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Tight-seal whole-cell recordings were made from cleaned 
somata of CA3 pyramidal cells deep in hippocampal slices 
from 19-21-d-old rats. The cells were filled with biocytin, 
and their voltage responses to short current pulses were 
recorded. After washout of initial sag, responses scaled lin- 
early with injected current and were stable over time. The 
dendritic and axonal arbors of four cells were reconstructed 
and measured using light microscopy. Dendritic spines and 
axonal boutons were counted and the additional membrane 
area was incorporated into the relevant segments. The mor- 
phology of each neuron was converted into a detailed 
branching cable model by assuming values for specific 
membrane capacitance C,,, and resistance R,,,, and cyto- 
plasmic resistivity R,. These parameters were optimized for 
each cell by directly matching the model’s response to that 
of the real cell by means of a modified weighted least-squares 
fitting procedure. By comparing the deviations between model 
and experimental responses to control noise recordings, ap- 
proximate 95% confidence intervals were established for 
each parameter. I f  a somatic shunt was allowed, a wide 
range of possible R,,, values produced acceptable fits. With 
zero shunt, C,,, was 0.7-0.8 PFcm-*, R, was 170-340 gem, 
and R, ranged between 120 and 200 kQcm2. The electrotonic 
lengths of the basal and oblique dendrites were 0.2-0.3 space 
constants, and those of the apical tufts were 0.4-0.7 space 
constants. The steady-state electrical geometry of these cells 
was therefore compact; average dendritic tip/soma relative 
synaptic efficacies were >93% for the basal and oblique 
dendrites, and >81% for the tufts. With fast transient syn- 
aptic inputs, however, the models produced a wide range of 
postsynaptic potential shapes and marked filtering of volt- 
age-clamp currents. 
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Many dendrites are thought to possess a variety of active mem- 
brane conductances (e.g., Hounsgaard and Midtgaard, 1989). 
Under certain conditions, however, they may still behave, or 
can be made to behave, in a predominantly passive manner, for 
example, close to resting membrane potential in in vitro slices, 
or after “washout” of conductances or after application of chan- 
nel blockers. Even when models incorporate active conduc- 
tances, reasonably accurate estimates of the underlying passive 
“electrical skeleton” are necessary. For example, isopotential 
spheres can behave very differently from distributed branching 
cables with the same density of active conductances. Passive 
cable models can also be used as a reference against which to 
assess the effects of active conductances. 

Cable properties have relevance for neural network models: 
most ofthese use “point” units with one electrical compartment 
(e.g., Rumelhart and McClelland, 1986). Studies in a variety of 
neurons suggest, however, that most are distributed cables and 
are capable of generating postsynaptic potentials (PSPs) of very 
different shapes (e.g., Rall, 1964, 1967; Rall et al., 1967; Jack 
et al., 197 1; Turner, 1988; Stratford et al., 1989; Major, 1992; 
Nicoll et al., 1993). Units with such properties are particularly 
useful in networks learning temporal sequences (e.g., Tank and 
Hopfield, 1987; de Vries and Principe, 1992; Bressloff, 1993). 

In this article we present a study ofthe passive cable properties 
of CA3 pyramidal neurons, including a detailed description of 
the modeling methods (also see Major, 1992). We pay particular 
attention to the effects of noise and pipette artifacts. Our ob- 
jectives are (1) to describe a general method for establishing 
likely parameter ranges for passive cable models of neurons, 
using direct fitting of model to experimental responses and com- 
parison of fit residuals with equivalent noise controls; (2) to 
apply this to CA3 pyramidal cells in in vitro slices (following 
Brown et al., 198 1; Turner, 1984); and (3) to illustrate how these 
cells can generate differently shaped PSPs and postsynaptic cur- 
rents (PSCs) at the cell body (e.g., Johnston and Brown, 1983; 
Rall and Segev, 1985; Williams and Johnston, 1991; Jonas et 
al., 1993) in response to identical plausible synaptic currents at 
different dendritic locations. 

Many passive cable modeling studies to date have made use 
ofthe equivalent cylinder simplified representation (Rall, 1959). 
This may have been justifiable in the absence of good morpho- 
logical data contradicting its main assumptions. These include 
(1) that a cell’s dendrites should have equal electrotonic lengths, 
and (2) that its branching should obey the 312 rule for diameters. 
More recently it has been shown that many neurons possess 
dendrites with different relative electrotonic lengths, assuming 
uniform dendritic R,,, (specific membrane resistance) and R, 
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(cytoplasmic resistivity). Most pyramidal neurons, for example, 
have apical tuft dendrites that terminate, in electrotonic terms, 
farther from the soma than do the basal and apical oblique 
dendrites (e.g., Stratford et al., 1989; Larkman et al., 1992). 
Furthermore, at apical trunk branch points, the 3/2 rule is vi- 
olated (e.g., Hillman, 1979; Larkman et al., 1992). For these 
reasons it seems sensible to use models based on the best avail- 
able morphological data. Because of variability between cells, 
the approach adopted here and in a number of other studies has 
been to combine electrophysiological and morphological mea- 
sures from the same cell (e.g., Barrett and Grill, 1974; Durand 
et al., 1983; Fleshman et al., 1988; Clements and Redman, 1989; 
Stratford et al., 1989; Nitzan et al., 1990; Jonas et al., 1993; 
Rapp et al., 1993). Care is taken to include dendritic spines, 
which account for approximately half of a typical pyramidal 
cell’s surface area (e.g., Larkman, 199 I), and also the local axon 
arbors, because in CA3 pyramidal cells they are so extensive 
(see below). 

Transient responses can yield more information about elec- 
trotonic architecture than do steady-state responses, because of 
charge redistribution (e.g., Rail, 1969a). Furthermore, in non- 
isopotential cells, steady-state input resistance may be an un- 
reliable measure because it is hard to determine how much of 
it is due to the recording electrode (Park et al., 1983; Wilson 
and Park, 1989), and in any case it is relatively insensitive to 
the value of R, (e.g., Nitzan et al., 1990). The test input used 
here is the short current pulse (Iansek and Redman, 1973). The 
early (charge redistribution) components of a short pulse re- 
sponse are relatively more prominent than those of its (ap- 
proximate) time integral, the current step. Another advantage 
is that, for a given signal-to-noise ratio, short pulse responses 
tend to display better linear scaling with the magnitude and 
polarity of the injected current than do step or long pulse re- 
sponses (e.g., Durand et al., 1983) because the membrane po- 
tential deviates markedly from its resting level for less time, 
and so has less chance to change slow voltage-dependent con- 
ductances. 

It is not clear whether voltage clamp or voltage recording is 
the preferable mode for measuring cells’ responses. Final time 
constants are faster under voltage clamp than under voltage 
recording with the same electrode, so it should be possible to 
average more responses over a given time. Noise due to spon- 
taneous synaptic inputs may be reduced under voltage-clamp 
conditions, partly because of greater cable attenuation, and also 
because partial voltage control down the dendrites may reduce 
the boosting effects of some dendritic active conductances. 
Against these advantages is the additional noise introduced by 
the voltage-clamp amplifier itself, and the fact that it is possible 
to block active conductances and spontaneous synaptic events 
pharmacologically. Voltage clamp also introduces an extra mod- 
el parameter (series resistance) that can never entirely be com- 
pensated for or avoided electronically. With tight-seal whole- 
cell pipettes, voltage recording has an additional important ad- 
vantage: the final time constant of a passive response should be 
the same as the membrane time constant, ifthe latter is uniform. 
We have therefore chosen the voltage-recording mode for this 
study, as being simpler and more direct than voltage clamp. 

A number of techniques are available for simulating transient 
responses from arbitrarily branching cables: compartmental 
models (e.g., Rail, 1964; Hines, 1984, 1989; Segev et al., 1985; 
Clements, 1986; Holmes et al., 1992), segmental cable methods 
(e.g., Butz and Cowan, 1974; Turner, 1984; Holmes, 1986b), 

and the separation of variables analytical solutions (Major et 
al., 1993a,b; Major and Evans, 1994) used in this study. 

Because the fitting of exponentials is inherently sensitive to 
even small amounts of noise in the data (e.g., Lanczos, 1957; 
Holmes et al., 1992) we follow Clements and Redman (1989) 
and use direct fitting of model responses to their experimental 
counterparts. 

Another problem that has not been addressed adequately in 
previous studies is how to establish likely confidence intervals 
for model parameters. A large part of our article is concerned 
with this issue. An optimal fit model may be substantially dif- 
ferent from the correct model, for a variety of reasons, for ex- 
ample, (1) incorrect assumptions, (2) systematic errors, (3) ran- 
dom errors, and (4) nonuniqueness. 

(I) Assumptions (for review, see Rail, 1977). The main ones 
made here are that the membrane is passive (with resistance 
and capacitance only); the cytoplasm is purely resistive (no re- 
actance); the specific electrical parameters C,,, (specific mem- 
brane capacitance), R,, and axodendritic R,, are uniform 
throughout the cell; radial charge flow is negligible (Rail, 1969b); 
the extracellular medium is effectively isopotential; the currents 
flowing are too small to cause ionic depletion or accumulation 
(cf. Qian and Sejnowski, 1989); the recording is stable (i.e., no 
progressive washout of conductances or change in leak around 
the electrode occurs). We explicitly check for linearity and sta- 
bility by superimposing scaled responses to different currents 
(see below); an objective test for this precaution is also devel- 
oped (see Modeling methods). A subtle danger is that some 
active conductances, for example, those underlying sag, can re- 
sult in apparently linear scaling; one countermeasure is to in- 
spect semilog plots of responses for sag (e.g., Fleshman et al., 
1988; see below). 

(2) Systematic errors. We exclude calibration errors by using 
artificial neurons, and we record and simulate pipette artifacts 
(see below). In some cases, simulated pipettes are included in 
the models, because of nonsumming interactions between cells 
and pipettes. Morphological errors are considered in the Dis- 
cussion. 

(3) Random errors. The high-frequency component of re- 
cording noise is largely random and uncorrelated over time, and 
can be removed by filtering. In this study we filter the later, 
slower parts of responses more strongly than the earlier faster 
components (see below). Unfortunately, the lower-frequency 
component of the noise is due to recording instabilities and 
spontaneous synaptic inputs (the latter we minimize pharma- 
cologically), and thus is highly correlated over time. In single 
sweeps, the correlation coefficient of noise at time t to noise at 
time t’ decays with time lag t’ - t in a roughly exponential 
manner, with a time constant approximately equal to the slowest 
time constant 70 of the cell or model (not shown). Its value at 
zero lag is typically around 0.6 for the cells in this study, after 
5 kHz filtering. Most conventional statistical methods assume 
random Gaussian noise that is independent at different time 
points (e.g., Landaw and DiStefano, 1984, p R668; Press et al., 
1988, p 5 19), and so they cannot be applied here. When noise 
is correlated over time, it is still possible to reject fits and obtain 
parameter confidence intervals using x2 statistics based on the 
multivariate normal distribution, providing the noise is ap- 
proximately Gaussian (e.g., Diggle, 1990, Appendix B). These 
techniques, however, are complex (see Discussion). Because of 
remaining doubts about the validity of all the model assump- 
tions, and because of the possibility of undetected systematic 
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errors, we adopt a simpler and cruder (but possibly less sensitive) 
technique for fit rejection. A band is placed around the target 
data, within which the true noise-free response would fall about 
95% of the time, and fits that escape from this band are rejected 
(see Modeling methods). The confidence level of the test is val- 
idated using both experimental and simulated noise. 

(4) Nonuniqueness. There are (at least) two kinds of non- 
uniqueness: (a) models that yield the same predictions but have 
different parameters-“raw” electromorphological parameter 
trade-offs (e.g., Holmes and Rall, 1992) resulting in the same 
underlying “core” electrotonic representation of the model (Ma- 
jor et al., 1993a; Major and Evans, 1994); into this category fall 
certain kinds of morphological measurement error that we at- 
tempt to assess below; and (b) models that yield different pre- 
dictions (core electrotonic model nonuniqueness)-into this cat- 
egory would fall models whose fits to the target data are 
indistinguishable by any objective criterion (e.g., Stratford et 
al., 1989; White et al., 1992) but that can result in very different 
predicted PSP shapes and amplitudes for given input locations. 
The most troublesome cause of this kind of nonuniqueness is 
the possible presence of a somatic shunt conductance grhun, of 
unknown magnitude, probably in part impalement-induced (e.g., 
Iansek and Redman, 1973; Pongracz et al., 1991; Rall et al., 
1992; Staley et al., 1992). In this study, we minimize the possible 
shunt by using whole-cell recording with seal resistances above 
5 GQ. In addition, we attempt to estimate the seal resistance at 
the end of the recording by withdrawing the pipette slowly until 
an outside-out patch is formed. Because this does not fully elim- 
inate the possibility of a somatic shunt (perhaps because of 
membrane dimpling or natural causes such as locally high con- 
ductance densities at the soma), we also explore the effects of 
nonzero shunts explicitly. Fortunately, the possible range of 
shunts is severely constrained by the high input resistances of 
the cells with whole-cell recording (see Results). 

The majority of passive modeling studies make the assump- 
tion that C,,, = 1 FFcrnm’. Partly because of the possibility of 
morphological errors that can trade off with C,,, (e.g., Stratford 
et al., 1989; Holmes and Rall, 1992; Major et al., 1993a; Major 
and Evans, 1994), and partly because of direct evidence that 
the true value of C,,, is closer to 0.7 FFcrnm (e.g., Fricke, 193 1; 
Schwan and Carstensen, 1957; Fettiplace et al., 1971; Takashi- 
ma and Schwan, 1974; Benz et al., 1975; Takashima, 1976; 
Haydon et al., 1980), we explore a range of C,, values. 

The traditional R, value for motoneurons of around 70 Ocm 
(Barrett and Crill, 1974; Clements and Redman, 1989) is also 
abandoned here; much higher values of R, seem necessary for 
acceptable fits (e.g., Shelton, 1985; Stratford et al., 1989; Jonas 
et al., 1993; Rapp et al., 1993; Thurbon et al., 1994). Great care 
is taken here to eliminate the effects of pipette artifacts as a 
possible cause. 

Materials and Methods 
Experimental methods 
Experiments were carried out in Heidelberg, reconstruction and mod- 
eling in Oxford. Four cells (CA3-15, CA3-16, CA3-32, and CA3-33) 
are considered. 

Preparation and recording. For a detailed description of the method 
of slice preparation and whole-cell recording, see Hamill et al. (198 1), 
Edwards et al. (1989), and Jonas et al. (1993). In brief, 19-2 1 -d-old 
Wistar rats were decapitated, and the brains were removed rapidly and 
placed in ice-cold artificial cerebrospinal fluid (ACSF; see below). Trans- 
verse hippocampal slices 300 pm thick were cut, placed on a net sub- 

merged in ACSF in a holding chamber, allowed to recover for half an 
hour, and then kept at room temperature (20-24°C) for up to 5 hr. 

Single slices were transferred into the recording chamber at room 
temperature and were continuously superfused (= 2 ml/min) with ACSF. 
A platinum frame supporting parallel nylon threads was used to im- 
mobilize the slice (Edwards et al., 1989). One pair of threads was farther 
apart than the others; the grid was placed so that one of these pinned 
down the fornix, and the other ran from CA4 to CA 1, avoiding damage 
to CA3. 

Borosilicate patch pipettes (2 mm outer diameter) were fire-polished 
directly before use. Thick (0.5 mm) walled pipettes (resistances of 4-5 
MB) were used for the first two cells; thin (0.3 mm) walled pipettes 
(resistances of 3.5 MB) were used for the last two, coated with Sylgard 
184 (Dow Coming, Midland, MI), with fluid levels as low as possible 
both within and outside the pipette, to minimize transmural capaci- 
tance. 

The ACSF composition was (mM) NaCl, 125; NaHCO,, 25; KCl, 2.5; 
NaH,PO,. 1.25: elucose. 25: M&l,. 1: CaCl,. 2: bubbled with carbosen 
(95%-0,,“5% Co,), pH 7.2 at-room’ temperature. After a whole-cell 
recording was established, the following neurotransmitter blockers were 
added to the ACSF to block spontaneous synaptic potentials and to 
improve the signal-to-noise ratio (PM): 100 APV (D-2-amino-5-phos- 
phonopentanoic acid; Tocris Neuramin, Bristol, UK), 30 CNQX (6- 
cyano-7-nitroquinoxaline-2,3-dione; Tocris), and 10 bicuculline (first 
two cells); or 100 APV, 100 CNQX, 100 picrotoxin, 50 bicuculline, and 
100 2-hydroxy saclofen (To&s) (last two cells). The pipette solution 
contained (mM) K-gluconate, 120; biocytin, 13; KCl, 10; EGTA (ethyl- 
eneglycol-bisCC-aminoethylether)N,N,N:N’tic acid), 10; HEPES 
[N-(2-hydroxyethyl)piperazine-N’-(2-ethanesulfonic acid)], 10; MgCl,, 
2; CaCl,, 2; Na,ATP, 2; pH adjusted to 7.3 with KOH, total osmolarity 
of 290 mOsm, passed through a 0.2 Frn filter. All drugs and chemicals 
were obtained from Sigma (Deisenhofen, Germany), unless otherwise 
specified. 

An EPC-7 amplifier (List, Darmstadt, Germany) was used to record 
from the first two cells, and an Axoclamp-2A (Axon Instruments, Foster 
City, CA) for the last two. Unlike the EPC-7, the Axoclamp-2A allowed 
pipette capacitance neutralization and resistance compensation in volt- 
age recording mode, and could inject accurate square current pulses. 
Voltages were filtered at 5 kHz (-3 dB) and digitized at 10 kHz, and 
averages were stored to hard disk. Single sweeps from the last two cells 
were also recorded with an FM tape recorder. 

Slices were viewed using a 40 x , 2 mm working-distance water-im- 
mersion lens (Nikon, Tokyo, Japan) on an upright Zeiss (Augsburg, 
Germany) “standard 14” microscope with Nomarski optics. To obtain 
a cell with an intact dendritic tree, a soma was exposed at the bottom 
of a 100-l 50-pm-deep crater in the CA3 cell body layer, using a cleaning 
pipette. A patch pipette was lowered onto the soma with minimal pos- 
itive pressure, to reduce extracellular biocytin staining. After formation 
of a seal of over 5 GS2, whole-cell configuration was achieved using brief 
suction pulses. All cells had membrane potentials, without holding cur- 
rent, more negative than -65 mV (no tip potential correction). 

Series resistance R,,, increased with time; it was estimated in voltage- 
clamp mode from R,,, = V,l!,, where Z, was the unfiltered current tran- 
sient peak and V, was the size of the test pulse. In voltage-recording 
mode, with the EPC-7, R,, was also estimated from the height of the 
initial jump in voltage following a current step, and was below 15 MB 
at the end of the recording; the pipette capacitances were estimated to 
be 1 O-20 pF. With the Axoclamp-2A, capacitance and resistance com- 
pensation were performed and periodically adjusted in the standard 
way, monitoring the unfiltered voltage response to a step current onset 
at high time resolution (R,, ranges: 6-25 Ma for CA3-32, and 7-9 MR 
for CA3-33; pipette capacitances C,,,, about 2.5 pF). 

The thresholds of all four cells were more than 20 mV positive to 
rest, and the action potentials were typically 90-100 mV in amplitude 
with half-widths of less than 2 msec. All the cells could be made to fire 
repetitively, but none demonstrated burst firing in response to somatic 
current pulses. 

Each cell was held at about -70 mV (in all cases holding currents 
were less than -0.1 nA). Once every 1100 msec (first two cells) or 873.3 
msec (last two cells), short pulses of current of amplitude - 1 or +0.5 
nA were injected after a baseline period of 200 msec, and the voltage 
response was recorded. The time integrals of the EPC-7 current pulses 
were measured after digitization at more than 80 kHz; ringing had no 
effect over the fit intervals chosen (see below). 

Groups of 100 sweeps were averaged together on line, with selective 
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rejection of occasional sweeps contaminated by large spontaneous volt- 
age instabilities or unblocked synaptic events. After one to three con- 
secutive averages, the current was changed to its other value, to allow 
linear scaling checks (see below) to be performed over the entire duration 
of the recording. Each cell was recorded from for about 30 min, usually 
sufficient for 800-l 200 sweeps. (Further action potentials were recorded 
from the first two cells after the short pulse responses, and showed no 
discernible change in threshold or shape.) The amplifier was switched 
back to voltage-clamp mode and the pipette was withdrawn gradually 
until a S-10 GQ outside-out patch was formed, except in the case of 
cell CA3-16, whose patch broke down. [Of the four cells, CA3-16 
actually had the highest input resistance (see Results), so it is unlikely 
there was a substantial leak in this case.] 

In the case of the first two modeled cells’ pipettes, the patches were 
blown away and short pulse control responses were recorded in ACSF 
at approximately the original depths of the cells. From these responses, 
and from visual estimation of the submerged depth of pipette (about 2 
cm), the two pipette capacitances were estimated to be in the range of 
IO-20 pF, 20 pF giving the best agreement (with pipette simulations) 
to the controls, as well as being most consistent with the typical capac- 
itance of 1 pF/mm for this kind of pipette (Purves, 198 1, p 32). A 
number of additional pipettes of various resistances, both thick- and 
thin-walled (the latter Sylgarded), were pulled, filled to the same level 
and immersed to the same depth in ACSF as those of the last two cells. 
Extracellular controls were recorded both with and without capacitance 
neutralization. The pipette resistances tested spanned the range of mea- 
sured series resistances. 

The calibration of the recording apparatus and modeling software was 
checked using artificial neurons (resistor-capacitor networks), and com- 
puter models of them. 

Histological processing. Following recording, slices were transferred 
immediatelv to 2% naraformaldehvde. 2.5% alutaraldehyde fixative and 
were left overnight-at 4°C. With some modifications, the biocytin re- 
action method of Horikawa and Armstrong (1988) was followed. The 
fixative and all other aqueous solutions were made in 0.1 M phosphate 
buffer (PB) at pH 7.4. Each slice was resectioned to a thickness of 50 
or 60 pm. After a 1-l .5 hr detergent treatment in 2% Triton X- 100, the 
subsections were incubated (room temperature) in HRP (horseradish 
peroxidase) conjugated to avidin (HRP-A; Vector Labs, Peterborough, 
UK) at a dilution of 1:200 in 1% Triton for 2-2.5 hr, with intermittent 
stirring. The subsections were rinsed three times in PB and transferred 
to a 0.16% solution of Hanker-Yates reagent for 15 min at 4°C. Hydrogen 
peroxide solution was added to a final concentration of approximately 
0.004%, and the reaction was monitored under a stereomicroscope. 
When the injected cell had become sufficiently dark (about 5-l 5 min), 
the reaction was stopped by rinsing twice with PB. The subsections were 
then osmicated in 0.25-0.5% 0~0, solution for 10-l 5 min, and then 
were rinsed in PB. After dehydration in graded ethanols, they were 
mounted in epoxy resin (E-mix, now “One-shot Embedding Kits,” Fi- 
sons Scientific Equipment, Loughborough, UK) on microscope slides 
and coverslipped. 

Morphology. Four cells with high-quality fills and electrophysiological 
data were selected. They were reconstructed from camera lucida draw- 
ings made with a light microscope (Nikon Optiphot) at 1000x mag- 
nification for the dendrites, using a 100 x oil-immersion objective (nu- 
merical aperture, 1.25), and at 400 x for the axons. See Larkman and 
Mason (1990) for a summary of terminology. Each segment was num- 
bered, and the branching pattern of the cell was recorded. 

The diameter d, (excluding dendritic spines or axonal boutons) ofeach 
segment j was estimated at three points using an eyepiece graticule at 
a magnification of 1875 x , and the average was recorded to the nearest 
0.1 Nrn (nominally, because of the resolution limit of 0.2 pm). If  a 
segment tapered substantially, it was split. All segments were assumed 
to be circular in cross section. The soma diameter was measured along 
its three major axes. 

Lengths in the plane (h,) were measured on the camera lucida drawing, 
using a thin piece of insulated wire bent as accurately as possible along 
each segment j. A wiggle factor (w,) was estimated: (wire-measured 
length) + (straight line tip-to-tip length). Displacement (z,) perpendicular 
to the plane of focus was measured with the calibrated fine-focus dial. 
The final length I, of a segment was given by 

I I = W(h2 + 22y I 19 (1) 

where w was the median wiggle factor for that kind of process, around 
1.15 x for dendrites; axons had more erratic courses, so had slightly 

higher w factors. In this way l, was measured in all three dimensions, 
and shrinkage was, we hope, adequately accounted for; no additional 
correction was made for tissue shrinkage (see Discussion). 

For those segments which lay reasonably close to a plane of focus 
(about half of the total), spines or boutons were counted. Graphs were 
made of spine (or bouton) density versus dendritic (or axonal) diameter. 
All segments for which no count was performed were assigned densities 
from these graphs. In general the very proximal segments had low spine 
densities for their diameters, so were not included in the plots, but were 
counted individually, as were the apical trunk segments. 

The relatively thick apical trunk segments posed an additional prob- 
lem: spines could be hidden behind the segment. The HRP-A reaction 
product appears slightly less dense than that resulting from HRP injec- 
tion directly into cells, so it is just possible to estimate the number of 
spines occluded by a thick segment, since they appear as slightly denser 
dots. However, in the case of the thicker dendrites of the last two cells 
modeled, only spines sticking out either side were counted, and an 
occlusion correction factor was applied to give an estimate of the total 
density (adapted from Larkman, 199 1, using the average spine dimen- 
sions in Harris and Stevens, 1989). 

Single spine areas were assumed to be the same as for CA 1 pyramidal 
cells: 0.83 Mm* (Harris and Stevens. 1989). The extra area associated 
with single’boutons was estimated with the light microscope by mea- 
suring one medium-sized bouton on each of a large sample of axon 
segments of each cell. 

The morphological data were converted into a form compatible with 
the programs described below. Spines and boutons were collapsed into 
their parent segments (Jack et al., 1989; Stratford et al., 1989; Larkman 
et al., 1992) multiplying each segment j’s length by F;” and diameter 
by F,“, where F, = (surface area with spines) f  (area of shaft alone) for 
segment j. Segment j’s morphotonic length l,u, = 21,/d: is the morpho- 
logical or “resistivity-free” component of its electrotonic length r, (i.e., 
it is the relative electrotonic length); L, itselfcan be calculated by dividing 
lw by A = @,I&)“, the “mdrphoelectric factor” (Holmes -and Ralc 
1992: Larkman et al.. 1992). A cutoff distance of 350 urn before and 
500 pm after spine incorporation was used to separate apical obliques 
from the apical tuft. For all terminal segments of a given class, within- 
cell unweighted means and standard deviations were calculated for di- 
ameters before spine incorporation, and diameters and soma-to-tip 
morphotonic distances after spine incorporation. 

Modeling methods 
Grand averages of short pulse responses. The modeling process will be 
illustrated using one cell, CA3-32. A similar procedure was applied to 
CA3-33. (Differences applicable to the first two cells will be noted when 
relevant.) 

Data were redigitized off line from tape, in the same way as during 
the experiments, but capturing individual sweeps without averaging (not 
done for first two cells). All sweeps were inspected, and those contam- 
inated with large noise artifacts were marked for rejection. All accepted 
responses were filtered with a 0 = 0.05t variable Gaussian digital filter, 
with t = 0 at the pulse start. This procedure smooths out noise of 
frequencies much higher than those present in the response at a given 
time, filtering progressively more strongly at later times without dis- 
torting the underlying waveform (Fig. 1). 

Figure 2 illustrates the procedure by which target fit transients were 
obtained: 

(A) For each sweep the voltage baseline between 0 and 200 msec 
(exclusive) was subtracted. 

(B) Time t = 0 was set to be the pulse start. The response was scaled 
by l/(injected current) and passed through the c = 0.05t filter. All 
responses were thus normalized to an input current of + 1 nA. 

(C) Groups of roughly 100 sweeps with the same original injected 
current were averaged into a “subaverage” and 

(D) the standard error (SE) at each time point was computed. 
(E) The subaverages were superimposed graphically to check for sta- 

bility and linear scaling. They were also inspected for sag using loga- 
rithmic voltage axes (Fig. 2E, inset). An objective test of superposition 
was then performed on each possible pair of subaverages (see below). 

(F) Each subaverage from the group that superimposed adequately 
was assigned a weight equal to the absolute magnitude of its injected 
current, to maximize the final signal-to-noise ratio, and they were then 
combined into a “grand average.” The variance var, of the voltage V, 
at the ith digitized time point along each subaverage waveform was 
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obtained from the standard error SE,, knowing the number of sweeps 
n in the subaverage, using 

var, = n x SEf. (2) 
Rather than recomputing it from the single sweeps, the Z v  term for 
the ith time point was reconstructed using 

zv=((n- l)var,+np, (3) 
where v, is the mean over all n sweeps in the subaverage of the voltage 
at time point i (i is not the index of a particular sweep). The Z V: terms 
from all the relevant subaverages were weighted and summed together, 
as were the v, terms and the n values, and a new group weighted mean, 
variance, and standard error were calculated for each time point i. 
Despite increased filtering, SE tends to increase with time as the baseline 
recedes further into the past and slow noise events accumulate (Fig. 
2D,F). The grand average from each cell was used as the target waveform 
for fitting model responses (see below); the corresponding input current 
was + 1 nA. The number of sweeps making up the grand averages from 
the different cells is listed in Table 1. 

In summary, the procedure for obtaining a grand average is as follows: 

(Box 1) 

REJECT VERY NOISY SWEEPS 

1 
EACH SWEEP, SUBTRACT PREPULSE BASELINE 

SCALE BY l/CURRENT I 

VARIABLE GAUSSIAN FILTER EACH SWEEP 

1 
SUBAVERAGE WITH STANDARD ERRORS 

SUPERPOSITION TEST 

1 
WEIGHT BY ] CURRENT 1 

1 
GRAND AVERAGE WITH STANDARD ERRORS 

(In the case of CA3-15 and CA3- 16, baseline subtraction, scaling and 
0 = 0.05~ filtering was performed on the subaverages, since individual 
sweeps had not been recorded. A grand average and approximate stan- 
dard error time course for each of those two cells were estimated by 
treating those subaverages designated stable and passive as single sweeps; 
see below.) 

Noise controls and conjidence bands. A reasonably objective but sen- 
sitive test is required to allow some fits to be rejected and others to be 
accepted. If  a fit residual (target - fit) deviates from zero (V = 0) by 
more than the deviation of (say) 95% of corresponding control baseline 
noise waveforms, then that deviation is unlikely (< 5%) to have occurred 
by chance alone: the fit is probably incompatible with the target data. 
A number of measures of deviation are possible: the one we have found 
to be most sensitive to large short-duration discrepancies between model 
and target (such as occur when R, or C,,, have the wrong values) is the 
maximum value of [residual(t) t SE(t)] over all time points t in the fit 
interval. Another possibility is the root mean square of [residual(t) + 
SE(t)] over the entire fit interval: the weighted fit SD (WSD). Unfor- 
tunately, this measure suffers from “dilution,” that is, a short-lived 
serious misfit that is unlikely to have occurred merely by chance, com- 
bined with an extremely good fit over the rest ofthe waveform, can still 
lead to a WSD score that is not rejected. To some extent this problem 
can be circumvented by applying the WSD test to early parts of the 
response only, when trying to constrain R, and C,,,. I f  the maximum 
[residual + SE] < k, this is equivalent to a zero (V = 0) line falling 
completely within a band ofwidth Lk SEs around the noise (or residual) 
waveform, or to the fit waveform falling within a ?k SE band around 
the target waveform. 

For CA3-32 and CA3-33,400 msec control periods of baseline noise 
preceding the next current pulse were digitized from tape (Fig. 3A). The 

Table 1. Fit details 

Cell Interval (msecp Sweeos averaeed SE& 

CA3-15 l-200 700 3.7 
CA3X16 l-200 1100 3.4 
CA3-32 3-200 1000 3 
CA3-33 3-150 400 3 

” From start of current pulse (duration, 0.5 msec). 
I’ Giving, with corresponding noise control averages, approximately 95% confi- 
dence band for no escapes of voltage baseline extrapolated from preceding 200 
msec period. 

first 200 msec was used as a baseline, and the subsequent 200 msec was 
treated exactly as the responses themselves had been (Box l), with 
variable Gaussian filtering from the new t = 0 (200 msec before next 
pulse), but omitting the superposition test. Note that the baseline was 
taken before the control noise interval, not during it (this would lead to 
smaller deviations). In the case of CA3-32, a slight response tail was 
corrected for. 

The noise subaverages were plotted with bands ofwidth +k SEs about 
the mean, together with a horizontal line at V = 0, which would cor- 
respond to the extrapolated prepulse baseline; k was varied until the V 
= 0 line fell just within the band for the entire duration of an interval 
corresponding to the fit interval eventually used (3-200 msec for 
CA3-32; see below). The test is illustrated for CA3-32 in Figure 3B, 
using the noise subaverage that required the widest band to avoid escape 
of the zero line. If  only k2.5 SEs are used, the zero line escapes briefly 
at early times (arrow). With *3 SEs, however, the zero line (or true 
baseline, if there were to be no noise) falls within the band for its entire 
duration. Figure 3C shows an equivalent plot for the noise grand av- 
erage; again the true zero line falls within the *3 SE band around the 
actual mean. 

Simulations were performed of averaged low-frequency noise. PSPs 
were produced at the outset by injecting double exponential currents of 
different kinetics at various locations along a single cylinder simplified 
representation of a basal/oblique arbor, using optimal electrical param- 
eters close to those in the Results. Each noise sweep was generated by 
superimposing random numbers of model PSP waveforms (both excit- 
atory and inhibitory) with different randomly selected time courses, 
amplitudes, and start times. A 200 msec baseline period preceded the 
test period; sweep lengths were 800-1000 msec. Simulated high-fre- 
quency random Gaussian noise was not added since this had largely 
been filtered out of the experimental data. Over a wide range of con- 
ditions, if more than 100 sweeps were averaged, i 3 SEs gave a roughly 
95% confidence band; that is, the zero line fell within the +3 SE band 
about 95% of the time. The exact band width required for 95% confi- 
dence depended on the duration of the test interval, the membrane time 
constant, and the amount of noise. The cells in this study typically had 
time constants about 75% as long as the fit interval (see Results). Shorter 
test intervals required slightly narrower bands, although because of the 
slowness of the PSP waveforms, and hence the long-lasting correlations 
in the noise, the required band width was relatively insensitive to the 
fit interval-a distinct advantage of the band test over the WSD test 
above. 

A more important result of the simulations was that the same width 
k giving -95% confidence bands for subaverages (of 2 100 sweeps) also 
appeared to give -95% confidence bands for grand averages (of 400- 
4000 sweeps). This has an intuitive explanation: because of the central 
tendency caused by averaging, one would expect the maximum residual 
(or noise value) to be proportional to n+ for a large number of sweeps 
n; since its SE also scales with n+, their ratio must stay roughly constant. 
For n < 30 a small numbers effect became apparent: progressively wider 
bands became necessary to achieve a given confidence level. 

In the case of real noise controls, all the subaverages (of about 100 
sweeps) and the grand averages from CA3-32 and CA3-33 passed the 
3 SE test. From CA3X32, one of the 12 subaverages failed the 2.5 SE 
test (92% passed). From CA3-33, all subaverages passed the 2.5 SE test, 
and six of seven passed the 2 SE test (86%). As with simulated noise. 
there appeared to- be a small numbers effect with 30 or fewer averaged 
sweeps. 
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Superposition tests. A further confidence band test, illustrated in Fig- 
ure 4, is now described for assessing whether two response waveforms 
superimpose adequately. The difference between two waveforms, V, - 
V2 has a joint SE at each time point equal to (SE: + SE;)‘“. The differences 
were computed between all possible pairs of the simulated averaged 
noise waveforms described above, together with their joint SEs. The 
same width of band as for the original noise averages, +3 SEs, was 
required to prevent the zero line escaping in about 95% of cases. This 
was also verified with the real noise controls: in the case of CA3-32, 
65 of 66 possible subtracted pairs passed the 3 SE test (98%). Three 
noise subaverages are shown in Figure 40. The difference between sub- 
averages 5 and 6 passes the 3 SE test (Fig. 4E), the typical case. The 
exception, the difference between subaverages 5 and 9, just fails the test 

at early times (Fig. 4F). In the case of CA3-33, all 21 possible noise 
differences passed the 3 SE test. 

Three of the subaverages from CA3-32 are plotted in Figure 4A. It 
can be seen that subaverages 4 and 5 superimpose extremely well; this 
is born out by the 3 SE test on the difference waveform (Fig. 4B). 
Subaverages 1 and 4 appear very different by eye, and (Fig. 4C) at late 
times (and very early times, before the fit interval start of 3 msec) the 
zero line escapes from the 3 joint SE band. Since this occurs in noise 
controls less than 5% of the time, it can be concluded that the difference 
is probably genuine, and not due to a chance deviation; the explanation 
is the sag at late times in subaverage 1. The sag appears to have been 
washed out by waveform 3 (see Fig. 2E). Subaverages 3-12 superimpose 
well, and are used for the grand average (see above). In the case of 

Figure 2. Procedure for computing grand average and -95% confidence band. A, Single sweep, showing voltage response to - 1 nA, duration 0.5 
msec current pulse from cell CA3-32, filtered at 5 kHz and digitized at 10 kHz. A large amount of high- and low-frequency noise can be seen. The 
average voltage over the 200 msec baseline period preceding the pulse (injected at 200 msec; vertical arrow) is then subtracted, the response is 
scaled by l/current = - I, and t = 0 is set to be the pulse start, to give the gray transient in B. B, High-frequency noise is removed without distorting 
the underlying response by digitally filtering with a variable Gaussian filter, standard deviation 0 = 0.05t; result is black line. C, Seven consecutive 
0 = 0.05t filtered sweeps are superimposed. Low-frequency noise, highly correlated over time, contaminates all responses and causes considerable 
intersweep variability. D, One hundred sweeps are averaged into a subaverage (so/id line). The standard error at each time is multiplied by three 
to give a band (dushe~ lines) around the mean, in which the true response would lie about 95% of the time (see Fig. 3 for noise controls). E, All 
12 subaverages from this cell are superimposed. Dashed and solid lines, - 1 nA responses; dotted lines, +0.5 nA responses (all were scaled by 
l/current going from A to B). All the subaverages, apart from the first two (dashed), superimpose reasonably well. The first two also show sag at 
late times (see inset semilog plot). An objective superposition test was performed (Fig. 4) to verify this impression. F, The last 10 subaverages are 
combined into a weighted grand average (solid), shown with its 3 SE band (dashed); the average is less noisy than the subaverage in D, and the 3 
SE band is narrower, but the true response would still lie within the band about 95% of the time. 
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CA3-33, only subaverages 4-7 superimposed adequately. Subaverages 
l-3 displayed varying degrees of sag. 

Modifications of tests for CA3-15 and CA3-16. No objective super- 
position test was possible for the subaverages of CA3-15 and CA3-16, 
because no proper noise controls were available. Inspection of the su- 
perimposed waveforms with normal and semilog axes led to the exclu- 
sion of the first three subaverages of CA3-15, because of clear sag. No 
sag was evident on any of the subaverages from CA3-16; all were 
included in its grand average. 

Because of the small numbers effect described above, grand averages 
were also computed for CA3-32 and CA3-33, treating the subaverages 
as single sweeps with zero SE. The resulting approximate SE was usually 
smaller and more variable than the true SE (e.g., see Fig. SC, below). 
The average ratio of approximate f  true SE was approximately equal 
to the “t ratio” given by the 01 = 0.025, degrees of freedom (df) = n - 
1 entry from a standard t table (where n is the number of subaverages), 
divided by the df = co entry. The following ad hoc procedure could 
convert the approximate SE into a closer (but imperfect) replica of the 
true SE: (1) filter SEs with a 0 = 0.2t variable Gaussian, to smooth out 
ripples; (2) multiply SEs by the appropriate t ratio. 

Equivalently, the width of the filtered approximate confidence band 
could be multiplied by the t ratio, to improve its match to the true 
confidence band. Thus, instead of a 3 SE test, 3.7 SEs were required for 
CA3-15, and 3.4 SEs for CA3-16, to give a confidence level of -95%. 

Apparent slowest time constants, input resistances, and ends of fit 
intervals. The first subaverage and the grand average responses of each 
cell were analyzed. Each waveform was inspected using a logarithmic 
voltage axis, and a straight line was fitted by linear regression through 
the final decay phase, to obtain an estimate ofthe apparent time constant 
TV and the apparent amplitude A, of the slowest response component. 
(In the case of the grand average, the time at which the actual response 
deviated visibly below this line was chosen as the end of the fit interval; 
see Table 1.) The’lirst apparent exponential component was peeled (Rall, 
1969a) away from the response, and the process was repeated, until a 
time constant less than 1.5 times the maximum value of 7p,p for that 
cell was reached, where 7p,p = C,,$,,, is the pipette time constant, given 
a pipette capacitance C,,, and a series resistance R,,. (This cutoff is a 
crude way to avoid most of the pipette artifact.) The approximate input 
resistance R, was then calculated using Equation 5 of Durand et al. 
(1983): 

h.,\ 
R, = I-1 2 C,,(] - e-‘s,r,,)-l, 

,I=” 
(4) 

where ‘T,, and C,, are the nth apparent time constant and amplitude, 
respectively, n,,, ranged from 3 to 5, and I and w are the amplitude 
and duration of the current. Measured apparent time constants and 
amplitudes were sensitive to the regression intervals chosen and were 
not taken to correspond precisely to the true exponential components 
of a particular cell’s response (Holmes et al., 1992; Major et al., 1993a); 
overall R,, was much less sensitive. 

Fit interval start times and pipette artifacts. Unless otherwise stated, 
all times from now on are measured relative to the current pulse start. 
Extreme care was taken to avoid or account for pipette artifacts, because 
previous modeling has shown that pipette artifacts can boost early com- 
ponents of responses and raise the apparent R, required to fit the ex- 
perimental data. Moreover, capacitative artifacts cannot simply be sub- 
tracted from the cell’s response to eliminate their effects: the cell-pipette 

+ 

Figure 3. Noise controls for fit rejection test. A, Schematic showing 
how noise control sweeps were obtained, by taking the 400 msec directly 
preceding the next short pulse (arrow I), and using the first half as a 
baseline period. The final 200 msec (from 873 to 1037 msec), or a 
subinterval of it, was taken as the test period; t = 0 was set at 873 msec, 
and the procedure in Box 1 was applied. B, The most deviant noise 
subaverage (solid line) from CA3.-32, plotted with 2.5 SE (standard 
errors; gray lines) and 3 SE (dashed lines) bands. The horizontal zero 
line (dotted) escapes from the 2.5 SE but not from the 3 SE band at 
early times (arrow). C, Noise grand average from CA3-32, plotted with 
3 SE band (dashed). The zero line (dotted) stays within the band over 
the entire time shown, so the grand average passes the 3 SE test. Any 
fit residual failing the test would be extremely unlikely to have occurred 
by chance alone. 



The Journal of Neuroscienea, August 1994. M(8) 4621 

interaction is nonsumming, the duration of the real artifact may outlast 
that of the extracellular control by a considerable margin (Major and 
Evans, 1994) since in whole-cell mode the pipette has to discharge to 
earth indirectly, via the cell and its distributed capacitances and resis- 
tances. 

In Figure 54, three extracellular pipette artifacts are shown, recorded 
with the Axoclamp-2A. The briefest, from a 3.3 Ma pipette with optimal 
capacitance compensation (“cap. camp.“), is effectively over within 0.1 
msec of the pulse end. This response is better than could be expected 
from the 3.5 MR pipettes used to record from CA3-32 and CA3-33, 
whose series resistances during recording varied from 6 to 25 and 7 to 
9 MQ, respectively. The 9 MQ control lasts almost 0.5 msec from the 
pulse end, which reduces to about 0.2 msec with optimal cap. camp. 

If  the very early components of CA3X32’s responses are inspected, 
however, it can be seen (Fig. 5B) that they increased throughout the 
recording (peaking during the ninth subaverage), as the series resistance 
increased. This is reflected in the standard error time course (Fig. 5C): 
although the total SE is more or less steady by 1 msec (0.5 msec from 
pulse end), the inter-subaverage SE (computed by treating the subav- 
erages as single sweeps) only reaches its minimum by 3 msec. This may 
in part be a consequence of the 0 = 0.05t filtering. To help make more 
objective decisions about safe fit start times, simulations were performed 
comparing cell-pipette combinations (Fig. 6) with the cells alone and 
the pipettes alone. 

The pipette artifacts are assumed to be largely capacitative; judging 
from the extracellular controls, any residual polarization or other effects 
will probably be over by 0.5 msec from the pulse end. Programs im- 
plementing analytical solutions for arbitrarily branching cables with 
nonuniform parameters were used (Major and Evans, 1994); all wave- 
forms were identical to those from equivalent compartmental models 
(adapted from Clements, 1986). 

In the case of CA3-15, the no-shunt optimal fit model parameters 
(C,,, = 0.65 PFcm-‘, R, = 210 Qcm, R,,, = 180 k&m’), found with the 
worst-case pipette (20 pF, 15 MQ), were used in simulations (see section 
Direct fitting, below). The pipette consisted of three segments with lengths 
and diameters as follows: 1 (tip), 500 km, 2 pm; 2, 500 pm, 4 pm; 3 
(wide end), 19 mm, 0.5 mm. The local factors for multiplying the global 
electrical parameters were chosen to give a pipette capacitance of 1 pF/ 
mm, IL, = 15 MR, and a wall conductance of < 1Om’o S/m (i.e., ~2 pS 
in all). Current was injected and recorded via the distal end of segment 
3, when a model included the pipette, and via the cell soma otherwise. 
The pipette tip was attached to the cell soma. For the extracellular 
control, the tip was voltage clamped to zero; that is, it was earthed. 

The 1 nA, duration 0.5 msec short pulse responses are shown in Figure 
6A. The pipette control is negligible by about 3 msec from the pulse 
start, but the differences between the cell alone and cell+pipette re- 
sponses are significant for the entire fit interval (l-200 msec), since the 
,4, (slowest amplitude) terms of the two models (0.9 16 and 0.903 mV, 
respectively) differ by more than l%, and the slowest time constants 7,, 
(I I7 and 122 msec, respectively) differ by about 4%. The 20 pF pipette 
capacitance is an appreciable fraction (-4%) ofthe total cell capacitance 
(-530 pF). It is for this reason that the pipettes are included explicitly 
in the models of CA3-15 and CA3-16, with the entire range of likely 
pipette resistances and capacitances being explored (see below). 

The pipette simulations for CA3-32 differed in that the length of 
segment 3 was varied between I .5 mm and 10 pm, giving C,,, between 
2.5 pF and 1 pF. The local R, factors in the pipette were adjusted to 
give R,,, between 5 and 25 MR. Only the 25 MQ (worst-case) pipettes 
are illustrated here (Fig. 6B). The C,,, measured experimentally was 
about 2.5 pF. Optimal capacitance compensation is simulated by re- 
ducing C,,, to I pF: it is hoped that this is (slightly) greater than the 
true effective residual capacitance; a more exact value would depend 
on knowing the rise time of the Axoclamp-2A measured with resistors 
of precisely known capacitance (Purves, 198 1, p 49). It is not possible 
to reduce the residual capacitance to zero. The current pulse was 1 nA, 
duration 0.5 msec. The model had the no-shunt optimal fit parameters 
C,,, = 0.19 PFcrn-‘, R, = 270 Rem, R,,, = 200 k&m’, and the axon was 
omitted to allow the program to find smaller time constants. The un- 
compensated effective artifact lasts till about 2.5 msec, and the com- 
pensated artifact lasts till about 2 msec; the corresponding controls are 
essentially over by 0.9 and 0.6 msec, respectively, from the pulse start. 
The cell-alone and cell+pipette responses converge at late times because 
the pipette capacitance is a negligible fraction (~0.5%) of the cell ca- 
pacitance (- 530 pF, without axon). 

The fit intervals chosen for both CA3-32 and CA3-33 commenced 

at 3 msec from the pulse start, to avoid the most pessimistic effects of 
the pipettes. As can be seen below (Results), this was still enough to 
constrain R, reasonably well for both cells, although an earlier start time 
would have yielded a narrower range. The fit intervals for the first two 
cells (with models including pipettes) were started at 1 msec (i.e., 0.5 
msec after the end of the pulse), by which time the actual extracellular 
controls were over (not shown), in case these were due in part to non- 
capacitative artifacts. 

Directfitting. Following Clements and Redman (1989), a direct fitting 
program was used that called an implementation of the branching cable 
analytical solution (Major et al., 1993a) as a subroutine of a simplex 
optimization algorithm (Nelder and Mead, 1965; Press et al., 1988, pp 
305-309). A + 1 nA, duration 0.5 msec short current pulse was injected 
into the soma of each model and the somatic voltage was recorded. The 
parameters to be optimized were C ,,,, R, , R ,,,, and g,, ““,. The cost function 
to be minimized was (WSD* + 0.5n CIEQPCI), where WSD (defined above) 
is the weighted root mean squared deviation between the model and 
the target (grand average) waveforms over the fit interval, and neXspr is 
the number of points that escape from the -95% confidence band (in- 
tervals and SE levels are given in Table 1). Once a model response was 
within the target confidence band, that is, ncreawr = 0, this cost function 
simplifies to its first term, and weighted least-squares fitting was per- 
formed. Outside the confidence band, the second term tended to dom- 
inate the cost function, causing the number of escapes to be minimized. 

For CA3-15 and CA3-16, optimization was performed with current 
injection and voltage recording via a model pipette attached to the cell 
soma. A version of the fitting program was used that incorporated the 
analytical solution for nonuniform electrical parameters, fixing the re- 
sistances and capacitances in the pipette segments but varying the global 
specific electrical parameters of the cell (Major and Evans, 1994). Three 
pipette models were used for both cells: the most likely (10 MQ, 20 pF), 
best case (5 MQ, 10 pF), and worst case (15 MQ, 20 pF). 

For most fits, g,,,., was fixed to zero; it was assumed that the seal 
resistance did not change significantly between cell-attached, whole-cell, 
and outside-out patch configurations (see Preparation and recording, 
above). One optimal fit was performed, allowing all three remaining 
electrical parameters to vary. Then each parameter in turn was fixed at 
progressively more extreme values (both above and below its optimum), 
until the constrained best fit was rejected by the confidence band test. 
This is illustrated for CA3-32 in Figure 7. In Figure 7A, a fit that is 
only just accepted is shown, grazing the inside of the 3 SE target band 
of the grand average experimental response. It is just possible that this 
waveform plus experimental noise could have produced the actual re- 
corded grand average. A fit that is rejected is shown in Figure 78: R, is 
too high, and the early components rise above the upper edge of the 3 
SE band; it is extremely unlikely that this waveform plus experimental 
noise could have led to the actual grand average. The procedure was 
repeated for all three pipette models in the case of the first two cells. 

Because of the possibility that g,,.,, might not be zero, either because 
of intrinsic somatic conductances, or because of an undetected leak that 
vanished when the outside-out patches were pulled, a final series of fits 
was performed (using only the most likely pipettes for the first two cells), 
allowiwgshu,, to take a number of fixed values while the other parameters 
were optimized freely. 

Results 
The results of preliminary fits and voltage-clamp simulations 
using one of these cells (CA3-15) have already been published 
(Jonas et al., 1993). The optimal parmeters found in that study, 
which did not include the pipette in the model, were only slightly 
different from those listed below (without pipette: C,,, = +3.5%, 
R, = + I5%, R,,, = - 10%). 

Morphological results 

All four cells were from the lower part of area CA3 (near CA4). 
All had extensive dendritic arborizations, with four main zones: 
(1) the basal arbor in stratum oriens, (2) a short apical trunk in 
stratum lucidum that branched into two or more secondary 
trunks, (3) apical oblique dendrites in stratum radiatum, and 
(4) an apical tuft in stratum lacunosum moleculare. A camera 
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l;‘igurc 4. Superposition tests for response subaverages. Procedure for responses is illustrated on left; equivalent noise controls, on right. A, Three 
subaverages of - 100 sweeps from CA3-32. Subaverage 1 (solid line) does not superimpose well with subaverages 4 and 5 (dotted and ddshed lines, 
respectively). B, The difference between subaverages 4 and 5 (solid line) is plotted together with a 3 joint SE band (dashed), obtained by summing 
the standard variances at each time point; the zero line (dotted) does not escape from the 3 SE band over the entire interval shown: the superposition 
test is passed. C, Equivalent plot for the difference between subaverages 1 and 4; the zero line escapes at times (arrow) after about 100 m&c, because 
of the sag in subaverage 1 (seen in Fig. 2E, inset): the superposition test is failed. The zero line also escapes at early times 5 0.8 msec, perhaps 
because of changes in pipette series resistance. D, Control noise subaverages 5, 6, and 9 (solid, dotted, and dashed lines, respectively). Subaverages 
5 and 6, but not 9, superimpose reasonably well. E, The difference between subaverages 5 and 6 (solid line) with their 3 joint SE band (dashed): 
the zero line (dotted) does not escape from the 3 SE band for the entire interval shown. This is the case with 98% of the possible noise cbntrol 
difference waveforms. F, The one exception is the difference (solid line) between noise subaverages 5 and 9; the zero line just escapes at early times 
(arrow) from the 3 joint SE band (dashed). 

lucida drawing of the dendritic tree of CA3-33 is shown in 
Figure 8, and a smaller scale drawing of the axon and dendrites 
of CA3-32 is shown in Figure 9. A photograph and camera 
lucida drawing of the dendritic tree of CA3-15 can be found in 
Jonas et al. (1993). Thorny excrescences were visible on prox- 
imal trunk segments, and other segments, apart from the most 
proximal basal segments, were densely covered by dendritic 
spines, The axon arbors of all four cells ramified for about 500- 
800 pm in either direction along stratum oriens and stratum 
radiatum, with numerous boutons. A few branches with boutons 
crossed stratum pyramidale and stratum lucidum. There were 
numerous amputated axonal branches at the cut surfaces of the 
slice, but few, if any, truncated dendrites. 

Morphological measures from the four cells are summarized 
in Table 2. The average extra surface area associated with single 
boutons was estimated to be about 1 Frn’, which is compatible 
with the volumes quoted in Table 2 of Harris and Stevens (1989). 
The values varied slightly with the axon segment diameter. The 
mean spine density was about 3 pm I, which is higher than in 
adult visual cortical pyramidal cells (Larkman, 199 I), but com- 
parable to that in adult hippocampal CA1 pyramidal cells (An- 
dersen, 1990; Harris et al., 1992: electron microscopic mea- 
sures). The bouton density increased approximately linearly with 
axon segment diameter in all cells (not shown), with an average 
value of about 0.3 Pm-I, or one bouton every 3.7 pm along the 
axon. The cells had large numbers of dendritic spines: the mean 
number was about 30,000. The mean number of boutons was 
over 5000, and would have been much higher in vivo, before 
slicing amputated most of the axonal tree. Table 2 also gives 
terminal segment mean diameters before and after spine or bou- 
ton incorporation (the mean axon diameter is not changed to 
within one decimal place). 

Morphotonic or relative electrotonic structure 

Morphotonic dendrograms of all four cells are shown in Figure 
IO. The electrotonic scaling obtained from the optimal fit model 
of each cell (see below) is indicated at the top of the ordinate. 
The soma-to-tip morphotonic distances and summed (diame- 
ter))/* values (Z dJ2) for the terminal segments of each class of 
dendrite are given in Table 2. The morphotonic lengths of the 
apical trunks plus tufts are roughly twice those of the basal or 
oblique dendrites. In addition, the combined Z &I2 of the basals 
and obliques ranges from about three to five times the Z d3’2 of 
the apical tufts. Therefore, the cells cannot be represented ad- 
equately as single cylinders. 

Linear scaling, stability, and washout of sag 

In the case of three of the cells, the first two or three response 
subaverages showed evidence of sag when inspected using log- 
arithmic voltage axes (e.g., Fig. 2E. inset). This appeared to 
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wash out reasonably quickly; later subaverages had no sag and 
superimposed well (as judged by eye and by confidence band 
tests). There was therefore no need to use channel blockers to 
“linearize” the cells (cf. Major et al., 1990; Rapp et al., 1993): 
once the sag was gone they appeared to behave passively. 

Input resistances and apparent time constants 
Apparent slowest time constants TV and approximate input re- 
sistances R,, for the four cells, both “initially” and after washout 
of sag, are given in Table 3. The former are estimated from the 
first subaverage, and the latter from the grand average of the 
linearly scaling, stable short pulse responses. The values are 
much higher than those for adult guinea pig CA3 cells recorded 
with sharp electrodes (mean 7” = 19 msec, R, = 39 MQ: Brown 
et al., 1981) and slightly higher than those obtained by the 
nystatin patch method (mean 7” = 66 msec, R,$, = 135 MQ at 
- 64 mV: Spruston and Johnston, 1992). The differences could 
reflect age, species, membrane potential, or method. Certainly 
there is now thought to be a substantial somatic shunt with 
sharp electrode recording (see introductory remarks). The nys- 
tatin patch method may avoid the washout of sag and perhaps 
other conductances observed with these cells; indeed, the initial 
responses yield T” and R,, values closer to those found by Sprus- 
ton and Johnston (1992). Since in our experiments a few minutes 
in whole-cell mode always elapsed before the first short pulse 
responses were recorded, and since the sag disappeared within 
another 5 min, it is likely that significant washout had already 
occurred b$ore the “initial” subaverage. Apparent T,, values 
before any washout may therefore have been similar to those 
found by Spruston and Johnston (1992). We should add that 
measurement of 70 in the presence of strong sag may not be 
meaningful because there is no portion of the data that shows 
single exponential decay. The 7” values obtained are very sen- 
sitive to the regression or fit interval chosen. The problem is to 
some extent obscured if traces are very noisy. 

Optimal fits and parameter ranges 

The optimal fits of all four cells (in the case of the first two, with 
the most likely pipette) are shown in Figure 1 1. The target data 
(dashed lines) and the model responses (dotted lines) super- 
impose so well that they are hard to resolve. The optimal fit 
parameters are summarized in Table 4, along with the parameter 
extremes from all the constrained fits passing the confidence 
band test when systematic explorations were undertaken (30- 
40 fits per cell). 

The mean optimal C,,, of 0.75 PFcm 2 is surprisingly close to 
values measured directly (see introductory remarks). The mean 
optimal R, of around 270 Qcm is several times higher than the 
traditional 70 Qcm. The lowest R, compatible with any of the 
cells was 100 Qcm. R,,, is around 120-200 kQcm’ but this will 
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probably vary more from situation to situation (see Discussion). 
It is also the least reliable figure, ifshunts are allowed (see below). 

The fit WSDs (defined above) give an indication of overall’ 
goodness of fit; roughly 95% of WSDs of control noise subav- 
erages, with respect to a V = 0 line over the same fit intervals, 
were below 1.6. The noise simulations described above showed 
that for n > 100 the distribution of noise WSDs was roughly 
the same for subaverages and grand averages (again, because 
both deviations and SEs are proportional to n-“I, where n is the 
number of sweeps). Any fit with a WSD greater than 1.6 could 
have been rejected at the 95% confidence level. In practice, the 
confidence band test proved more sensitive, particularly with 
respect to constraining R,. If the WSD test was restricted to the 
first 50 msec, then it constrained R, and C,,, about as well as the 
confidence band test. 

The morphoelectric factor A varied between 17 and 34 cm” 
for the optimal models. Its overall range was 17-42 cm”, leading 
in all cases to extremely compact steady-state electrical geom- 
etry (see below). There may be increases in membrane conduc- 
tances with development, which would cause A in adult neurons 
to be lower. 

Fits with nonzero shunts 

When the shunt was allowed to vary away from zero, non- 
uniqueness became apparent: the optimal fits, shown in Table 
5, were hard to distinguish on the basis of their WSD scores, 
and a wide range of shunt models could not be rejected by the 
confidence band test (all those shown were accepted). In all cases 
but one, the optimal WSD score occurred at shunts of greater 
than zero. In short, there is no objective way of proving statis- 
tically that there was no somatic shunt in these cells; we need 
to rely on other arguments (in particular, the formation of out- 
side-out patches upon withdrawal ofthe pipette). The maximum 
value of the shunt (to the nearest nS) that allowed acceptable 
fits is shown in Table 5 for each cell. Unlike with sharp electrode 
recordings, the possible values of the shunt are severely con- 
strained by the low input conductances of the cells (the worst 
case was CA3-33, which had the highest input conductance). 
The shunt can vary, essentially, from zero to the cell’s total 
input conductance, and still yield models resulting in acceptable 
fits. The uncertainty over the values of C,,, and R, is not too 
large: shunts reduce the optimal values of both parameters 
slightly. However, the optimal value of R,,, is extremely ill con- 

t 

Figure 5. Real pipette artifacts. A, Extracellular controls for two thin- 
walled, Sylgarded pipettes submerged to the same depth as those used 
to record from CA3-32 and CA3-33. Solid line, 3.3 MQ pipette, with 
optimal capacitance compensation (opt. cap. camp.); dotted line, 9 Mtl 
pipette, with opt. cap. camp.; dashed line, without cap. camp. (dial on 
zero position, neither enhancing nor neutralizing). The pipette capaci- 
tances were estimated to be less than 2.7 pF. B, First 2 msec of CA3- 
32 subaverages superimposed to show boosting of early components as 
series resistance creeps up from about 6 MQ (subaverage 1, solid black 
line) to 25 MQ (subaverage 9, gray, dashed). The other responses are 
either black or gray (last four), with different line styles. C, Standard 
error time course for CA3-32 “total” average at early times, prepared 
from a/l sweeps (total SE, solid line), and from all subaverages, treated 
as single sweeps (dotted). The latter variations only reach a minimum 
(arrowed) at about 3 msec (2.5 msec from pulse end). Notice also that 
the between-subaverage SE is lower, and more irregular, than the total 
SE. This obervation has implications for the width of the confidence 
bands for CA3-15 and CA3- 16 (see Modification of tests for CA3- 15 
and CA3-16, in Modeling methods). 
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Figure 6. Nonsumming cell-pipette 
interactions. See Fit interval start times 
and pipette artifacts, in Modeling meth- 
ods, for details. Simulations were per- 
formed using nonuniform analytical so- 
lution programs. A. CA3-15, optimal 
fit model short pulse response obtained 
recording via worst-case pipette (upper 
dashed line), compared with response 
of cell alone with same electrical pa- 
rameters (dotted line) and extracellular 
pipette control response (lower dashed 
line). The deviation between the first 
two waveforms at early times lasts lon- 
ger than the extracellular control, and 
there is a noticeable difference at late 
times for the entire fit interval (1 O-200 
msec; not shown), because of the large 
pipette capacitance. B, CA3-32, opti- 
mal fit model short pulse response (sol- 
id line) compared with that obtained 
recording via a 25 MQ pipette (worst- 
case resistance) with capacitance C,,, 
either 2.5 pF (uncompensated) or 1 pF 
(largely compensated). The corre- 
sponding extracellular pipette controls 
are also shown. Dotted lines, C,],, 2.5 pF, 
dashed lines, C,,,, 1 pF. The effective 
difference between the cell alone and 
the cell+pipette responses lasts much 
longer than the pipette controls, in the 
worst case requiring 3 msec to become 
negligible (2.5 msec from pulse end). 
Because of the relatively low pipette ca- 
pacitance compared with the cell’s ca- 
pacitance, the first three waveforms 
converge at late times. 
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Figure 7. Fit acceptance and fit re- 
jection by the confidence band test. 
CA3-32’s grand average response 
-95% (3 SE) confidence band is shown 
(without the grand average mean wave- 
form itself) as the dashed lines in both 
panels. A, Fit that is only just accepted 
(parameters as listed): the fit waveform 
(solid line) just touches the top edge of 
the 3 SE band around t = 30 msec. B, 
Fit with R, too high (solid line) escapes 
from the 3 SE band at times before about 
15 msec (arrow). Different time axis 
from A. 
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ditioned with respect to gshun,: small changes in shunt result in 
enormous changes in R,,,, in some cases up to implausibly high 
levels. This nonuniqueness is of the core electrotonic model 
variety, since the morphology is fixed. The different models yield 
different predicted PSPs, particularly at late times if the shunt 
is removed. 

Errors from omitting the axons 

The effects on the optimal fit parameters of omitting the axons 
from the models are summarized in Table 6. Some of the errors 
are worth taking seriously: they seem to be worst for short, thick 
proximal axon segments, but are almost independent of total 
axon area; this suggests that modeling errors due to axonal am- 
putations or incomplete fills of very distal axonal segments are 
unlikely to be significant. 

Steady-state passive electrotonic structure 

The steady-state electrical geometry of the cells is summarized 
in Table 7, using the zero shunt fit parameters. Because of load 
effects and end effects (e.g., Rall, 1959, 1977; Jack et al., 1975, 
chapter 7; Holmes, 1986a), electrotonic length can be mislead- 
ing. The mean basal/oblique electrotonic lengths are about 0.2 
space constants, whereas the apical tufts terminate at about 0.5 
h. The steady-state efficacies (voltage at soma in response to 
current at dendritic tip + voltage at soma in response to same 
current at soma) show even more electrical compactness: no 
average efficacy is less than 8 1 Yo, and the basal/oblique average 
efficacies are over 95%, even for the electrotonically “longest” 
models. Because of reciprocity (Rall and Segev, 1985; Major et 
al., 1993b), the steady-state dendrite-to-soma efficacy is the same 
as the steady-state soma-to-dendrite voltage-clamp efficacy 
(dendritic voltage in response to somatic current t somatic 
voltage in response to somatic current). All of these cells would 
be extremely well clamped for steady-state commands. This is 
not the case forfast current or voltage transients, however. 

Simulations sf transient synaptic inputs 

Despite the steady-state electrical compactness of the cells, their 
dendrites can still produce substantial cable filtering of fast cur- 
rent or voltage transients. This is illustrated in Figure 12, using 
CA3-32’s optimal model (omitting the axon). The inputs con- 
sisted of double exponential currents with kinetics based on 
u-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)/ 
kainate receptor responses in brief (1 msec) glutamate pulse 
experiments on outside-out patches from CA3 cells at room 
temperature (Colquhoun et al., 1992). A total charge of 0.1 pC 
was injected into one of three locations (arrowheads in Fig. 10, 
details in Fig. 12 caption): (1) the soma, (2) halfway along the 
apical oblique segment, and (3) halfway along the apical tuft 
segment, with median soma-to-tip morphotonic distances for 
their class. The onset time constant of the current was 0.2 msec, 
and the offset time constant 2.5 msec, giving a 20-80% rise time 
of 0.19 msec. A median basal input (not shown) gave similar 
somatic PSPs to the apical oblique input. 

The PSPs at the soma are shown in Figure 12,4, for the optimal 
model (black lines), and also for a model with the same param- 
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Figure 8. Camera lucida reconstruction of dendritic arbor of CA3-33. 
Scale bar, 50 Frn. 
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Figure 9. Camera lucida reconstruction of dendritic and axonal arbors of CA3-32. Red, axon; black, dendrite. DG, dentate gyms; SP, stratum 
pyramidale; F, fomix. Arrow points toward CA 1. Scale bar, 100 Km. 

eters except for an additional 10 nS shunt at the soma (to mimic 
a sharp electrode recordmg). It can be seen that there is a wide 
range of rise times, and that the peak amplitudes and early rising 
phases of the waveforms are not severely affected by the shunt. 
Aptcal tuft (perforant path) inputs’ rising phases are slowed 
several times more than are those of apical oblique (and basal) 
inputs, which are predominantly from CA3 collateral axons. 
Mossy fiber PSPs are faster still (only slightly slower than the 
somatic input). 

The effects of dendritic cables on the voltage-clamp currents 
in response to these inputs are shown in Figure 12B. With perfect 
somatic voltage clamp the apical oblique and apical tuft inputs 
give rise to clamp currents that are substantially slowed and 
attenuated compared with the true (or somatic) input current. 
Any series resistance would cause further smoothing and atten- 
uation. The relative peak efhcacy under voltage clamp is worse 
than under voltage recording, both with and without the shunt. 

Discussion 
Prlncrpaljndings 
This article describes a method for deriving passive cable mod- 
els based on (1) combined short pulse responses and high-quality 
morphology from tight seal whole-cell recorded neurons, and 

(2) an objective means of fit rejection, based on noise controls 
and SE bands around the averaged response, to establish con- 
fidence limits for model parameters. The study was conducted 
on CA3 pyramidal neurons in in vitro hippocampal slices taken 
from 19-2 1 -d-old rats. 

The main result is that, in this class of cell, with our mor- 
phological measurements, C,,, is about 0.7-0.8 IIFcrn-‘, and R, 

is about 170-340 Qcm. R,,,, after washout of sag, is around 120- 
200 kQcm>. The value for C,,, is close to what has been measured 
directly for a number of cell and membrane types (see intro- 
ductory remarks). Also, in a recent study of spherical isolated 
rat pituitary nerve terminals (Rosenboom and Lindau, personal 
communication), C,,, has been measured to be 0.76 * 0.05 
PFcm-‘, remarkably close to the values we have found. It is not 
safe, therefore, to assume that C’,,, is 1 FFcrn-‘, as is commonly 
done. The value of R, is severalfold higher than that expected 
from consideration of the ionic composition of the intracellular 
fluid (e.g., Clements and Redman, 1989), and that measured by 
the tip-resistance change method (Schanne, 1969) in mononeu- 
rons (Barrett and Grill, 1974). High R, values have been found 
in a number of studies to date (e.g., Shelton, 1985; Stratford et 
al., 1989; Fromherz and Vetter, 1992; Major et al., 1993a; Rapp 
et al., 1993; Thurbon et al., 1994). 
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Figure 10. Morphotonic dendrograms of the four cells. A segment fs morphotonic (or relative electrotonic) length l,W, is defined as 2l,/d;l, where 
!, and d, are its physical length and diameter (after spine incorporation). In these dendrograms, vertical lines represent segments; horizontal lines 
Indicate branching. The length of a vertical line is proportional to I,,, ofthat segment. The thickness is proportional to dy, which is the morphological 
component ofg,, = (*/2)(R,,,R,)- “: dy2, the input conductance of that cylindrical segment, infinitely extended. The g,, of each segment is an important 
core electrotonic model parameter in the analytical solution for that cell. The actual electrotonic length scaling for the optimal fit models (see Fig. 
11) is indicated by the number of space constants (A, shown at the top ofeach ordinate) corresponding approximately to the upper axis limit of I.,,, 
the morphotonic distance from the soma. For example, in the case of CA3-15, /,W = 16 cm” is equal to about 0.6 space constants in the optimal 
fit model. Arrowheads in CA3-32 panel indicate input sites for simulations of transients (Fig. 12). Horizontal scale bars (=10e4 cm”*) apply to the 
vertical line thicknesses (dF2). 

The entire range of electrical parameters consistent with the 
experimental data leads to very short electrotonic lengths for 
these cells’ dendrites, with the basal/oblique dendrites being 
about 0.2 space constants and the apical trunk+ tufts being about 
0.5 space constants long. For constant or slow inputs, these 
structures are very compact electrically: the average steady-state 
tip-soma efficacies are greater than 95% for the basal/oblique 
dendrites, and greater than 8 1% for the apical tufts. Despite this, 
with fast inputs, the dendritic trees are still capable ofgenerating 
a wide range of PSP shapes, and can heavily slow and attenuate 
postsynaptic clamp currents (for more detailed discussions, see 
Jonas et al., 1993; Major, 1993; Spruston et al., 1993). 

The R,,, and R, values we have found may change with age 
and temperature, and the kind of preparation. Most ionic con- 
ductances have a & of between 1.3 and 1.6 (e.g., Hille, 1992, 
p 329). Our experiments were performed at room temperature 
(20-24”(Z); at 3YC, commonly used for slice experiments, R,,, 

may therefore be lower, perhaps by a factor of 1.3-2. The Q,, 
for aqueous diffusion is about 1.3 (Hille, 1992), so R, may also 
be reduced by a factor ofup to 1.5 at 35°C. Rat body temperature 
is about 4o”C, so the decreases may be more pronounced in 
vivo. In addition, simulations have shown that effective R,,, can 
be substantially reduced by the background synaptic conduc- 
tances (e.g., Bernander et al., 1991; Rapp et al., 1992) that are 
likely to occur in vivo. 

Fit rejection 

Any data-fitting exercise should include an attempt to estimate 
confidence intervals for the model parameters, as well as simply 
finding a single optimum fit (there may be multiple indistin- 
guishably good optima). In order to do this, an objective test is 
required for fit rejection; simply comparing waveforms by eye 
is inadequate. In most intracellular recordings (and many other 
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Table 2. Summary of morphological parameters of cells 

CA3-15 CA3-16 CA3-32 CA3-33 Mean t- SD 

Total number of 

Dendritic segments 169 137 159 142 152 f 13 

Axonal segments 109 193 207 130 160 k 41 

Dendritic spines 32,400 28,700 34,900 2,600 32,200 + 200 

Boutons 4000 7100 5900 4400 5400 + 1200 

Average density (after wiggle*) (pm-l) 

Dendritic spines 2.7 2.5 3.1 3.3 2.9 f 0.3 

Boutons 0.27 0.30 0.26 0.25 0.27 f 0.02 

Terminal segment diameters before spines incorporated (pm) 
Basal 0.7 IL O.lc 0.6 k 0.11 0.7 2 O.lc 0.7 k O.lc 0.7 + 0.0 

Apical oblique 0.6 + 0.2 0.6 + 0.1 0.7 zh 0.2 0.7 + 0.1 0.7 f 0.0 

Apical tuft 0.6 k 0.1 0.6 k 0.1 0.8 + 0.2 0.6 + 0.1 0.6 t 0.1 

Terminal segment diameters after spines or boutons incorporatedd (pm) 

Basal 0.9 -t 0.2 0.8 -e 0.1 0.9 f 0.2 0.9 t 0.1 0.9 f 0.0 

Apical oblique 0.8 k 0.2 0.7 k 0.1 0.9 + 0.2 0.9 + 0.2 0.8 + 0.1 

Apical tuft 0.7 t 0.1 0.7 + 0.1 0.9 k 0.3 0.8 +- 0.1 0.8 f 0.1 

Axon 0.2 + 0.1 0.2 + 0.1 0.2 It 0.1 0.2 k 0.1 0.2 f 0.0 

Soma-to-tip morphotonice distances (spines incorporated) (cm’fi) 

Basal 5.5 f 1.1 7.1 ?I 1.5 4.9 z!z 1.4 4.9 + 0.9 5.6 CL 0.9 

Apical oblique 5.0 f 0.8 6.4 + 1.2 3.7 k 0.8 4.0 f 0.8 4.8 f 1.1 

Apical tuft 14.1 + 1.9 13.1 k 2.7 11.6 + 1.3 10.0 k 1.0 12.2 + 1.6 

Sum of terminal segment (diameter)‘12 values (spines incorporated) (j.tm3’z) 

Basal 31.9 27.2 36.0 26.8 30.5 + 3.8 

Apical oblique 21.4 10.2 22.0 15.3 17.2 + 4.8 

Apical tuft 10.9 7.3 12.3 15.0 11.4 k 2.8 

Surface area (pm2) 

Soma 2800 2000 3000 1500 2300 k 600 

Total dendritic 59,000 50,300 63,500 57,500 57,600 -t 4700 

Total axonal 19,000 26,200 24,800 20,300 22,600 k 3000 

Total cell 80,800 78,500 91,300 79,300 82,500 f 5200 

y Mean k SD of figures in preceding four columns. Where preceding columns’ data are of the form X f (I,, the (T, values 
are ignored. 
” Lengths are multiplied by wiggle factor(see Experimental methods). Average density obtained by dividing total number 
of spines by total dendritic length (not shown). 
’ Figures for each cell of form x f (I, are (unweighted) average L (within-cell) standard deviation, over all terminals of 
the specified class. Note that diameter figures are quoted to one decimal place only. 
d Spine collapse procedure described in Experimental methods. 

c Morphotonic length of segment j is I,,, = 2l,l\/;i, where I, and d, are the segment length and diameter, respectively. 
For a given tip, the soma-to-tin morphotonic distance is the sum of the I,,, values for all segments j on the direct path 
from the soma to that tip. 

kinds of data), the noise is not independent over time, as most 
conventional statistical tests assume. 

One way around this problem is to compare fit residuals to 
control noise, and to assess how likely it is that the observed 
deviation between a given model response and the target data 
could have occurred by chance. It is not necessary to know 
anything about the model: its response waveform is all that is 
required. In other words, such techniques are model-free and 
are fairly general in their applicability; for example, they could 
be used to accept or reject multi-exponential fits. Two methods 
are suggested above, one based on rejecting fits that escape from 
95% confidence bands around the target waveform, the other 
on rejecting fits whose WSD or weighted root mean squared 
deviation from the target is greater than 95% of control noise 
WSDs. The confidence band test is more sensitive to large, brief 
deviations between model response and data; the WSD test is 
more sensitive to smaller, longer-lasting deviations. In this study, 

we have reported results using the former method, because it 
yielded the best-constrained ranges for R, and C,, the param- 
eters of greatest interest. 

An alternative approach would have been the use of x2 tests 
based on the inverse covariance matrix (Diggle, 1990, Appendix 
B). For these, it is necessary to compute from single sweeps the 
experimental response’s covariance matrix (i.e., as well as the 
variance of the response at all times t, the covariances between 
the response at t and all other times t’ must also be found). The 
covariances are then converted into standard covariances (of 
the mean response from each t to each t’) by dividing by the 
weighted number of sweeps in the grand average. The standard 
variance (i.e., the SE squared) is just the special case when t = 
t’. The standard covariance matrix must then be inverted, before 
being premultiplied by the row vector and postmultiplied by 
the column vector of residuals, to give the goodness of fit mea- 
sure. If further tests confirmed that the responses at each time 
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Figure I I. Optimal fits of all four cells. First two models include most likely pipette (20 pF, 10 MQ), via which current is injected and response 
is recorded. Real cells’ grand average target responses to short current pulses are dashed lines; optimal model responses to same current are dotted 
lines. Lines superimpose so well that they appear to be one dot-dashed line. Note different voltage axes. Optimal electrical parameters are listed in 
each panel. 

point were (approximately) normally distributed about their 
mean, this quantity would have, asymptotically, a xf, distribu- 
tion, where n, the degrees of freedom, is (number of points in 
fit interval) - (number of free parameters). In such a case, there 
would be no need for independent noise controls. I f  the scatter 
at each time point was not normally distributed, the same pro- 
cedure would have to be applied to independent noise controls 
to estimate significance levels. Since our fit intervals encompass 
on the order of 2000 points typically, a (2000 x 2000) matrix 
inversion would be required. The method would suffer from 
dilution problems (as when there are no temporal correlations 

in the noise); for example, a poor fit at early times can be swamped 
in the goodness of fit measure by an extremely good fit over the 
rest of the interval. There may be some simpler analytical ap- 
proaches, exploiting the apparently straightforward exponential 
decay of the correlations. 

All the tests mentioned could probably be made less sensitive 
to dilution, for example, by judicious use of( 1) weightingprofiles 
(e.g., multiply the error at each time by the magnitude of the 
mode1 or experimental response, so all residuals end up being 
weighted by the signal-to-noise ratio, which decreases over the 
fit interval), and (2) nonunjform sample intervals in the grand 
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Table 3. Approximate input resistances and time constants, from 
short pulse responses 

Cell 

CA3-15 

CA3-16 
CA3-32 
CA3-33 

Mean 

“1nitial”a Postwashouth 

TOC RR To< RR 
(msec) (MQ) (msec) WW 

75 180 120 260 
140 280 140 310 
94 170 150 260 
63 140 93 200 
93 190 130 260 

Values are quoted to two significant figures. 

” First subaverage of 100 sweeps; some washout already. 
” Grand average of linearly scaling, stable subaverages showing no sag; see Mod- 
eling methods. 
c Apparent slowest time constant estimated by linear regression using logarithmic 
voltage axis, over following intervals (times in milliseconds from pulse end): initial 
responses, 50-100 (except CA3-16, X-200); postwashout responses, 100-200 
(except CA3-33, 100-l 50). Time constants from initial subaverages particularly 
unreliable due to contaminating spontaneous synaptic noise. 

d Exponential amplitudes and time constants estimated from short pulse responses 
by peeling (Rail, 1969a). Approximate input resistances R,, were calculated using 
Equation 4 (see Modeling methods). Early components (with n greater than some 
n,,,, ranging from 3 to 5) having time constants r,< 5 1.5~~,~ were excluded, where 
rp,p was the slowest expected value of the pipette time constant, on the basis of 
highest series resistance x largest estimate of pipette capacitance. 

average (but not the unfiltered single sweeps): the sample interval 
could be increased with time from the pulse end, so late times 
make a smaller contribution to the goodness of fit measure. This 
would have the advantage, with the covariance matrix method, 
of reducing the size of the matrix. Because of the heavy filtering 
at late times, comparatively little information about the un- 
derlying response would be lost. 

Such approaches would lead to a narrowing of the confidence 
intervals for R, and C,,, for a given cell, but would have little 
effect upon intercell variation. In this study, since the inter- and 
intracell ranges for the parameters are similar, there would not 

Table 5. Optimal0 fits with g,,,,, fixed at nonzero values 

&““, C,,, R, Rn Ah 
Cell (nS) (tiFcm-2) @cm) (Mcm*) WSD (cm’h) 

CA3-15’ 

CA3-l& 

CA3-32 

CA3-33 

1 0.63 230 260 0.13 33 
2 0.60 216 440 0.17 45 
3 0.54 224 2000 0.49 94 
1 0.73 150 280 0.28 43 
2 0.70 150 650 0.18 65 
3 0.64 170 2000 2.96 111 

1 0.77 260 280 0.25 33 
2 0.75 240 460 0.18 44 
3 0.73 230 1200 0.14 74 
1 0.76 390 150 0.51 20 
2 0.74 380 210 0.50 23 
3 0.71 380 330 0.50 30 
4 0.69 310 740 0.5 1 45 
5 0.66 330 1.8 x lo6 1.2 2300 

Values are quoted to two significant figures only. 
“ All accepted by -95% confidence band test. 

” Morphoelectric factor (RJR,)". 
‘ Models include most likely pipette (10 MB, 20 pF). 

be any significant advantage compared to the cruder confidence 
band method described above. 

Potential sources of error 

Random errors due to spontaneous synaptic noise have been 
minimized by the use of neurotransmitter blockers. Efforts to 
improve the stability of recordings could further reduce noise. 
The statistical tests described above have, we hope, provided 
fairly conservative 95% confidence intervals for all of the elec- 
trical parameters. Systematic errors due to pipette artifacts have 
either been avoided, or the pipettes have been included in the 
models. Sag, linear scaling, and stability have been explicitly 

Table 4. Summary of parameters obtained from direct fits between model and experimental responses 

with gsh.., fixed to zero 

Cell 

c,,, 
(rFcmm2) 

Best Ranae 
&m) 

Best Range 

R” 
(k&m2) 

Best Range 
Fit WSDO 

Best Range 

hb 
(cmh) 

Best Range 

CA3- 15< 0.66 0.56-0.7 7 250 100-400 180 210-160 0.13 0.13-2.6 27 42-21 

CA3-16 0.76 0.73-0.81 160 110-210 180 220-160 0.35 0.28-3.0 34 42-29 
CA3-32* 0.79 0.73-0.83 210 160-320 200 220-180 0.30 0.30-2.4 27 35-25 
CA3-33d 0.79 0.74-0.8 1 390 300-410 120 130-110 0.54 0.54-2.1 17 20-17 

Mean 0.75 0.69-0.81 270 170-340 170 200-150 - - 26 35-23 

Data are fits to grand averages, over intervals specified in Table 1. Acceptable ranges were determined by systematic 
exploration of parameter space and noting most extreme values where fit waveform just inside -95% confidence band 
of target data (see Table I). Ranges in mean row are averages of the values in the column above them. Fits with higher 
C,,, values tended to be associated with higher R, values and lower R,,, and hence lower A values, so R,, and A ranges 
are written as highest-lowest. Corresponding extreme parameters are not necessarily from the same fit. Values are quoted 
to two significant figures only. 
u Weighted standard deviation between target and model transients, over fit interval (= root mean squared deviation, 
with squared error at each time point normalized by SE’ of target data). 
‘) Morphoelectric factor (RJR,)'". 
’ “Best” models have most likely pipette (10 MB, 20 pF); also tested: 5 MO, 10 pF (best plausible pipette); 15 MB, 20 
pF (worst plausible pipette). SEs of each data point were computed from subaverages, not individual sweeps. Confidence 
band was filtered with c = 0.21 variable gaussian filter. 

ii Pipette not included in model. Standard errors were computed from all single sweeps used for grand average. 



Table 6. Errors in optimal fit parameters introduced by omitting 
axon 

Cell - 
CA3-15 
CA3-16 

CA3.m32 

CA3-33 

Mean 
-- 

$l) 

+9 

+5 

+10 
+5 

+7 

g, 

+5 

+3 

+12 
+1 

+5 

R,, 
(W 

-19 

-19 

-25 

-11 

-18 

Most proximal Total 
area axon segment I 

Diam- den- 
eter Length dritic 
(m) (rm) area 

2.0 17 1.3 

1.2 130 1.6 

2.0 40 1.4 

1.6 115 1.4 

1.7 91 1.4 

checked for, to avoid spurious curvature in grand averages (e.g., 
that caused by adding together responses with different final 
time constants), and to minimize the risk that active conduc- 
tances have distorted the responses. 

Tissue shrinkage 
By adopting an electron microcopy-based fixation and embed- 
ding strategy, in particular by osmicating the sections prior to 
dehydration and by embedding in epoxy resin, it was hoped 
that tissue shrinkage would be kept to a minimum. However, 
slices shrink by about 10% during the histological procedure. 
With this method shrinkage generally affects the extracellular 
compartment of the tissue more than the intracellular. In filled 
cells, the reaction product may act like a kind of endoskeleton, 
which leads to snaking or wiggle, rather than shrinkage. In view 
of these considerations, no additional shrinkage factor was ap- 
plied to either the lengths or the diameters. Nevertheless, con- 
siderable uncertainty remains about possible systematic errors 
in the morphological measures. Lengths may have been under- 
estimated by around 10%. Diameters could either have been 
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decreased by shrinkage, or perversely, increased (by bunching 
up, as when a worm contracts). See Larkman and Mason (1990), 
Peters et al. (1985) West et al. (1988), and Beaulieu and Co- 
lonnier (1983) for further discussion. Typically dendritic wiggle 
factors were in the range of 1. l-l. 15 (i.e., about what one would 
expect given 10% shrinkage). Usually axons wiggled more than 
dendrites, probably because their courses were more erratic to 
begin with. The estimated C,,, of a cell will trade off with its 
measured surface area (see next two sections). Uniform 10% 
linear shrinkage would result in the measured area being only 
81% of the actual area at the time of recording. To conserve 
total capacitance, best fit C,, x measured area = true C,, x 
unshrunk area. If the optimum fit C,,, of the shrunk cell model 
was 0.75 pFcm-2, the true C,, would be 0.75 x 0.81 = 0.61 
WFcm-*. 

Other morphological errors 
Diameters might have been overestimated because of diffrac- 
tion, blurring, or the histological procedure. However, the mean 
dendritic terminal segment diameters before spine incorpora- 
tion (Table 2) were about 0.6-0.7 km, comparable to values 
measured with the electron microscope for CA1 pyramidal cells 
(Harris and Stevens, 1989, Table 1: mean 0.56 pm; Harris et 
al., 1992, Table 2, oblique dendrite entry: day 15 = 0.79 pm, 
adult = 0.63 wm). The spine counts may have been in error by 
up to 15%, and mean single spine areas may have been different 
from the 0.83 pm* assumed. To calibrate the light microscopy 
results, electron microscopic (EM) measures could be obtained 
for diameter and spines, perhaps using high-voltage EM (e.g., 
Wilson, 1987; Hama et al., 1989). 

Equation 1 would have been reasonably accurate for den- 
drites, which are fairly straight apart from relatively high-fre- 
quency wiggling. Computer-aided three-dimensional recon- 
struction might allow more accurate estimation of axonal lengths 
however. The reassuringly close match between the C,,, values 
we have found, and more direct measures (see above), suggests 

Table 7. Steady-state electrical geometry 

Basal Apical oblique Apical tuft 
% % % 

Cell L.‘J Efficacy” L Efficacy L Efficacy 

Optimal models 
CA3- 15< 0.20 i 0.04 97 f 1 0.18 i 0.03 97 i 1 0.52 2 0.07 88 * 3 
CA3-16, 0.21 i 0.04 97 f 1 0.19 f 0.03 97* 1 0.38 i 0.08 92 f 2 

CA3-32” 0.18 + 0.05 98k 1 0.14 * 0.03 97t- I 0.43 zk 0.05 92 f 2 

CA3-33* 0.28 f 0.05 961 1 0.23 f 0.05 93* 1 0.57 i 0.06 84 f 2 
Average 0.22 t 0.05 97 +- 1 0.19 f 0.03 96k I 0.48 -+ 0.07 89 f 2 

Most electrotonically “long” models 
CA3-15l’ 0.26 f 0.05 95 f 2 0.23 -t 0.04 95 iz 2 0.66 * 0.09 81 +4 
CA3-16’ 0.25 f 0.05 96 f I 0.22 f 0.04 96+ 1 0.46 i 0.09 89 + 3 

Figures for each cell are quoted as (unweighted) mean + (within-cell standard deviation), over all terminals of specified 
class. Figures in average row are (average of means) * (average of within-cell standard deviations). 
I* Soma-to-tip electrotonic distance: the soma-to-tip morphotonic distance is divided by the morphoelectric factor A = 
(R,,,/R,)“; see Tables 2 and 4. 
I’ Relative steady-state efficacy from dendritic tips: soma voltage from tip input + soma voltage from somatic input, also 
= steady-state voltage-clamp efficacy; note that steady-state efficacy = efficacy of time integral of transient (Rinzel and 
Rail, 1974). 

Most likely pipette (I 0 MR, 20 pF). 
C’ Also approximately equal to most electrotonically long model from same cell. 
‘ Best plausible pipette (5 Ma, 10 pF). 
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Figure 12. Simulations of transient 
currents into CA3X32 optimal model 
(axon omitted). Current parameters: 
double exponential time course; total 
charge, 0. I PC, onset time constant, 0.2 
msec; offset time constant, 2.5 msec. 
Three stimulus locations are used: s 
(soma; solid lines), ao (median apical 
oblique: 43 pm along segment 152; 
dashed lines), at (apical tuft: 297 Km 
along segment 14 1; dotted lines); the 
latter two are arrowed in Figure 10, 
CA3-32 panel. Recording was from 
soma in all cases. A, Voltage recording, 
either with no shunt (black lines) or a 
10 nS somatic shunt (thicker gray lines). 
Notice the wide spread of PSP shapes, 
the convergence at late times for the no- 
shunt model but not in the case of the 
shunt model. and the comparatively 
small effect of the shunt on the early 
parts of the responses, including the 
peaks of the more proximal inputs. B, 
Equivalent clamp currents under per- 
fect somatic voltage clamp. Notice the 
serious distortion of the apical oblique 
and tuft currents, compared with the 
true or somatic input current (similar 
effects demonstrated in other studies, 
e.g., Fig. 7 of Rall and Segev, 1985). 
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(but does not prove) that no serious errors have been made in 
the overall areas of these cells. 

brane time constant T,,, (= R,,,C,,,) and soma membrane con- 

Electrical parameter trade-offi with morphological errors 

ductance g,,,,, 

There are two ways to think of a cable model with a particular 

and the electrotonic length L, and the input con- 

branching pattern: (1) the “raw” electromorphological descrip- 
tion, in terms of the lengths /, and diameters d, of all segments 

ductance g,> (infintely extended cylinder) of each segment j. 

j, the soma diameter d,, and the specific electrical parameters 
C,,,, R, , and R,,, (assuming no somatic shunt); and (2) the “core” 

It is the core electrotonic model that actually generates wave- 

electrotonic model, specified in terms of the parameters mem- 

forms. If there are N segments, the raw electromorphological 
description has 2N + 4 parameters, but the core electrotonic 
model only has 2N + 2 parameters (again, assuming no somatic 
shunt). 

A similar duality holds for compartmental models: instead of 
a core electrotonic model, there is a core electrical model, com- 
posed of a branching network of actual resistances and capac- 
itances, which is used to generate waveforms. If the membrane 

2) was 0.7 Hrn before spine incorporation. Suppose all these 
diameter measures were overestimates by 0.2 Km, and that the 

would expect smaller errors for the thicker nonterminal seg- 

mean diameter was in fact 0.5 Wm. Assuming a spine density 
of 2.9 Km-l gives a folding factor F of 2.09 with a d of 0.7 pm, 
and 2.53 with a d of 0.5 pm. After spine incorporation, the 

ments), to preserve the same core electrotonic model (and there- 

adjusted diameters are 0.9 and 0.68 hrn, respectively; the den- 
dritic lengths are multiplied by 1.64 when d is 0.7 and by 1.86 

fore the optimum fit waveform), R, would have to be multiplied 

when d is only 0.5 pm. Overall, correcting d = 0.7 to d = 0.5 
results in an Fd = 0.76 and F, = 

by 0.76’/1.13 = 0.5 1; that is, it would be approximately halved. 

1.13, after spine incorporation. 
Taking these factors to hold over the entire cell (although one 

Over the four cells in this study, this would result in an actual 
mean R, of about 140 Ocm, only about twice that commonly 
assumed. R,,, and C,,, would be multiplied and divided, respec- 
tively, by a factor of 0.86; that is, the mean C,,, would be about 
0.87 PFcm-‘. 

The optimal value of R, is thus very sensitive to errors in 
diameters, since in the trade-offs it is proportional to pd. This 
may go some way toward explaining the large intercell variation 

is uniform, and there are N compartments, there are again 2N 
+ 4 raw parameters, and 2N + 2 core parameters: C, (soma 
capacitance) and R, (soma resistance), and for every compart- 
mentj, R,,, (axial resistance) and C, (lumped membrane capac- 
itance); the lumped membrane resistance of every dendritic 
compartment is then determined (= C&/C,). 

Both cable models and compartmental models thus have the 
important property that a given waveform-generating core mod- 
el can be obtained from an infinite number of different raw 
electromorphological descriptions: because there are more raw 
than core parameters, the raw parameters can trade off with one 
another and still yield the same core model, and hence the same 
responses (for more details, see Holmes and Rall, 1992; Major 
et al., 1993a; Evans et al., 1994; Major and Evans, 1994). 

Consider the effects of morphological measurement errors for 
an aspiny neuron. Suppose that to compensate for systematic 
errors, all measured segment lengths are increased by a factor 
F,, and all measured diameters are increased by a factor of Fd. 
The underlying core electrotonic model (and hence the short 
pulse response) is preserved by the following compensating 
changes in the raw specific electrical parameters: multiply R, by 
F,‘/F, and R,,, by F,F, and divide C,,, by F,F. The last pair of 
changes conserve T,,, and the total membrane capacitance and 
resistance of each segment. The first pair conserve the axial 
resistances, L, and g,# of all segments j. (Other kinds of mor- 
phological error, such as adding or subtracting a constant from 
every diameter, have to be explored explicitly.) 

In the case of a spiny neuron, if the dendritic spine folding 
factor F, on every dendrite (see Morphology, in Experimental 
methods) is increased by a factor F, (to approximate an increase 
in either single spine areas or spine density), then F<, = F: and 
F, = F;:. (Note that when diameters vary this is not equivalent 
to multiplying all spine densities or single spine areas by the 
same factor.) It follows that to preserve the original core elec- 
trotonic model, R, is unchanged, and R,,, and C,,, are multiplied 
and divided, respectively, by F, . A nonumform change in F,, 
caused for example by a uniform fractional change in spine 

in R,. It is clearly dangerous to transplant electrical parameters 
obtained from one study to morphology measured with different 
systematic errors in another study. 

It should be emphasized that the adjusted model’selectrotonic 
lengths, steady-state efficacies, and predicted PSPs and PSCs 
would be exactly the same as for the original model, providing 
the inputs were at the same relative locations (i.e., ifthe distance 
along the input segment of the injection site were multiplied by 
F,). This is because, in terms of the core electrotonic represen- 
tation, the adjusted and original electromorphological descrip- 
tions are the same model 

Extensive simulations have shown that other plausible kinds 
of morphological error can usually be reasonably well compen- 
sated for by changes in the specific electrical parameters 
when direct fitting to a particular target transient is performed. 
The core models and hence predicted PSP or PSC waveforms 
are approximately preserved, even if R, or C,,, are substantially 
different from their “true” values (see Major, 1992, chapter 4, 
for more discussion). 

Other explanations for high R, 
Part of the discrepancy from the traditional value of around 70 
Qcm may lie in the observation that a significant fraction of the 
cross-sectional area of neuronal processes can be occluded by 
organelles and cytoskeletal elements (e.g., Stevens et al., 1988; 
for general review, see Fulton, 1982). Dendritic cross sections 
could be elliptical or irregular, rather than circular, which would 
increase the effective R,. In addition, the properties of intracel- 
lular water differ from that of pure water or water in electrolyte 
solutions. Self-diffusion coefficients can be two- to sevenfold 
lower and microviscosity may be up to five times higher in cell 
water than in pure water (e.g., Clegg, 1984a,b). A number of 
studies show reduced diffusion of ions or molecules in a variety 
of different cell types (e.g., Kushmeric and Podolsky, 1969; 
Wojcieszyn et al., 198 1; Connor and Ahmed, 1984; Jacobson 
and Wojcieszyn, 1984; Mastro et al., 1984). See Shelton (1985) 
for further discussion, including a consideration of the effects 

density or single spine area, will affect R,, but only slightly in of nonnegligible extracellular resistivity. The effects on R, of 
general. organelles, cytoskeleton, and cytomatrix, and so on, may well 

The typical dendritic terminal segment diameter d (see Table vary over different parts of a neuron; in this study we have not 
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entertained the unpleasant possibility of nonuniform electrical 
parameters in the dendrites. 

Washout and inward rectification 

It is possible that cytoplasmic changes caused by intracellular 
perfusion may have affected R,. The extra gluconate anions 
diffusing from the pipette into the cell could, in theory, reduce 
R, from its true value. With Cs+ and/or Cl- ions in the pipette, 
R, might end up lower still, since they are more mobile than K+ 
and gluconate ions, respectively. The cytomatrix or cytoskele- 
ton, and consequently R, , could be altered by changes in intra- 
cellular calcium concentration. The early parts of short pulse 
responses are sensitive to changes in R, and C,,, (but not gshun, 
or R,,,: see Major et al., 1993a). Judging from the stability during 
washout of the short pulse responses over the interval of about 
l-20 msec from the pulse end (see Figs. 2E, 5B,C), it is unlikely, 
therefore, that there were any significant changes in R, (or for 
that matter C,,,) during the course of the recordings. Any slight 
boosting of the first few milliseconds of the responses is more 
likely to have been caused by rising pipette resistance. 

In this study it was fortunate that the conductance(s) respon- 
sible for sag washed out within about 8 min of achieving the 
whole-cell configuration. The conductance underlying Zh (the 
hyperpolarizing activating current), which contributes to sag in 
a number of other cell classes, is activated by CAMP (e.g., To- 
kimasa and Akasu, 1990; Banks et al., 1993). This intracellular 
messenger probably diffuses out of the cell and into the pipette. 
The location of the sag conductance(s) is unknown; they could 
be entirely in the soma, or spread through some or all of the 
dendrites. Assuming they are uniformly spread, one could guess 
that prior to washout, TV and hence R,,, (assuming no change in 
C,,,) would be about half their final values. This would give a 
prewashout effective R,,, of around 85 kRcm’. All electrotonic 
lengths would be increased by a factor of about 1.4; because of 
end effects the cells would still have a very compact steady-state 
electrical geometry. If all the sag conductances were in the soma, 
the electrotonic lengths and steady-state relative efficacies would 
not change with washout; they do not depend on the size of the 
effective somatic shunt (e.g., Appendix 3 of Major et al., 1993a). 
However, the final decay of transients would still be more rapid 
than postwashout. Whatever the distribution of sag conduc- 
tances, their activation and deactivation would further “sculpt” 
PSPS. 

Another factor to consider is the inward rectification shown 
by CA3 pyramidal cells: R, and T” are reduced at hyperpolarized 
potentials (Spruston and Johnston, 1992), even after washout 
of all the sag at the resting membrane potential (not shown). 
CA3 pyramidal cells recorded with sharp electrodes also dem- 
onstrate inward rectification (Brown et al., 1981; G. Major, 
unpublished observations). If R,,, is reduced by hyperpolariza- 
tion, and behavior near any one hyperpolarized potential is 
effectively passive (as seems to be the case after washout), then 
there will be no single electrical geometry that describes the 
steady-state properties of the cell. However, at most potentials 
the basal and oblique dendrites will remain electrically compact. 
For a given input current, the early parts of the responses at 
hyperpolarized potentials will be similar to those at rest, since 
they are relatively insensitive to R,,, and grhun, (e.g., Jonas et al., 
1993; Major, 1993; Major et al., 1993a,b). 

Other pyramidal cells modeled bJj the authors 

The range of specific electrical parameters found above is com- 
parable to those in several other recent studies we have carried 

out using biocytin- or HRP-filled pyramidal neurons. In rat layer 
II/III visual cortical pyramidal cells, recorded with sharp elec- 
trodes, C,,, was about 0.65-0.8 PFcm-*, and R, was about 200- 
300 Ocm (Major, 1992). In these cells there were shunts of 
around 3-15 nS. Resting R,,, was around 50 k&m”, although 
there was considerable uncertainty about its exact value because 
it was ill-conditioned with respect to the size of the shunt. In 
one impaled adult rat hippocampal CA1 pyramidal cell, R, was 
approximately 200 Rem (Major et al., 1993a). A mean C,, of 
0.85 pFcm-2 and a mean R, of about 370 Qcm has been found 
recently in some preliminary models of three whole-cell re- 
corded 20-d-old rat CA1 pyramidal cells. Unpublished models 
ofthree classes ofneocortical pyramidal cell recorded with sharp 
electrodes (following Stratford et al., 1989) with C,,, constrained 
to 0.7 PFcm-‘, yielded mean R, values of between about 250 
and 400 Rem. The sharp electrode data suffer from two main 
drawbacks compared with the whole-cell data: (1) the likely 
presence of a somatic shunt or, equivalently, a lower R,,, in the 
soma than in the dendrites, and (2) longer uncompensatable 
electrode artifacts (due largely to noncapacitative effects). How- 
ever, the cells were from adult rats, which are more difficult to 
record from using whole-cell pipettes. 

Future experiments 

Given the importance of R, as a fundamental electrical param- 
eter in neurons, experiments to measure it directly would yield 
data of great interest. Double impalements of single cells (e.g., 
Wongand Stewart, 1992) or double whole-cell recordings (Stuart 
and Sakmann, 1994) might be useful when combined with ac- 
curate morphology. Reciprocity (if the two recording sites are A 
and B, the A-to-B transfer response should equal the B-to-A 
response) could be added to linear scaling and absence of sag 
as a test for passive behavior. A complementary approach would 
be the use of voltage-sensitive dyes combined with cable mod- 
eling (Fromherz and Vetter, 1992) or dyes giving absolute or 
ratiometric estimates of membrane potential (e.g., Loew, 1993). 

Overview 

This study clearly demonstrates the potential of whole-cell re- 
cording combined with biocytin morphology as the basis for 
quantitative passive cable modeling of neurons. A genera1 tech- 
nique for fit rejection has been used to find confidence intervals 
for the electrical parameters of the models. Care has been taken 
to minimize systematic errors, but some problems remain. In 
the steady state, CA3 pyramidal cells have electrically compact 
dendritic trees, but identical synaptic inputs at different loca- 
tions can generate PSPs of different shapes; there will also be 
serious voltage-clamp errors for fast events. The results of this 
study therefore have significant implications for the experi- 
mental analysis of synaptic inputs, and also suggest that real 
neurons have the potential for more computational power than 
the “point” units used in most neural network models. 
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