Articles are grouped according to the section to which they were submitted and are presented in the following sequence: Molecular, Cellular, Developmental, Systems, and Behavioral Neuroscience.

1965 Phosphorylation of Brain Sodium Channels in the I-II Linker Modulates Channel Function in *Xenopus* Oocytes
*Raymond D. Smith and Alan L. Goldin*

1975 Localization of Synaptotagmin-Binding Domains on Syntaxin
*Yun Kee and Richard H. Scheller*

1982 Evidence for Multiple AMPA Receptor Complexes in Hippocampal CA1/CA2 Neurons
*Robert J. Wenthold, Ronald S. Petralia, Jaroslav Blahos II, and Andrew S. Niedzielski*

1990 G-Protein-Gated Inward Rectifier K⁺ Channel Proteins (GIRK1) Are Present in the Soma and Dendrites as well as in Nerve Terminals of Specific Neurons in the Brain
*Arturo Ponce, Earl Bueno, Clifford Kentros, Eleazar Vega-Saenz de Miera, Alan Chow, Dean Hillman, Susan Chen, Liangxue Zhu, Michael B. Wu, Xiaying Wu, Bernardo Rudy, and William B. Thornhill*

2002 Reduced Nicotinamide Adenine Dinucleotide-Selective Stimulation of Inositol 1,4,5-Trisphosphate Receptors Mediates Hypoxic Mobilization of Calcium
*Adam I. Kaplin, Solomon H. Snyder, and David J. Linden*

2012 Identification of Gas6 as a Growth Factor for Human Schwann Cells
*Rang-hao Li, Jian Chen, Glenn Hammonds, Heidi Phillips, Mark Armanini, Patrick Wood, Richard Bunge, Paul J. Godowski, Mark X. Sliwkowski, and Jennie P. Mather*

2020 Decreased Binding of Dopamine D3 Receptors in Limbic Subregions after Neonatal Bilateral Lesion of Rat Hippocampus
*Gonzalo Flores, David Barbeau, Rémi Quirion, and Lalit K. Srivastava*

2027 Neurogenesis in the Dentate Gyrus of the Adult Rat: Age-Related Decrease of Neuronal Progenitor Proliferation
*H. Georg Kuhn, Heather Dickinson-Anson, and Fred H. Gage*

2034 NMDA-Dependent Modulation of CA1 Local Circuit Inhibition
*Heinz C. R. Grunze, Donald G. Rammie, Michael E. Hasselmo, Eddie Barkai, Elizabeth F. Hearn, Robert W. McCarley, and Robert W. Greene*

2044 Immunocytochemical Localization of Group III Metabotropic Glutamate Receptors in the Hippocampus with Subtype-Specific Antibodies
*Stefania Risso Bradley, Allan I. Levey, Steven M. Hersch, and P. Jeffrey Conn*
A Different Form of Long-Lasting Potentiation Revealed in Tissue Plasminogen Activator Mutant Mice
Uwe Frey, Michael Müller, and Dietmar Kuhl

Glial Cells Are Increased Proportionally in Transgenic Optic Nerves with Increased Numbers of Axons
Julia F. Burne, Julie K. Staple, and Martin C. Raff

Cellular Localization of Guidance Cues in the Establishment of Retinotectal Topography
Roger W. Davenport, Edda Thies, and Phillip G. Nelson

Ocular Dominance Columns in New World Monkeys
Margaret S. Livingstone

Differential Serotonergic Innervation of the Suprachiasmatic Nucleus and the Intergeniculate Leaflet and its Role in Circadian Rhythm Modulation
Elizabeth L. Meyer-Bernstein and Lawrence P. Morin

Representation of Spatial Orientation by the Intrinsic Dynamics of the Head-Direction Cell Ensemble: A Theory
Kechen Zhang

Selective Clustering of GABA, and Glycine Receptors in the Mammalian Retina
Peter Koulen, Marco Sassoe-Pognetto, Ulrike Grünert, and Heinz Wäsle

Glucocorticoids Differentially Increase Nerve Growth Factor and Basic Fibroblast Growth Factor Expression in the Rat Brain
Italo Mocchetti, Giulio Spiga, Valerie Y. Hayes, Paul J. Isackson, and Annamaria Colangelo

Prepulses Inhibit Startle-Induced Reductions of Extracellular Dopamine in the Nucleus Accumbens of Rat
Trevor Humby, Lawrence S. Wilkinson, Trevor W. Robbins, and Mark A. Geyer

Cover picture: Double immunostaining of dissociated embryonic chick optic tectal culture. Guidance cues involved in the establishment of retinotectal topography are differentially distributed between the two visible cell types: tectal neurons (green, tetanus toxin/fragment C) selectively evoked retinal ganglion cell growth cone collapse and retraction, whereas non-neuronal cells (red, anti-vimentin) generally attenuated outgrowth, without inducing collapse. Learning the differential expression of cues can indicate the sequential processes involved in the establishment of retinotectal topography and can serve as a foundation for identifying the responsible molecules. See Davenport et al., pp. 2074–2085.

Persons interested in becoming members of the Society for Neuroscience should contact the Membership Department, Society for Neuroscience, 11 DuPont Circle, NW, Suite 500, Washington, DC 20036, phone 202-462-6688.

Instructions for Authors appear at the end of the January I, 1996 issue. Copies of the Instructions can be obtained by writing to Diane M. Sullenberger, Director of Publications, The Journal of Neuroscience, Society for Neuroscience, 11 Dupont Circle, NW, Suite 500, Washington, DC 20036, phone 202-462-6688, fax 202-462-1547, e-mail jn@sfn.org. The Instructions are also available via Internet (http://www.sfn.org/) and the Society’s Gopher server (Host: gopher.sfn.org, Port: 70.). Submissions should be sent to the above address. Scientific inquiries concerning manuscripts can be made directly to Dr. David C. Van Essen, Editor-in-Chief, The Journal of Neuroscience, Box 8108, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, phone 314-362-2721, fax 314-362-2734, e-mail JNEUROSCI@THALAMUS.WUSTLE.WU.

The Journal of Neuroscience requests that authors send a disk containing an electronic file of their manuscript with each submission. Most word processing software can be used; see the Instructions for Authors for detailed guidelines on acceptable disk and file formats.