in awake cat motor cortex have revealed that 
cells at or below a depth of 800 pm (corresponding to layer 5) 
show strong bursting activity (Baranyi et al., 1993). It is not 
known to what extent such cells exist or are localized to partic- 
ular layers in primate cortex. 

Correlation to behavior 
Finally, we return to a question that provided primary moti- 
vation for this study. Is the animal’s perception of the stimulus, 
as evidenced by performance, influenced by temporal structure 
in the spike trains, particularly with respect to the peak in the 
power spectrum near 40 Hz? We correlated the presence and 
strength of the peak in the spectrum to both the stimulus and 
the behavior of the monkey. As seen in Figures 5 and 6, we 
found no significant correlation between the fraction of dots 
moving in one or the other direction and P, the measure of the 
peak in the power spectrum, for most cells. We repeated this 
measurement using the integral of power in the 40 Hz band of 
S’(f) with similar results. Furthermore, if the monkey is not 
forced to respond to the stimulus or even in the absence of the 
motion stimulus, the basic propensity of a cell to show this peak 
remains. This is related, of course, to our earlier result that 
bursting in these cells does not depend on stimulus conditions. 

We find a similar lack ofcorrelation between Pand the various 
measures of behavior used in a previous comparison of neuronal 
responses and psychophysical performance (Newsome et al., 
1989a; B&ten et al., 1992). For instance, we tested for significant 
changes in the distribution of P when the monkey made correct 
versus incorrect decisions at near-threshold coherence levels and 
when the monkey made preferred versus null guesses for zero 
coherence motion, but we found no significant (paired t test, p 
> 0.05) correlations. 

Figure 7 shows another attempt at studying the relationship 
between the peak in the spectrum and the behavior of the mon- 
key. As is evident, no correlation exists between P and the level 
ofthe neuronal threshold, c,,,,, that is, the fraction ofdots moving 
in the cells preferred direction at which the cell can “decide” 
the correct direction of motion (using an ROC criterion; New- 
some et al., 1989a; Britten et al., 1992). A similar lack of cor- 
relation exists between P and the ratio of single-cell thresholds 
to the threshold of the animal (c,,,,lc,,,,,,) and between P and 
the decision related probability of each neuron (not shown). 
Thus, for our stimulus conditions, the presence or strength of 
a peak in the power spectrum of well-isolated units does not 
tell us anything about the behavior of these animals. 

When analyzing our data set, it should be kept in mind that 
the three monkeys from which the MT cells were recorded were 
extensively trained using operant conditioning techniques. In 
order to perform correctly the motion discrimination task at 
threshold levels, up to 6 months oftraining was required (B&ten 
et al., 1992). We analyzed in a preliminary manner data from 
MT cells from one naive monkey who was only trained to fixate 
(E. Zohary and W. Bair, personal communication), and we found 
no significant difference in the distribution of burst and nonburst 
cells or in the shape of the associated power spectra. However, 
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it is possible that more subtle differences in the temporal fine- 
structure exists between cells in the naive and in the trained 
animal. 

Although we cannot say how well our results will generalize 
to other cortical areas or other behavioral tasks, we believe that 
the approach taken here-correlating temporal structure in spike 
trains to the simultaneous behavior of an awake animal-is a 
necessary step in establishing the role played by temporal firing 
patterns in the animal’s perception of visual stimulation. 

Appendix 
Here we assume that a cell fires N events during the course of 
a fixed duration stimulus and that the ith event is composed of 
X, spikes, where N and X, are independent random variables, 1 
< i < N. All of the X, are mutually independent and drawn 
from a common distribution, and we use X to refer to a variable 
drawn from this distribution with no reference to a particular 
event. The total number of spikes fired during the trial is 

s, = x, + x2 + . . . + x,, (18) 

and we will prove for the random variable S, that 

Wd = W9E(X), (19) 

VAB(S,) = E(N)VAR(X) + VAR(N)E*(X). (20) 

We use E for expectation, VAR for variance, and P for prob- 
ability. 

The probability that k spikes are fired during a trial is 

P{S, = k} = z P{S, = k 1 N = n}P{N = n}. 
n=O 

Using this and the definition of expectation, 

E(S,) = 5 kP{S, = k} 
k-O 

= z k 5 P{S, = k 1 N = n}P{N = n} 
k=O n=O 

=gP{N=n) $kPIS,=kIN=n) 
k=O 

= 2 P{N = n}E(S, 1 N = n). 
n=o 

(21) 

(22) 

(23) 

(24) 

(25) 

Evaluating the conditional expectation in the previous line, we 
get 

E(S, 1 N = n) = E 

which, when substituted into Equation 25, completes the proof 
of Equation 19: 

E(S,) = E(X) 5 nP{N = n} = E(X)E(Y). 
“=O 

(27) 

To compute the variance of the number of spikes, we first 
compute E(SL). Reasoning as in Equations 22-25, but now for 
Sjj rather than S,, we get 

E(S,$) = 2 P{N = n}E(S,: 1 N = n). 
n=o 

(28) 

Evaluating the conditional expectation from the previous line, 
we get 

’ E(S,: 1 N = n) = E 

= E 2 X; + i; z X,X, 
( ,=I ,=I ,+i 

= nE(X2) + (n2 - n)E*(X), 

which on substitution into eq. 28 yields 

E(S;) = E(F) 5 nP{N = n} + E2(X) 5 n2P{N = n} 
“=O n=O 

- E2(X) 2 nP{N = n} 
n=O 

= E(X2)E(N) + E2(X)E(N*) - E2(X)E(N) 

= E(N)VAR(X) + E*(X)E(N2). 

Using the expressions for E(S,) and E(S:), the variance of the 
number of spikes is 

VAR(S,) = E(S;) - E2(S,) 

= E(N)VAR(X) + E*(X)E(N*) - E2(X)E2(N) 

= E(N)VAR(X) + E*(X)VAR(N), 

which completes the verification of Equation 20. 
In Equation 6, E(N) and VAR(N) are replaced by the mean 

(which is equal to the variance for a Poisson distribution) num- 
ber of events, p,,,(c), and the mean and variance of the number 
of spikes per event are II, and u’(X). 
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