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Specific antibodies and cytochemical markers combined with 
several imaging and morphometric techniques were used to 
characterize the endosomal-lysosomal system in mature neu- 
rons of the normal human central nervous system and to quan- 
titate changes in its function in Alzheimer’s disease. Compart- 
ments containing cathepsin D (Cat D) and other acid hydrolases 
included a major subpopulation of mature lysosomes lacking 
mannose-6-phosphate receptors (MPR) and smaller popula- 
tions of late endosomes (MPR-positive) and lipofuscin granules 
(MPR-negative). Antibodies to the pro-isoform of Cat D deco- 
rated perinuclear vacuolar compartments corresponding to late 
endosomes. Neurons and glia contained lysosomes with differ- 
ing complements of acid hydrolases, implying different pro- 
cessing capabilities. Endosome/lysosome number per unit vol- 
ume of cytoplasm was relatively well conserved within 
populations of normal neurons. By contrast, in morphometric 
analyses of Alzheimer’s disease brains, 80-93% of pyramidal 
cells in the prefrontal cortex (laminae Ill or v) and hippocampus 
(CA2, CA3) displayed two- to eightfold higher numbers of 
hydrolase-positive vacuolar compartments than did corre- 

sponding cell populations in age-matched normal brains. Only 
510% of cerebellar Purkinje cells, a less vulnerable population, 
showed the same statistically significant elevations. Most af- 
fected neurons in these brain regions and in subcortical areas 
seemed otherwise normal by conventional histological staining 
and ultrastructural inspection. That both lysosomal and pro-Cat 
D- and MPR-positive endosomal compartments increased in 
number demonstrates that the endosomal-lysosomal system is 
activated markedly in vulnerable neuronal populations of Alzhe- 
imer’s disease brains and implies that endocytosis or autoph- 
agy or both are accelerated persistently at an early stage of 
cellular compromise, greatly surpassing the degree of activity 
associated with normal aging. Early activation of the endoso- 
mal-lysosomal system represents a biological event potentially 
linking major etiological factors in Alzheimer’s disease, includ- 
ing defective membrane proteins, apolipoprotein E function, 
and altered amyloid precursor protein processing. 
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The endosomal-lysosomal system is a highly dynamic and poly- 
morphic system of acidified cytoplasmic organelles that serve key 
roles in cell function (Kornfeld and Mellman, 1989; Sahagian and 
Novikoff, 1994; Nixon and Cataldo, 1995). Rapid and extensive 
communication among these compartments by receptor-targeted 
membrane fusion creates an efficient mechanism for protein and 
membrane trafficking and processing between the Golgi apparatus 
and the plasma membrane (Klausner, 1989; Sahagian and No- 
vikoff, 1994). A battery of more than two dozen acid hydrolases, 
including proteases or cathepsins, are shuttled from the Golgi 
apparatus to late endosomes that contain intracellular material 
engulfed during autophagy or extracellular material derived from 
heterophagy (Gordon and Seglen, 1988; Dunn, 1990; Gordon et 
al., 1992). A family of mature lysosomal compartments thereby 
arises, which includes dense bodies, multivesicular bodies, and 
autophagic vacuoles. As a result of aging or metabolic and oxida- 
tive stress, indigestible or incompletely degraded material accu- 
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mulates within these organelles, creating a heterogeneous group 
of residual bodies or postlysosomal compartments such as lipo- 
fuscin and ceroid (Brizzee et al., 197.5; Siakotos and Armstrong, 
1975). 

As a major site for the degradation of cytosolic and membrane 
proteins and cell organelles, lysosomes replenish pools of amino 
acids and glucose for new protein synthesis (Seglen and Bohley, 
1992). Controlled shifts in lysosomal activity allow neurons to 
regulate their cytoplasmic volume (Bhattacharya and von May- 
ersbach, 1976; Seglen and Bohley, 1992) and remodel local cellu- 
lar domains during differentiation (Pannese et al., 1976; Roberts 
and Gorenstein, 1987). “Lysosomal” hydrolases in endosomal 
compartments may also carry out limited proteolysis on certain 
proteins to generate molecules with new functions (Diment et al., 
1989; Casciola-Rosen and Hubbard, 1991; Renfrew and Hubbard, 
1991). Nutritive, trophic, and regulatory molecules such as vita- 
min B12, cholesterol, and insulin are internalized by receptor- 
mediated endocytosis, transported to late endosomes, and pro- 
cessed to release functionally active molecules (Doherty et al., 
1990; Idriss and Jonas, 1991). Endocytic activity is particularly 
high at nerve terminals and dendritic domains, and the retrograde 
translocation of membranous vesicles containing extracellular ma- 
terials to endosome/lysosome-related compartments may be part 
of a mechanism for conveying molecular information, including 
trophic signals from the periphery (LaVail and LaVail, 1974; Baas 
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and Heidemann, 1986; Parton and Dotti, 1993), as well as for 
recycling synaptic membrane. The importance of the endosomal- 
lysosomal system for proper brain function is underscored by the 
fact that extensive neuropathology, mental retardation, and often 
progressive cognitive decline are among the most prominent phe- 
notypic features of the more than 30 known inherited disorders 
involving defects in the synthesis, sorting, or targeting of lysoso- 
ma1 enzymes. Despite its neurobiological importance, relatively 
little is known about the properties of the endosomal-lysosomal 
system in the nervous system, particularly in mature neurons. 

An association of lysosome activation with regressive events 
during development and involution in some invertebrate systems 
previously gave rise to a notion that lysosomes are commonly and 
prominently involved in neurodegeneration. In many forms of 
neuronal cell death, however, lysosome system participation 
seems minimal or may even represent attempts to repair or 
compensate for the injury (for review, see Nixon and Cataldo, 
1993). Current findings suggest that lysosomal system alterations 
are not part of a final common pathway to cell death in the 
nervous system, but instead may be a distinctive cellular response 
to certain types of metabolic compromise (for review, see Nixon 
and Cataldo, 1993). In Alzheimer’s disease, however, endosomal- 
lysosomal system disturbances are prominent and have potential 
relevance to pathogenesis (Nixon et al., 1992; Cataldo et al., 1994, 
1995). Studies using antibodies to lysosomal hydrolases have now 
revealed striking intracellular and extracellular manifestations of 
altered lysosomal function, including elevated acid hydrolase gene 
expression in vulnerable neuronal populations (Cataldo et al., 
1995), massive accumulation of acid hydrolase-containing com- 
partments in atrophic and degenerating neurons or their pro- 
cesses (Cataldo et al., 1990; Nakamura et al., 1991), and release of 
these lysosomal compartments into the extracellular space where 
they persist and contribute to senile plaque formation (Bernstein 
et al., 1989; Cataldo et al., 1991, 1994; Nixon and Cataldo, 1991; 
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Bernstein, 1994) and appear in markedly elevated levels in ven- 
tricular CSF (Schwagerl et al., 1995). 

In this study we characterized the individual components of the 
endosomal-lysosomal system in neurons of the human brain using 
a combination of light microscopic, ultrastructural, and morpho- 
metric approaches involving different functional markers. We 
identified distinct acid hydrolase-containing vacuolar compart- 
ments in normal neurons and obtained quantitative information 
on changes in these compartments in Alzheimer’s disease. New 
evidence is reported here that disturbances of endosomal-lysoso- 
ma1 system function are not restricted to overtly degenerating 
neurons but are evident in the vast majority of neurons within 
populations at risk to degenerate in Alzheimer’s disease brain. 

MATERIALS AND METHODS 
Tissue. Postmortem brain tissue from 20 individuals with the probable 
clinical diagnosis of Alzheimer’s disease and from 17 age-matched (62-78 
years old), neurologically normal controls were used in this study. Tissue 
was procured from the Brain Tissue Resource Center at McLean Hos- 
pital (Belmont, MA) and the Neuropathology Core Facility of the Mas- 
sachusetts Alzheimer’s Discasc Research Center (Massachusetts General 
Hospital, Boston, MA). Control brains ranged from 1200 to 1350 gm in 
weight and exhibited no gross anatomical pathology and only minimal 
histopathological changes (O-3 ncuritic plaques/low power field; O-6 
ncurofibrillary tangles/low power field). Tissue blocks (3 X 1 X 0.4 cm’) 
from the frontal pole (area 10, prefrontal cortex), hippocampus, and 
cerebelli of all brains were cut into 30- to 40-pm-thick vibratomc sections 
or X-km-thick paraffin sections. 

The presence and magnitude of ncurodegeneration and ncurofibrillary 
histopathology were confirmed on adjacent, serial vibratome, or paraffin 
sections from all brain regions using Nissl and Bielschowsky stains, and 
the diagnosis of Alzheimer’s disease was established by criteria from the 
Consortium to Establish a Registry for Alzheimcr’s Disease (Mirra et al., 
1991). Thioflavin S was used for histological detection of the P-amyloid 
protein. Brain tissue used for immunocytochemical analyses was immer- 
sion-fixed in cold, 10% phosphate-buffered (0.15 M) formalin, pH 7.4. The 
postmortem interval for all brain tissue used was O-6 hr with a total 
fixation rime of 2 weeks or less. 

Fq~e I. Hydrolase-contammg endosomal-lysosomal compartments. Cat D immunoreactlvity IS abundant in endoaomcs and lysosomes of pyramldal 
neurons from human brain (A, arrow). Confocal imagmg of fluoroprobes to Cat D (A, red, awow) and the MPR (B, green, awow) in the same neurons 
shows hydrolase immuno?taining m both MPR-positive late endosomes (C. v&w. al-row) and MPR-negative ly\osomal compartments (C, red). A-C, 
4000x. 
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Figure 2. Immunoelectron distribution of hydrolase-positive compartments in human neurons. Cat D immunoreactivity is localized within electron-dense 
endosomalilysosomal vacuolar compartments (A-D, arrows) and lipofuscin granules (A-D, arrowheads) in human cortical pyramids. The numbers of 
intracellular hydrolase-containing lipofuscin granules are few compared with acidic vacuolar structures. Endosomal/lysosomal compartments deliver 
hydrolases to postlysosomal compartments (lipofuscin granules) through the selective and regulated budding and fusion of compartmental membranes 
(C,D).A,7500X;B,B inset,25,000X;C,D,55,000X. 

Antibodies. Immunocytochemical studies were performed using anti- 
bodies to four lysosomal hydrolases: P-hexosaminidase A (HEX), cathep- 
sin B (Cat B), cathepsin D (Cat D) and cathepsin H (Cat H). Rabbit 
antiserum directed against HEX was provided by Dr. Srinivasa Raghavan 
(New York University Medical Center, Department of Neurology, New 
York, NY). Anti-Cat D antiserum was prepared in our laboratory and 
raised in sheep against human brain Cat D (Nixon and Marotta, 1984; 
Cataldo et al., 1990). Human liver anti-Cat B antiserum was purchased 

commercially from ICN Biochemicals (Costa Mesa, CA). Rabbit anti- 
serum to rat liver Cat H was obtained from Dr. Eiki Kominami (Juntendo 
University, Tokyo, Japan). The anti-Pro-Cat D antiserum was purchased 
commercially from Oncogene Science (Cambridge, MA). Antibody di- 
rected against the mannose 6-phosphate-receptor (MPR) was provided 
by Dr. Stuart Kornfeld (Washington University School of Medicine, St. 
Louis, MO) and prepared as previously described (Hoflack and Kornfeld, 
1985; Griffiths et al., 1988). 
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Figure 3. Postlysosomal compartments are a minor percentage of all hydrolase-containing organelles. Digital confocal image analysis using streptavidin- 
Texas Red conjugated to Cat D (A, B, red) shows increased numbers of Cat D-positive endosomalilysosomal compartments (u~ows) present in neurons 
from the Alzheimer’s disease (B) versus control brains (A). Lipofuscin granules detected in these same neurons by green autofluorescence are also 
Cat D-positive (A, B, yellow, awowheads), but represent a small portion of the total population of mature hydrolase-positive organelles. A, B, 5000x. 

Immunocytochemutry. Hydrolase lmmunoreactivity was demonstrated 
on vibratome and paraffin sections using a modification of the avidin- 
biotin technique of Hsu et al. (1981) and Vectastain kits (Vector Labo- 
ratories, Burlingame, CA) with diaminobenzidine as the chromagen 

(Cataldo et al., 1990). Negative controls consisted of tissue sections 
incubated in preimmune antisera or in the absence of primary antisera. 
The sections were inspected with a Zeiss Axioscope. Several sections 
were immunostained wit 

A 
Figure 4. Hydrolase heterogeneity between neurons and glia. Hydrolase-positive intracellular compartments are more abundant in neurons compared 
with glia and contain a distinct complement of acid hydrolases. Similar to neurons, the lysosomal protease Cat D is present within giial lysosomes (A, 
U~OIW). Unlike cortical pyramids, however, glia do not exhibit tither Cat B (B, aruow)- or HEX (C, arrows)-immunoreactive lysosomes. A-C, 3600~. 
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demonstrated using secondary antibodies conjugated directly to fluores- 
cein isothiocyanate (FITC) or tetrarhodamine isothiocyanate (TRITC) 
fluorophores, or indirectly to streptavidin-Texas Red. These sections 
subsequently were viewed with the epifluorescence optics of a Leitz 
Diaplan equipped with specific dichroic filters for FITC and TRITC. 
Microscopic fields were inspected with a 100X fluotar lens (1.32 NA). A 
Dege-MT1 SIT-68 video camera interfaced with a DSP-100 signal pro- 
cessor (Dege-MTI, Michigan City, IN) was used to amplify the intensity 
of the fluorescent image. The manual mode of a DSP-100 signal proces- 
sor was used to calibrate the black, kV, and gain settings of the camera 
and to optimize the visualization of each fluoroprobe. For double-labeled 
tissue, a single 0 set of signal processor parameters was derived that 
optimized the imaging requirements of each field viewed sequentially 
with the respective dichroic filters. 

Digital confocaf image analyses. High-resolution images of single- and 
double-labeled neurons were viewed at high magnification using digital 
confocal microscopy. Images were made from representative neurons 
that displayed Cat D-labeled fluorescence relative to lipofuscin autofluo- 
rescence and both Cat D and MPR fluorescence. Digital images were 
obtained by using the same epifluorescent optics and video camera system 
described above, interfaced with a Z-axis drive stage controller and an 
Apple Macintosh Quadra-950 computer with ONCOR-IMAGE process- 
ing software (ONCOR, Gaithersburg, MD). High magnification digitized 
images of representative neocortical layers III or V pyramidal neurons 
were obtained, and a Z-series stack of images through the depth of an 
individual cell was acquired using 3 Frn step intervals through consecutive 
focal planes. Each captured image in a Z-series stack was saved as a 512 
X 512 &bit pixel image file. For each single- and double-labeled neuron, 
two Z-series stacks were generated with FITC and TRITC filters, respec- 
tively. Parallel pairs of stacks were processed with a deconvolution 
subroutine of the BDS-IMAGE software that mathematically reduces 
image distortion effects produced by fluorescent background flare. From 
each pair of deconvolved Z-series stacks, images displaying the colocal- 
ization of each fluoroprobe with a given cell were generated using the 
Multicolor Registration subroutine (BDS-IMAGE software). 

Ultrastructural analyses. Sections for ultrastructural analyses were pro- 
cessed by a pre-embedding staining technique (Cataldo et al., 1991). 
Reacted and unreacted tissue sections were postfixed in aqueous 1% 
osmium tetroxide for 45-60 min at 23”C, rinsed in 0.1 M cacodylate buffer, 
pH 7.4, dehydrated through a series of ethanol, and embedded in Quetol 
653 resin for 72 hr at 60°C. Semithin sections of immunostained material 
were cut at 0.75-1.0 pM and stained with 1% toluidine blue. Ultrathin 
sections were placed on uncoated, 200 or 300 mesh copper grids. Grids 
containing immunostained material were not poststained. 

Morphometric analyses. Paraffin sections from the prefrontal cortices, 
hippocampi, and cerebelli of nine control brains and nine age-matched 
Alzheimer’s disease brains were immunostained in tandem under iden- 
tical experimental conditions using anti-Cat D antiserum. It should be 
noted that the background staining intensities between Alzheimer’s dis- 
ease and control sections were comparable in all cases and that all 
neurons counted were intact. These sections were then counterstained 
with cresyl violet (Nissl stain) for definition of the cytoarchitecture in 
individual sections and for cell size analyses. Small, medium, and large 
pyramidal neurons from cortical laminae III and V (area 10 according to 
Brodmann’s nomenclature) were selected at random. The cross-sectional 
area, number of lysosomes, and lysosomal density (area divided by 
lysosome number) were analyzed for each neuron using the Bioquant 
System IV morphometry software package (R & M Biometrics, Nashville, 
TN) at 1000x magnification. Lysosome counts were made by direct 
inspection in a single plane of focus. To measure cross-sectional areas, a 
Zeiss Axioskop with a low-light video camera attachment was used to 
capture and display high resolution images using a Targa frame grabber. 
Neurons were isolated and outlined using a Summagraphics digitizing 
tablet. For each brain, 25 neurons were assessed within several fields from 
neocortical layers III and V, the CA2 field of the hippocampus, and the 
Purkinje cell layer of the cerebellum. Morphometric analyses were per- 
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formed by several individuals, and in some instances groups of 25 neurons 
were analyzed blindly by each person in a section chosen at random as a 
control for internal bias and to ensure that counts were reproducible. A 
total of 450 neurons from both the control and the Alzheimer’s disease 
cases were analyzed. For statistical comparisons based on cell size, each 
neuron was assigned to one of three groups on the basis of a real 
diameter: O-150, 151-225, and > 225 pm’. Statistical computations were 
performed using Student’s t test. 

RESULTS 
The endosomal-lysosomal system of normal 
pyramidal neurons 
In normal neocortex and hippocampus from control brains, Cat 
D, Cat B, and HEX antibodies exclusively labeled intracellular 
granules of heterogeneous size, which were especially numerous 
in neuronal perikarya and proximal dendrites (Fig. 1). Three 
distinct hydrolase-containing compartments of the endosomal and 
lysosomal system were discriminated by additional light and im- 
munoelectron microscopic analyses. Double-immunofluorescence 
cytochemistry with antibodies to Cat D and the 280 kDa MPR, a 
marker of late endosomes and shuttle vesicles from the trans- 
Golgi network to the endosome (Sahagian, 1984; Brown et al., 
1988; Kornfeld, 1992), distinguished subpopulations of mature 
lysosomes (Cat D-positive, MPR-negative) and late endosomes 
(MPR- and Cat D-positive) (Fig. 1). The latter displayed the 
typical perinuclear distribution characteristic of late endosomes in 
non-neural cells (Sahagian, 1984; Brown et al., 1988; Kornfeld, 
1992). Immunoelectron microscopic analysis of pyramidal neu- 
rons distinguished 100-400 nm vacuolar compartments corre- 
sponding to lysosomes and late endosomes from lipofuscin gran- 
ules, which were characterized as immunopositive OS-l.5 pm 
vesicles containing varying amounts of lipid and pigment matrix 
components (Fig. 2). Intermediate structures reflecting stages in 
the evolution of mature lysosomes into lipofuscin granules were 
also seen (Fig. 2). To establish the proportions of lysosomes and 
Iipofuscin granules in pyramidal neurons, we localized Cat D 
immunoreactivity, identified by streptavidin-Texas Red histofluo- 
rescence, in relation to lipopigment autofluorescence, a com- 
monly used index of lipofuscin content. Confocal microscopic 
imaging of the two fluorescent sources in neocortical pyramidal 
neurons showed that lipofuscin granules containing the bulk of 
the lipopigment were a minor percentage of the total acid hydro- 
lase-containing structures in adult human pyramidal neurons 
(Fig. 3). 

Hydrolase-containing compartments in neurons were more nu- 
merous than in glial cells and displayed an enzyme composition 
distinct from that in glia. Cat D antibodies immunostained both 
glia and neurons (Fig. 4). HEX and Cat B were abundant in 
neurons but were barely detectable in glial cells (Fig. 4), whereas 
Cat H and Cat G were identified in astrocytes but not in neurons 
(Cataldo et al., 1991). The number of lysosomes per volume or 
cross-sectional area of perikaryal cytoplasm, determined morpho- 
metrically, varied within a relatively small range among popula- 
tions of pyramidal neurons in the neocortex or hippocampus 
(CA2, CA3) (see Fig. 6). 

Figure 5. Lysosomal abnormalities in at-risk neurons from Alzheimer’s disease brain. Pyramidal neurons in the prefrontal cortex (A, B) and hippocampus 
(C, D) of normal human brain (A, C) contain numerous endosomal and lysosomal compartments (arrows) immunolabeled with antibodies against the 
protease Cat D. Early alterations of the endosomal-lysosomal system are prominent in otherwise normal-appearing at-risk neurons from Alzheimer’s 
disease brains (B, D, arrows) and include increased numbers of hydrolase-containing compartments, particularly with the cell soma. The arrowheads in 
B indicate deposits of Cat D in the extracellular space that reflect the release of acid hydrolases from acidic vacuolar compartments of degenerating 
neurons and/or neuritic processes. A-D, 1200X. 
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Endosomal-lysosomal abnormalities of pyramidal 
neurons in Alzheimer’s disease 
Cell loss in all cortical laminae and in the hippocampus of 
Alzheimer’s disease brains was evident by Nissl staining and from 
the reduced numbers of hydrolase-positive neurons. The remain- 
ing pyramidal neurons exhibited varying degrees of increased 
hydrolase immunoreactivity compared with their counterparts in 
age-matched control brains, which stained relatively uniformly 
(Fig. 5). Immunoreactive lysosomes accumulated prominently at 
the basal pole of the soma (Fig. 5), often distorting the pyramidal 
shape of the cell and distending the axon hillock. To estimate 
the prevalence of pyramidal neurons exhibiting an abnormal 
endosomal-lysosomal response, we determined by computer- 
assisted morphometry the number and density of immunoreactive 
lysosomes in individual pyramidal neurons from nine Alzheimer’s 
disease brains and nine age-matched control brains immuno- 
stained under identical conditions with anti-Cat D antiserum (Fig. 
6). More than 90% of the pyramidal neurons in lamina III of the 
neocortex in Alzheimer’s disease brains displayed a number and 
density of hydrolase-positive compartments that were more than 
two SD higher than the mean values for control neurons of similar 
size. Endosome-lysosome increases ranged as high as eightfold 
above the normal mean density and averaged threefold higher 
than controls. Abnormalities of comparable magnitude were also 
seen in the majority of pyramidal cells in lamina V. Similarly, in 
CA2 and CA3 of the hippocampus, 80-93% of the pyramidal cells 
contained abnormally high numbers of hydrolase-positive com- 
partments (2 SD above a control mean of 50 ? 15), ranging two- 
to sevenfold higher in CA2 (average 2.5-fold) and two- to fourfold 
higher in CA3 (average 1.75-fold), a region that is less vulnerable 
to degeneration in Alzheimer’s disease than CA1 and CA2. Neu- 
ronal pyramids of the CA2 region of the hippocampus exhibited 
Cat D densities two SD above control mean (0.17 ? 0.02). These 
differences were minimum estimates of the abnormal hydrolase 
expression because the hydrolase-positive organelles were also 
larger in Alzheimer’s disease brains. Pyramidal neurons in every 
size class were affected to approximately the same extent. The 
increased lysosome density could not be attributed to neuronal 
atrophy because the average cross-sectional areas of neurons from 
Alzheimer’s disease brain were not statistically different from 
those of controls. 

Confocal microscope images of lipofuscin autofluorescence and 
Cat D immunofluorescence (Fig. 3) demonstrated that in most 
cells lipofuscin granules accumulated to a smaller extent than the 
more functionally active endosomal and lysosomal compartments. 
Antiserum directed against a precursor form of Cat D, Pro-Cat D 
(known to be present in late endosomes and to some extent in 
early endosomes) (Erickson and Blobel, 1983; Lemansb et al., 
1987; Riederer et al., 1994); predominantly immunolabeled a 
population of distinct, perinuclear vacuoles (Fig. 7). At-risk neu- 
rons from Alzheimer’s disease brains exhibited a qualitative in- 
crease in the number of these Pro-Cat D-positive vacuolar com- 
partments compared with the numbers detected in age-matched 
control brains (Fig. 7). 

Most neuronal perikarya that displayed very prominent endo- 
somal-lysosomal system alterations exhibited no overt degenera- 
tion by Nissl or neurofibrillary pathology by thioflavin or silver 
staining (Fig. 8). Moreover, in ultrathin sections of the immuno- 
stained tissue, ultrastructural inspection of organelles in selected 
hydrolase-laden neurons revealed no dilatation of the endoplas- 
mic reticulum and Golgi saccules, nuclear clumping, detached or 

scattered ribosomes, blebbing, or swelling irregularities in the 
plasmalemma or condensed mitochondria (Fig. 8). 

Endosomal-lysosomal abnormalities in less vulnerable 
neuron populations 
Neurons from less severely affected regions of Alzheimer’s disease 
brains displayed similar, but less marked, lysosomal system abnor- 
malities (Fig. 9). The numbers of hydrolase-positive lysosomes 
were clearly increased in some neurons from the striatum, thala- 
mus (Nixon et al., 1992; Cataldo et al., 1995), and medulla (Burke 
et al., 1995). The accumulation of organelles at the basal pole of 
the cell body resembled the pattern in affected neocortical neu- 
ronal populations. Most affected neurons displayed no neurofi- 
brillary pathology by silver staining or chromatolytic changes by 
Nissl staining. Finally, we quantitated Cat D-positive compart- 
ments in Purkinje cells, a population of neurons considered to be 
affected minimally in Alzheimer’s disease. Normal Purkinje cells 
exhibited a slightly lower density of endosomes/lysosomes than 
pyramidal neurons (Figs. 6,9) and a greater degree of variation in 
endosome-lysosome number among cells, possibly reflecting the 
metabolic heterogeneity known to exist in this cell population. In 
contrast to the situation for pyramidal cells, average endosome/ 
lysosome density in Purkinje cells in Alzheimer’s disease brains 
did not differ significantly from that in control brains. A small 
percentage of cells (-5%) did display significantly higher num- 
bers of Cat D-positive compartments, confirming qualitative ob- 
servations (Figs. 6, 9) (Nixon et al., 1992, 1993; Cataldo et al., 
1994, 1995). 

DISCUSSION 

The endosomal-lysosomal system of mature neurons 
In these studies we have identified the major acid hydrolase 
compartments in normal adult human pyramidal neurons and 
have distinguished functionally diverse subpopulations that in- 
clude late endosomes, mature lysosomes, and lipofuscin granules. 
The former two compartments represent the final common path- 
way of endosomal and autophagosomal vesicular trafficking, and 
their numbers reflect the level of lysosomal system activation that 
may result from changes in either endocytic (heterophagic) or 
autophagic activity (Gordon and Seglen, 1988; Gordon et al., 
1992; Nixon and Cataldo, 1995). By contrast, postlysosomal com- 
partments such as lipofuscin, which arise from the progressive 
accretion of indigestible residues in lysosomes, serve as a mor- 
phological indicator of lysosomal degradative efficiency. Their 
accumulation most often reflects lysosomal dysfunction or modi- 
fications of membrane and protein substrates that reduce their 
digestibility within the lysosome (Brizzee et al., 1975; Siakotos, 
1975). We observed that normal human pyramidal neurons have 
a well developed and highly variegated lysosomal system, consis- 
tent with the essential role of this system in maintaining huge 
cytoplasmic volumes and large expanses of membrane surface 
area. Mature lysosomes were considerably more numerous than 
endosomes and lipofuscin, even in older adults. The strikingly 
different enzyme composition of lysosomes in neurons and glia, 
supported by some biochemical observations (Friede, 1965; Bo- 
wen et al., 1974), indicates that the relative expression of acid 
hydrolases in different neural cell types is tailored for the partic- 
ular substrates encountered. Lysosomal processing of the same 
protein in different brain cell types might be expected, therefore, 
to generate distinct sets of proteolytic fragments along the path- 
way to complete degradation. 

Our morphometric analyses showed that normal neurons of a 
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Morphometric analyses of Cat D positive compartments in control and Alzheimer’s disease brains. Quantitative morphometric analyses from 
of the prefrontal cortex (A, E), the CA2 field of the hippocampus (C, O), and Purkinje cells of the cerebellum (E, F) revealed that lysosomal 

abnormalities are widespread within the most severely affected neuronal populations (cortical and hippocampal pyramids) of Alzheimer’s disease brains 
(A-D). The majority of cortical pyramids in laminae III and V and the hippocampal CA2 field of Alzheimer’s disease brains (0) exhibit increased Cat 
D-containing endosomellysosome numbers (A, C) and densities (B, D) per cross-sectional area compared with age-matched controls (A). In contrast to 
the significant differences in the numbers and densities of Cat D-positive compartments displayed by these cell types in Alzheimer’s versus control cases, 
the average endosomeilysosome number and density in Purkinje cells of the cerebellum (E, F) from the same Alzheimer’s disease individuals did not differ 
significantly from those displayed by controls. 
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Figure 7. Distribution of Pro-Cat D in control and Alzheimer’s disease brains. In control brains, the intracellular localization of proforms of Cat D was 
identified within membrane-bound immunoreactive endosomal compartments (A-C, arrows). Abnormalities in the levels of Cat D proforms were 
widespread within at-risk populations of neurons from layers III and V of Alzheimer’s disease brains (D-F, arrows). Higher magnification photomicro- 
graphs of a prefrontal pyramidal neuron from an Alzheimer’s disease brain (F) shows increased numbers of immunolabeled vacuolar compartments 
compared with the same cell types from a representative age-matched control (C).A, D, 400X; B, E, 1000X; C, F, 4000X. 

given type regulate their lysosome numbers within a fairly narrow 
range. The number of hydrolase-containing compartments corre- 
lated closely with perikatyal size, which in turn is a rough index of 
axonal length and total axoplasmic volume (Ho et al., 1992). Their 
density in perikarya expressed as number/cross-sectional area was 
twofold higher in small pyramidal neurons than in large ones; 
however, when expressed as number/estimated perikaryal volume, 
lysosome density varied relatively little among neurons of the 
same type. As the final common pathway of endocytic and auto- 
phagocytic traffic and other protein processing rates, the endoso- 
mal-lysosomal system may be influenced by changes in the rate of 
endocytic activity and membrane turnover (Trowbridge, 1991) 
the rate of protein synthesis (Strous et al., 19SS), and the general 
metabolic rate and functional activity of the, neuron. Whereas 

nonlysosomal degradation occurs at a fairly constant rate of 
l-1.5% in most cells, the contribution of the lysosomal system 
may vary from nearly 0 to 4% of the total protein of the cell per 
hour, depending on nutritional and hormonal conditions (Seglen 
and Bohley, 1992) or circadian rhythms (Bhattacharya and von 
Mayersbach, 1976). For these reasons, lysosomal system activity 
potentially can serve as a sensitive and useful index of cellular 
function and dysfunction, reflecting metabolic shifts and structural 
reorganization in response to changing conditions. 

Endosomal-lysosomal alterations are an early intracellular 
event in Alzheimer’s disease 
The endosomal-lysosomal system in neurons of the Alzheimer’s 
disease brains was prominently altered. These changes were 
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Fq+re 8. Lysosomal abnormalitres are an early event in at-risk neurons from Alzhermer’s drseasc brains. Increased numbers of Cat D-contaming 
endosomal and lysosomal compartments (A) are prommcnt in the majority of at-rusk pyramidal neurons and precede hrstological evrdence of 
atrophyichromatolysis by Nissl stain (A, rn,et). The absence of atrophic change m the nuclear membrane (H), mrtochondria (C), and rough ER (D) is 
confirmed by electron microscopic inspection of the same neuron as m A. A, A mset, 4000X; B-D, 50,000X. 

among the earliest manifestations of a metabolic compromise, as 
evidenced by the observation that nearly all pyramidal neurons in 
vulnerable prefrontal and hippocampal regions of Alzheimer’s 
disease cases exhibited abnormally high densities of lysosomes, 
even though only a small percentage of these neurons exhibited 
neurofibrillary tangles or atrophy. In representative cells within 
these populations, lysosomal system alterations were the only 
structural abnormalities detectable in the perikaryon at the light 
and electron microscope levels, although alterations of axonal 
projections and dendritic arborizations cannot be excluded. These 
findings agree with earlier observations that pyramidal neurons 
unaffected by neurofibrillary tangles seemed normal with respect 
to the area occupied by the nucleus, nucleolus, mitochondria, 
smooth endoplasmic reticulum, and rough cndoplasmic reticulum 
(Mann and Sinclair, 1978). Recently, subsets of at-risk neurons 
that are susceptible to neurofibrillary tangle formation but do not 
contain tangles have also been shown to exhibit increased apoli- 
poprotein E (APOE) levels (Han et al., 1994b; Einstein et al., 
1995). These findings are also consistent with increased receptor- 
mediated internalization and trafficking through endosomal--lyso- 
somal compartments (Rebeck et al., 1993). Similar endosomal- 
lysosomal alterations were detected in otherwise seemingly 
normal pyramidal neurons in Down’s syndrome at a stage when 
neurofibrillary tangles are absent and only diffuse deposits of 
P-amyloid are seen (Nixon et al., 1993), and these changes are 
evident in areas devoid of A/3 deposits. Moreover, endosomal- 
lysosomal alterations were also seen in neuronal populations that 
are not usually lost in substantial numbers in Alzheimer’s disease, 
such as the Purkinje cells and nonpyramidal neurons of the 
striatum, thalamus, and inferior olive (Nixon et al., 1993; Burke et 
al., 1994). These changes, therefore, clearly preceded advanced 
cell injury and can be considered an early sign of cellular dysfunc- 
tion. Abnormalities in the cndosomal-lysosomal system are 

likely to be a common link closely related to primary ctiological 
factors increasing susceptibility to Alzheimer’s disease, such as 
APOE genotype (Corder et al., 1993; Strittmatter et al., 1993) 
and mutations associated with familial Alzheimer’s disease 
(Goate et al.. 1991: Levy-Lahad et al.. 1995: Sherrington et al.. 
1995). 

Accumulation of endosomesllysosomes reflects q-regulation, 
not stasis, of the system 

That these findings imply an activation of lysosome biogenesis and 
intracellular trafficking of hydrolase-containing compartments is 
strongly supported by in situ hybridization studies demonstrating 
increased Cat D mRNA and Cat D protein expression in the same 
populations of neurons that display cndosome-lysosome accumula- 
tion (Cataldo et al., 1995) and by immunocytochemical studies show- 
ing increases in the proforms, as well as the mature forms, of Cat D. 
Confocal microscopic detection of Cat D immunofluorescence and 
lipopigment autofluorescence in the same neuron showed that 
lipopigment-containing structures arc a significant but still minor 
percentage of the total population of hydrolase positive compart- 
ments. Hydrolase immunoreactivity, principally within late endo- 
somes and mature lysosomes, increased to a much greater degree 
than lipofuscin, which reflects lysosomal system stasis or dysfunction 
(Swaab, 1991; Nixon and Cataldo, 1993) in agreement with previous 
evidence that lipofuscin is either unchanged (Mann et al., 1984) or 
modestly increased (Dowson, 1982) in Alzheimer’s disease brains. 

Given current knowledge of lysosomal system function, early ac- 
tivation of the endosomal-lysosomal system could be either a regen- 
erative or an involutional response and could reflect enhanced au- 
tophagy or endocytosis (heterophagy) or both. We have suggested 
previously that these processes are activated by membrane injury or 
the need for membrane synthesis and repair resulting from cumula- 
tive aging, genetic, oxidative, and chemical factors (Nixon and 
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Figure 9. Acid hydrolase abnormalities in less vul- 
nerable neuronal populations. Alterations in Cat 
D-containing vacuolar compartments were promi- 
nent within the several subcortical neuronal popu- 
lations (B-D, avows) and cerebellum (E, F, UT-TOWS) 
from Alzheimer’s disease brains compared with the 
same cell types from control brains (A, E, inset). E, 
Inset shows the average number of Cat D-positive 
compartments (UWOWS) in an epinephrine neuron 
from the medulla (A) and cerebellar Purkinje cell 
(E, inset) of a normal aged control brain. In Alz- 
heimer’s disease brains, less severely affected neu- 
ronal populations of the medulla (B), striatum (C), 
thalamus (D), and cerebellum (E, F) contained 
moderately increased numbers of Cat B-positive 
endosomalilysosomal compartments compared with 
controls. In the cerebellum of Alzheimer’s disease 
brains, Purkinje cells containing levels of Cat D 
similar to those from control brains (thin arrow) are 
often found scattered among neurons containing 
increased intracellular levels of Cat D-immunore- 
active compartments (thick awow). A-E, E inset, 
3000x; F, 800X. 

Cataldo, 1991, 1994; Nixon et al., 1992). Endosomal-lysosomal sys- 
tem activity has been implicated in dendrite development (Roberts 
and Gorenstein, 1987), in synapse formation through the elimination 
of some nascent synapses and stabilization and remodeling of per- 
sisting ones, and in the repair of injured axon fibers (Teuchert-Noodt 
et al., 1991). Because most endosomal-lysosomal system compart- 
ments undergo net retrograde transport (Gorenstein et al., 1983 
changes in the lysosomal system in neuronal perikarya may be 
particularly sensitive to structural alterations taking place in the 
periphery, such as the marked synaptic degeneration/regeneration 

accompanying Alzheimer’s disease (DeKosky and Scheff, 1990; Terry 
et al., 1991). In this regard, the same populations of at-risk neurons 
in Alzheimer’s disease brains that exhibit endosomal-lysosomal al- 
terations exhibit abnormalities in APOE content (Einstein et al., 
1995). APOE is thought to be functionally important in central 
nervous system neuroplasticity and regeneration (Nathan et al., 
1994). Altered levels of APOE in vulnerable neurons are consistent 
with repair/regeneration within these same cell groups. Moreover, 
recent findings using genetically altered APO-deficient mice 
(Masliah et al., 1995) suggest that abnormal APOE expression con- 
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tributes to abnormal neuroplasticity (sprouting) and increased neu- 
rodegeneration in Alzheimer’s disease. 

Relationship of intracellular and extracellular lysosomal system 
disturbances and Alzheimer’s disease risk factors 
The abnormal endosomal/lysosomal response in most pyramidal 
neurons of Alzheimer’s disease brains seems to be continuous, 
with the process resulting in the massive accumulation of lyso- 
somes and hydrolase-positive lipofuscin in a smaller population of 
cells that have neurofibrillary tangles or atrophic perikarya 
(Cataldo et al., 1994). As these cells degenerate, similar lipofuscin 
aggregates are abundant in the extracellular space in association 
with /3-amyloid deposits (Cataldo and Nixon, 1990). Cat D levels 
in CSF are elevated markedly relative to those in other neurode- 
generative diseases (Schwagerl et al., 1995). The intracellular 
lysosomal abnormalities in Alzheimer’s disease revealed by acid- 
hydrolase antibodies exceed those in a survey of other degenera- 
tive conditions, including Huntington’s disease, Pick’s disease, 
multiple sclerosis, and Creutzfeldt-Jacob disease (Nixon et al., 
1992; Cataldo et al., 1994). Moreover, the persistence of these 
lysosomal compartments in the extracellular space after neurons 
degenerate distinguishes this cytopathological pattern from that 
so far reported for any other neurodegenerative disease process 
(Nixon and Cataldo, 1993). Extracellular acid hydrolase deposits 
thus far have been observed only in the various conditions in 
which P-amyloid is deposited (Cataldo et al., 1991; Nixon et al., 
1993; Villanova et al., 1993; Haas and Sparks, in press). 

Because amyloid precursor protein is metabolized in lysosomes 
(Golde et al., 1992), increased or abnormal lysosomal turnover of 
amyloid precursor protein (APP) or its mutant forms (Mullan and 
Crawford, 1993) might be expected to accelerate the generation of 
metabolic intermediates of APP, some of which may be amyloi- 
dogenic (Caporaso et al., 1992; Estus et al., 1992) and/or neuro- 
toxic (Yankner et al., 1989; Neve et al., 1992). Although the in viva 
sites of A/3 generation in normal and Alzheimer’s disease brains 
are not fully resolved, soluble forms of A/3 l-40 and l-42,43 are 
secreted by some cell lines in vitro, and indirect evidence impli- 
cates an endosomal or late Golgi compartment in their formation 
(Haass et al., 1992, 1993; Buscaglio et al., 1993; Koo and Squazzo, 
1994). Both of these compartments normally harbor low levels of 
certain lysosomal hydrolases and might be expected to have 
higher levels when hydrolase expression is markedly upregulated, 
as it is in Alzheimer’s disease (Cataldo et al., 1995). Certain 
cathepsins satisfy important criteria for being candidate p-amy- 
loid-generating enzymes, including a localization in appropriate 
compartments for A/3 formation, abnormally high expression in 
Alzheimer’s disease, and appropriate bond specificity against APP 
and model peptides (Dreyer, 1984; Tagawa et al., 1992; Ladror et 
al., 1994). APOE, another important molecule implicated in Al- 
zheimer’s disease (Corder et al., 1993; Strittmatter et al., 1993), is 
synthesized by astrocytes and taken up by neurons in markedly 
increased amounts in response to various forms of neuronal 
injury, presumably to provide cholesterol for new membrane 
synthesis and regenerative processes (Mahley, 1988; Han et al., 
1994a; Benzing and Mufson, 1995). Endosomal-lysosomal system 
activity is essential for this function. The intracellular internaliza- 
tion and trafficking of APOE through endosomal-lysosomal com- 
partments may be closely associated with the role of APOE in 
neuronal metabolism, particularly membrane turnover (Roses, 
1994, 1995). Identification of a putative membrane protein as the 
product of the mutated gene on chromosome 14 causing an 

early-onset form of familial Alzheimer’s disease (Sherrington et 
al., 1995) suggests the need for membrane turnover/repair as a 
basis for endosomal-lysosomal upregulation. Finally, normal ag- 
ing, another well established risk factor for Alzheimer’s disease, is 
accompanied by increased expression of some lysosomal pro- 
teases (e.g., Cat D, Cat B) (Matus and Green, 1987; Banay- 
Schwartz et al., 1992) and decreased stability of the lysosomal 
membrane (Sawant et al., 1964), which may superimpose on more 
prominent, disease-related changes. Endosomal-lysosomal abnor- 
malities, therefore, may be considered to lie at a crossroad of 
various etiological pathways, and an understanding of their basis 
may contribute to a more unified picture of Alzheimer’s disease 
pathogenesis. 
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