Dopamine–Adenosine Interactions in the Striatum and the Globus Pallidus: Inhibition of Striatopallidal Neurons through Either D_2 or A_{2A} Receptors Enhances D_1 Receptor-Mediated Effects on c-fos Expression #### Catherine Le Moine, 1 Per Svenningsson, 2 Bertil B. Fredholm, 2 and Bertrand Bloch 1 ¹Centre National de la Recherche Scientifique Unité Mixte de Recherche 5541, Laboratoire d'Histologie Embryologie, Institut Federatif de Recherche de Neurosciences Cliniques et Expérimentales, Université de Bordeaux II, 33076 Bordeaux Cedex, France, and ²Section of Molecular Neuropharmacology, Department of Physiology and Pharmacology, Karolinska Institutet, S-17177 Stockholm, Sweden D₁ receptors located on striatonigral neurons and D₂ receptors located, together with A_{2A} receptors, on striatopallidal neurons are known to interact functionally. Using in situ hybridization, we examined the effects of D_1 and D_2 agonists and of an A_{2A} antagonist on c-fos mRNA in identified striatal neurons and in globus pallidus. The full D₁ agonist, SKF 82958 (1 mg/kg), induced a homogenous increase of c-fos mRNA in the striatum. This increase occurred to a similar extent in D₁ and D₂ receptorcontaining striatal neurons. Conversely, the D₂ agonist, quinelorane (2 mg/kg), decreased c-fos mRNA in these populations but increased it in globus pallidus. The adenosine A2A receptor antagonist, SCH 58261 (5 mg/kg), also decreased c-fos mRNA in D₂ receptor-containing neurons in striatum but did not affect pallidal c-fos mRNA. Concomitant administration of either D₁ plus D₂ agonists or D₁ agonist plus A_{2A} antagonist caused a potentiation of c-fos mRNA in striatal neurons expressing the D_1 receptor and in globus pallidus. However, only the combination of D_1 and D_2 agonists modified the c-fos mRNA expression to a "patchy" distribution. Our data show that (1) c-fos expression can be activated through D_1 and inhibited through A_{2A} or D_2 receptors in both striatal output pathways in normal rats, and (2) D_2 receptor stimulation as well as A_{2A} receptor blockade can interact with D_1 receptor activation to potentiate c-fos expression in the striatum and the globus pallidus. The data also suggest that the topological alteration of c-fos expression after coadministration of D_1 and D_2 agonists involves D_2 receptors located on interneurons or presynaptically on dopaminergic nerve terminals. Key words: In situ hybridization; phenotypical characterization; immediate early gene; dopamine–adenosine interactions; synergistic effects; striatal output pathways; globus pallidus The basal ganglia are involved in the integration of sensorimotor, associative, and limbic information to produce motor behaviors. The central component of these structures, the striatum, integrates excitatory glutamatergic inputs from cortex, thalamus, and limbic areas, with dopaminergic inputs from mesencephalon. It is composed of a large proportion of medium-sized spiny output neurons (95%) and of interneurons (5%). Striatal output neurons are GABAergic and project to either substantia nigra (pars reticulata) or globus pallidus and differ in their neuropeptide content: the striatonigral pathway contains substance P/dynorphin and the striatopallidal enkephalin (for review, see Graybiel, 1990; Gerfen and Wilson, 1996). Dopamine regulates striatal neurotransmission via two types of receptor families, D_1 -type (D_1 and D_5) and D_2 -type (D_2 , D_3 , D_4) receptors, which have distinct pharmacological profiles and mech- anisms of transduction (Creese et al., 1983; Jaber et al., 1996). It has been suggested that dopamine differentially regulates the two striatal output pathways and that a balanced control is essential for the proper function of the extrapyramidal motor system (for review, see Alexander and Crutcher, 1990; Gerfen, 1992). Accordingly, several anatomical studies have demonstrated a segregation of D_1 and D_2 receptors, respectively, in striatonigral/substance P and striatopallidal/enkephalin neurons (Gerfen et al., 1990; Le Moine et al., 1990a, 1991; Hersch et al., 1995; Le Moine and Bloch, 1995, 1996; Yung et al., 1996). However, many physiological data indicate synergistic effects after coactivation of D_1 -and D_2 -type receptors (for review, see Waddington and Daly, 1993; White and Hu, 1993). In the basal ganglia A_{2A} receptors are restricted to striatopallidal/ D_2 -containing neurons and, in contrast to D_2 receptors, are not present on dopaminergic nerve terminals and are virtually absent from cholinergic interneurons (Schiffmann et al., 1991; Fink et al., 1992; Augood and Emson, 1994; Svenningsson et al., 1997). An alternative way to investigate how D_1/D_2 interactions occur is to study how adenosine modulates neurotransmission via adenosine A_{2A} receptors and how they can be involved in interactions with D_1 receptor-mediated effects. Indeed, it has been shown that dopamine acting on D_2 receptors and adenosine acting on A_{2A} receptors have opposing actions on neurotransmitter release, gene expression, and several motor behaviors (for Received May 19, 1997; revised July 21, 1997; accepted Aug. 5, 1997. P.S. was the recipient of a travel grant from the Swedish Medical Research Council. This study was supported in part by the Swedish Medical Research Council and the Institute for Scientific Information on Coffee (to B.B.F). We thank Dr. Ongini for providing us with the A_{2A} antagonist, Drs. M. Jaber and F. Gonon for helpful discussions, and C. Vidauporte for expert photographic artwork. P.S. and C.L.M. contributed equally to this work. Correspondence should be addressed to Dr. C. Le Moine, Laboratoire d'Histologie-Embryologie, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5541, Université Victor Segalen Bordeaux II, Bat. 3B, zone Nord, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France. Copyright © 1997 Society for Neuroscience 0270-6474/97/178038-11\$05.00/0 Figure 1. D_1/D_2 and D_1/A_{2A} receptor interactions on *c-fos* expression. Dark-field photomicrographs after *in situ* hybridization with a ³⁵S-labeled riboprobe show the localization of c-fos mRNAcontaining neurons in the striatum after saline (A), D₁ agonist SKF-82958 (B), D₁ agonist SKF-82958 + A_{2A} antagonist SCH-58261 (C), and D₁ agonist SKF- $82958 + D_2$ agonist quinelorane (D). Under basal conditions (A) c-fos mRNA-containing neurons are few and scattered in the caudate putamen (cp) and the nucleus accumbens (acb). c-fos is induced after the D₁ agonist both in the caudate putamen and the nucleus accumbens (B). As compared with D₁ agonist + A_{2A} antagonist (C), the combined treatment with $D_1 + D_2$ agonists potentiates the D_1 -induced expression of c-fos with a heterogeneous "patchy" pattern (arrowheads in D). Cortical expression of c-fos in layer VIb is seen clearly after D₁ agonist alone or in combination with either A2A antagonist or plus D_2 agonists (arrows in B-D). Magnification, $11\times$. review, see Ferré et al., 1992; Ongini and Fredholm, 1996). Accordingly, selective A_{2A} antagonists share with D_2 agonists the ability to potentiate motor effects induced by D_1 receptor agonists as well as D_1 -induced c-fos expression in dopamine-depleted striatum (Jiang et al., 1993; Pinna et al., 1996; Pollack and Fink, 1996). In this context, detailed analysis of the modulation of D_1 or D_2 agonist-mediated effects by an A_{2A} antagonist may help to elucidate the D_1/D_2 interactions in the basal ganglia. We therefore used sensitive *in situ* hybridization with riboprobes to examine how pharmacological treatments involving dopamine or adenosine receptors might up- or downregulate the expression of *c-fos* in the basal ganglia. In particular, *c-fos* expression was studied in phenotypically identified striatal neurons, with double-labeling, after challenges with selective compounds acting at D_1 , D_2 , and A_{2A} receptors given alone or in combination. #### **MATERIALS AND METHODS** Pharmacological manipulations and tissue preparation. All experiments have been performed in accordance with the guidelines of the French Agriculture and Forestry Ministry (decree 87849, license 01499) and with the Centre National de la Recherche Scientifique approval. Adult male Sprague Dawley rats (200-280 gm) (Iffa Credo, France) were maintained in standard housing conditions several days before the experiments. Animals were treated with systemic injections of saline (NaCl 0.9%); ±SKF-82958 (Research Biochemicals, Natick, MA), a full dopamine receptor agonist that has a 200-fold selectivity for D₁ over D₂ receptors (Andersen and Jansen, 1990); quinelorane or LY-163,502 (Research Biochemicals), a dopamine receptor agonist that conversely shows at least a 50-fold selectivity for D₂ over D₁ receptors (Bymaster et al., 1986; Andersen and Jansen, 1990); or SCH-58261 (Schering-Plough, Milan, Italy), an adenosine receptor antagonist that is 60-fold selective for A2A over A₁ receptors (Zocchi et al., 1996). All rats had been handled the day before the injection and had received two injections. The different treatment groups were as follows: saline plus saline (n = 5), quinelorane 2 mg/kg plus saline (n = 4), SKF-82958 0.5 mg/kg plus saline (n = 3), SKF-82958 1 mg/kg plus saline (n = 5), SKF-82958 2 mg/kg plus saline Table 1. Density of neurons containing *c-fos* mRNA after D_1 or/and D_2 agonists and A_{2A} antagonist, alone or in combination | Treatment group | n | Caudate putamen | Globus pallidus | |-----------------|---|-----------------------------|----------------------------| | Saline (a) | 6 | 35.25 ± 4.34 | 24.20 ± 3.40 | | Quinelorane (b) | 5 | $8.55 \pm 1.70^{*a}$ | $42.20 \pm 4.00^{*a}$ | | SKF-82958 (c) | 4 | $132.75 \pm 15.30^{*a}$ | 12.50 ± 1.60 | | SCH-58261 (d) | 4 | $16.70 \pm 1.50^{*a}$ | 18.25 ± 4.20 | |
SKF-82958 + | | | | | quinelorane | 5 | $156.20 \pm 6.50^{*b,ns,c}$ | $122.30 \pm 17.60^{*b,c}$ | | SKF-82958 + | | | | | SCH-58261 | 4 | $183.90 \pm 6.30^{*c,d}$ | $69.80 \pm 13.90^{*c,d}$ | | Quinelorane + | | | | | SCH-58261 | 5 | $17.35 \pm 1.39^{*b,ns,d}$ | $60.30 \pm 8.10^{*d,ns,b}$ | Rats were treated with saline (NaCl 0.9%), with the D_2 agonist quinelorane (2 mg/kg), with the D_1 agonist SKF-82958 (1 mg/kg), with the A_{2A} antagonist SCH 58261 (5 mg/kg), or various combinations: SKF-82958 (1 mg/kg) + quinelorane (2 mg/kg), SCH 58261 (5 mg/kg) + SKF-82958 (1 mg/kg), and quinelorane (2 mg/kg) + SCH 58261 (5 mg/kg), c-fos mRNA was detected with single in situ hybridization (exposure times, 7 weeks). Values represent the mean \pm SEM of the number of c-fos mRNA-containing neurons per mm². Two-way ANOVA, followed by p0st h0c t1 tests corrected for the experiment-wise alpha level (Bonferroni correction). The results of the global ANOVA were for quinelorane/SKF-82958 interaction: $F_{(1,16)} = 11.48, p < 0.005$ for caudate putamen (CP) and $F_{(1,16)} = 23.87, p < 0.001$ for globus pallidus (GP); for SKF-82958/SCH-58261 interaction: $F_{(1,14)} = 19.02, p < 0.001$ for CP and $F_{(1,14)} = 19.84, p < 0.001$ for GP; for quinelorane/SCH-58261 interaction: $F_{(1,16)} = 21.27, p < 0.001$ for CP and $F_{(1,16)} = 5.163, p < 0.05$ for GP. For the multiple post hoc t1 tests Bonferroni correction, an asterisk indicates relevant significant differences between indicated groups (p < 0.05). (n=2), SCH-58261 5 mg/kg plus saline (n=4), SKF-82958 1 mg/kg plus quinelorane 2 mg/kg (n=5), SKF-82958 1 mg/kg plus SCH-58261 5 mg/kg (n=4), or quinelorane 2 mg/kg plus SCH-58261 5 mg/kg (n=5). SKF-82958 and quinelorane were dissolved in saline, whereas SCH-58261 was dissolved in saline/5% Tween 80 after careful sonication. Drugs were injected intraperitoneally, 0.5 ml per injection, and the rats were decapitated 1 hr after the injections. The brains were dissected out, frozen over liquid nitrogen, and then sectioned into 10 μ m sections, collected on gelatin-coated slides, and stored at -80° C until used. Probe synthesis. 35S-labeled cRNA probes were prepared by in vitro transcription from cDNA clones corresponding to fragments of the rat c-fos cDNA (Curran et al., 1987) (a gift from Dr. T. Curran, Roche Institute of Molecular Biology, Nutley, NJ), rat D₁ and D₂ dopamine receptor cDNAs (Monsma et al., 1989, 1990) (a gift from Dr. D. Sibley, National Institute of Health, NINDS, Bethesda, MD), and rat μ -opioid receptor cDNA (Thompson et al., 1993) (a gift from Dr. S. J. Watson, University of Michigan, Ann Arbor, MI). Transcriptions were performed from 50 ng of linearized plasmid, using either ³⁵S-UTP (>1000 Ci/mmol; DuPont de Nemours, Les Ulis, France) or digoxigenin-11-UTP (Boehringer Mannheim, Meylan, France) and SP6, T3, or T7 RNA polymerases as described by Le Moine and Bloch (1995). After alkaline hydrolysis to obtain 250 bp cRNA fragments, the 35S-labeled probes were purified on G50-Sephadex. The 35S-labeled probes and the digoxigenin-labeled probes were precipitated in 3 M sodium acetate/absolute ethanol (0.1:2.5, v/v), pH 5. Single detection of c-fos mRNA on cryostat sections. Sections were hybridized as described by Le Moine and Bloch (1995, 1996) with minor modifications. Cryostat sections were post-fixed in 4% paraformaldehyde (PFA) for 5 min at room temperature, rinsed twice in 4× SSC, and placed into 0.25% acetic anhydride in 0.1 M triethanolamine/4× SSC, pH 8, for 10 min at room temperature. After dehydration, the sections were hybridized overnight at 55°C with 10° cpm of 35S-labeled cRNA probe in 50 μl of hybridization solution (20 mm Tris-HCl, 1 mm EDTA, 300 mm NaCl, 50% formamide, 10% dextran sulfate, 1× Denhardt's, 250 μ g/ml yeast tRNA, 100 μg/ml salmon sperm DNA, 100 mm DTT, 0.1% SDS, and 0.1% sodium thiosulfate). After 20 min of RNase A treatment (20 mg/ml), the sections were washed with $2 \times SSC$ (5 min, twice), $1 \times SSC$ (5 min), $0.5 \times$ SSC (5 min) at room temperature, and rinsed in $0.1 \times$ SSC at 65°C (30 min, twice) before dehydration (the latter SSC washes contained 1 mm DTT). Sections either were exposed on x-ray films (Kodak BIOMAX, Rochester, NY) for 3-6 d or dipped into Ilford K5 emulsion, exposed for 7 weeks, developed, and stained with toluidine blue. Simultaneous detection of c-fos mRNA with D_1 or D_2 mRNAs on cryostat sections. Two combinations of probes were used for the simultaneous detection of two mRNAs on a single section: a ³⁵S-labeled *c-fos* probe in combination with digoxigenin-labeled D₁ or D₂ probes. Cryostat sections were pretreated as mentioned above. After dehydration the sections were hybridized overnight at 55°C with a combination of ³⁵S- and digoxigeninlabeled probes (10⁶ cpm of ³⁵S-labeled probe and 10-20 ng of digoxigenin-labeled probe in 50 μ l of hybridization solution). After 20 min of RNase A treatment at 37°C (20 μg/ml), the slides were washed in various concentrations of SSC as mentioned above, but without DTT. After washing, the sections were put in $0.1 \times SSC$ at room temperature and then processed directly for detection of the digoxigenin signal. The sections were rinsed twice for 5 min in buffer A (1 M NaCl, 0.1 M Tris, and 2 mm MgCl₂, pH 7.5) and then for 30 min in buffer A containing 3% normal goat serum and 0.3% Triton X-100. After 5 hr of incubation at temperature with alkaline phosphatase-conjugated antidigoxigenin antiserum (Boehringer Mannheim; 1:1000 in buffer A, 3% normal goat serum, and 0.3% Triton X-100), the sections were rinsed in buffer A (5 min, twice) and then for 10 min twice in STM buffer (1 M NaCl, 0.1 M Tris, and 5 mM MgCl₂, pH 9.5), and finally for 10 min twice in 0.1 M STM buffer, pH 9.5 (0.1 M NaCl, 0.1 M Tris, and 5 mM MgCl₂. pH 9.5). Then the sections were incubated overnight in the dark at room temperature in 0.1 M STM buffer, pH 9.5, containing 0.34 mg/ml nitroblue tetrazolium and 0.18 mg/ml bromo-chloro-indolylphosphate. They were rinsed in 0.1 m STM buffer, pH 9.5, and then in 1× SSC, dried, and dipped into Ilford K5 emulsion (diluted 1:3 in 1× SSC). After being exposed for 10 weeks in the dark, the sections were developed and mounted without counterstaining. Counting of labeled neurons. Labeled neurons both from single-labeling and double-labeling experiments (exposure times: 7 weeks for single in situ hybridization and 10 weeks for double in situ hybridization) were counted as previously described on similar material (Le Moine and Bloch, 1995). Accordingly, a labeled neuron corresponded to a density of silver grains at least twofold higher than background. One section per animal was analyzed for counting in single in situ hybridization, and one section per animal was counted for the double labeling. The densities of c-fos mRNA-containing neurons were studied in the striatum (+1 mm from bregma) and globus pallidus (-0.8 mm from bregma) according to Swanson (1992). The areas examined were 2-4 mm² for the caudate putamen and 1.5-2 mm² for the globus pallidus. The labeled neurons were counted using an image analyzer system for cartography (HISTO 200, Biocom, Les Ulis, France). For double in situ hybridization, quantification was performed only on the sections with simultaneous detection of c-fos and D2 mRNAs, and the c-fos mRNA-labeled neurons were divided into two populations: the D₂ mRNA-positive (+) and D₂ mRNA-negative (-) neurons. The densities of *c-fos*-expressing neurons (number of c-fos mRNA-positive neurons per mm²) were pooled and averaged for each group, and statistical analysis was performed by a two-way ANOVA, followed by post hoc t tests corrected for the experiment-wise α level by the Bonferroni correction. #### **RESULTS** ### Effects of D_1 and D_2 agonists on *c-fos* expression in the striatum and in the globus pallidus Under control conditions (i.e., saline-treated rats), neurons containing *c-fos* mRNA were observed in several cortical areas, especially the endopiriform and piriform cortices, in the septum and in the caudate putamen and nucleus accumbens (Fig. 1). The densities of *c-fos*-positive neurons (mean \pm SEM) were 35.25 \pm 4.34 per mm² in the caudate putamen and 24.2 \pm 3.4 per mm² in the globus pallidus (Table 1). One hour after administration of the D_1 agonist SKF-82958 at the dose of 1 mg/kg, the number of c-fos mRNA-containing neurons dramatically increased in the caudate putamen (+277%) and the nucleus accumbens (Figs. 1, 2, Table 1). An increase also was found in the cortex (with a particularly high concentration in layer VIb) and in the septum (Fig. 1). By contrast, the number of c-fos mRNA-containing neurons tended to decrease (by 48%, p = 0.08) in the globus pallidus (Fig. 3, Table 1). In all of the examined areas, the effects of SKF-82958 were similar over the dose range tested (0.5–2 mg/kg; data not shown). Figure 2. D_1 - and D_2 -mediated regulation of *c-fos* expression in the caudate putamen. Dark-field photomicrographs from single *in situ* hybridization with a 35 S-labeled riboprobe show *c-fos* mRNA after treatments with D_1 and D_2 agonists alone or in combination. The D_1 agonist SKF-82958 increases the number of *c-fos*-positive neurons (B), whereas the D_2 agonist quinelorane *decreases* it (C), as compared with saline-treated rats (A). Association of D_1 and D_2 agonists changes the D_1 -induced *c-fos* expression into a heterogeneous "patchy" pattern (*arrowheads* in D). Quantitative data are listed in Table 1. Magnification, $40 \times$. Conversely, the D_2 agonist quinelorane, at the dose of 2 mg/kg, caused a *decrease* in the number of *c-fos* mRNA-containing neurons in the caudate putamen (-75%, Table 1). Detection of such a decrease is directly related to our ability to consistently detect and quantify *c-fos* mRNA in basal conditions by using sensitive riboprobes (Fig. 2).
In contrast, the density of labeled neurons in the globus pallidus was increased after treatment with the D_2 agonist (+74%) (Fig. 3, Table 1). When quinelorane (2 mg/kg) was coadministered with SKF-82958 (1 mg/kg), the density of c-fos-labeled neurons in the caudate putamen and the nucleus accumbens was increased to the same extent as after SKF-82958 alone (Table 1). However, as shown in Figures 1 and 4, the homogenous distribution of the c-fos mRNA-containing neurons after SKF-82958 treatment was heterogeneous ("patchy") after coadministration of the two drugs. Comparison on adjacent sections shows that the distribution of c-fos mRNA after D_1 plus D_2 agonists was parallel to the distribution of μ -opioid receptor mRNA (Fig. 4). At the same time, in the globus pallidus, the coadministration of both SKF- 82958 (1 mg/kg) and quinelorane (2 mg/kg) increased by 190% the density of c-fos-labeled neurons as compared with quinelorane alone (Fig. 3, Table 1). # Effects of an A_{2A} antagonist alone or in combination with a D_1 agonist on c-fos expression in the striatum and in the globus pallidus The adenosine A_{2A} antagonist SCH-58261 had similar effects to the D_2 agonist quinelorane in the striatum. Treatment with SCH-58261 at a dose of 5 mg/kg induced a *decrease* in the density of *c-fos*-labeled neurons in the caudate putamen (-53%). In contrast to quinelorane, it had no effect on the density of labeled neurons in the globus pallidus (Fig. 5, Table 1). The coadministration of SKF-82958 (1 mg/kg) and SCH-58261 (5 mg/kg) induced a further increase in the density of *c-fos* mRNA-containing neurons in the caudate putamen (+38%) as compared with SKF-82958 alone (Fig. 5, Table 1). The distribution pattern of the *c-fos*-labeled neurons after the coadministration was homoge- Figure 3. D₁- and D₂-mediated regulation of *c-fos* expression in the globus pallidus. Dark-field photomicrographs from single *in situ* hybridization with a 35 S-labeled riboprobe show *c-fos* mRNA after treatments with D₁ and D₂ agonists alone or in combination. The level of *c-fos* mRNA observed under basal conditions in A is increased after the D₂ agonist (C), whereas it tends to decrease with the D₁ agonist (B). Combined treatment with both D₁ and D₂ agonists potentiated the D₂-mediated induction of *c-fos* in the globus pallidus (D). Stars indicate the internal capsule. Quantitative data are listed in Table 1. Magnification, $40\times$. neous in the striatum and not patchy, as seen after D_1 plus D_2 agonists (Figs. 1, 2, 4, 5). In the globus pallidus the coadministration of SKF-82958 with SCH-58261 induced a dramatic increase in the density of labeled neurons as compared with the saline-treated rats (+188%) but also as compared with SKF-82958 alone (+458%) (Fig. 5, Table 1). ### Effects of an A_{2A} antagonist alone or in combination with a D_2 agonist on *c-fos* expression in the striatum and in the globus pallidus As mentioned above, the D_2 receptor agonist quinelorane (2 mg/kg) decreased the density of *c-fos* mRNA-containing neurons in the caudate putamen and increased it in the globus pallidus, whereas the A_{2A} receptor antagonist SCH 58261 (5 mg/kg) affected *c-fos* mRNA expression only in the caudate putamen, where it caused a *decrease* in the density of labeled neurons (Table 1). The coadministration of D_2 agonist and A_{2A} antagonist significantly counteracted the decrease induced by quinelorane in the caudate putamen (from -75 to -52%). No synergistic effect of the two drugs on *c-fos* expression was found in the globus pallidus as compared with quinelorane alone (Table 1). ## Phenotypical identification of the c-fos mRNA-containing neurons in the caudate putamen after D_1 and D_2 agonists, given alone or in combination To examine in which type of striatal neurons the above-mentioned changes in c-fos expression occurred, we used double-labeling experiments with probes for either D_1 or D_2 receptor mRNA, together with a probe for c-fos mRNA. Because the results, analyzed in two separate experiments (as illustrated in Fig. 6), were identical, quantitative data were generated only from c-fos plus D_2 mRNAs simultaneous detection (Table 2). Therefore, in the following, D_2 mRNA-negative (–) neurons are referred to as D_1 mRNA-positive (+) neurons on the basis of both experiments and previously published data (Le Moine and Bloch, 1995, 1996). Figure 6 shows that administration of the D_1 agonist SKF-82958 (1 mg/kg) increased the number of both D_1 and D_2 mRNA-containing neurons that express *c-fos* mRNA (Table 2). Con- Figure 4. Striatal *c-fos* expression in patches after combined treatment with D_1 and D_2 agonists. Darkfield photomicrographs after *in situ* hybridization with 35 S-labeled riboprobes on adjacent sections show that the "patches" of *c-fos* mRNA-containing neurons (*arrowheads* in A) correspond to patches of μ -opioid receptor mRNA expression in the striatum (*arrowheads* in B). Also note the concomitant expression of *c-fos* and μ -mRNA in the subcallosal patch. cc, Corpus callosum. Magnification, $23 \times$. versely, the D_2 agonist quinelorane (2 mg/kg) decreased the density of c-fos-labeled neurons both for D_1 and D_2 mRNA-containing neurons (Table 2). The coadministration of D_1 and D_2 agonists had opposite effects on c-fos expression in these two populations because it induced an increase in the density of c-fos-labeled neurons containing D_1 mRNA and a decrease in the density of c-fos-labeled neurons containing D_2 mRNA, as compared with the D_1 agonist alone (Fig. 6, Table 2). Indeed, in SKF-82958 treated rats 53% of the c-fos expressing neurons were D_1 mRNA-positive, whereas in rats treated by SKF-82958 plus quinelorane, the proportion of these neurons reached 91% (Table 2). Note here and below that the relative changes observed in the density of c-fos-labeled neurons in the caudate putamen are comparable to what was observed in the single-labeling experiments and summarized in Table 1. # Phenotypical identification of the c-fos mRNA-containing neurons in the caudate putamen after A_{2A} antagonist and D_1 agonist, given alone or in combination Similar experiments, performed with the A_{2A} antagonist SCH 58261 (5 mg/kg), showed a decrease in the density of c-fos-labeled neurons and in D_2 mRNA-containing neurons, but not in D_1 mRNA-containing neurons (Table 2). As mentioned above, the D_1 agonist SKF-82958 increased the density of c-fos-labeled neurons both in D_1 and D_2 mRNA-positive neurons (Table 2). The coadministration of the D_1 agonist and the A_{2A} antagonist potentiated the increase in the density of c-fos-labeled neurons that were positive for D_1 mRNA but had no effect on the density of c-fos labeled in D_2 mRNA-containing neurons, as compared with the D_1 agonist alone (Table 2). # Phenotypical identification of the c-fos mRNA-containing neurons in the caudate putamen after A_{2A} antagonist and D_2 agonist, given alone or in combination The density of D_2 mRNA-positive neurons that express *c-fos* mRNA was lower in SCH-58261 (-60%) and quinelorane-treated animals (-97%) as compared with saline (Table 2). At the same time, quinelorane—and not SCH-58261—induced a reduction of *c-fos* in neurons positive for D_1 mRNA (-84.5%). When SCH-58261 and quinelorane were coadministered, there was no synergistic effect on c-fos expression in the D_1 -containing nor in the D_2 -containing neurons (Table 2). #### DISCUSSION Individual and synergistic effects of dopamine D_1 and D_2 receptor agonists and of an adenosine A_{2A} receptor antagonist on c-fos expression were analyzed in the striatum and globus pallidus. Our data, summarized in Figure 7, show that (1) c-fos expression can be either activated through D_1 and inhibited through A_{2A} or D_2 receptors in the two striatal output pathways in normal rats, and (2) D_2 receptor stimulation as well as A_{2A} receptor blockade can interact with D_1 , but not D_2 , receptor activation to potentiate c-fos expression in both the striatum and the globus pallidus. ### Effect of D₂ and D₁ agonists given alone on *c-fos* expression in the striatum Selective activation of D₂ receptors by the D₂ agonist produced a significant decrease in the number of striatal neurons expressing *c-fos* in the caudate putamen. The decrease was found in both D_1 and D₂-positive neurons. In D₂-containing neurons this decrease may be explained by the fact that dopamine is likely to have an inhibitory action on striatopallidal neurons via postsynaptic D₂ receptors (Gerfen et al., 1990). Conversely, the D₂ agonist effect on c-fos in D₁-containing neurons might be related to activation of presynaptic D₂ autoreceptors located on dopaminergic terminals, because this strongly decreases striatal dopamine release (Imperato et al., 1988; Suaud-Chagny et al., 1991) and thereby the D₁-mediated activity in striatonigral neurons. Decreases of mRNA coding for the immediate early gene NGFI-A (zif 268) have been described after treatment with drugs acting on D₂ or A_{2A} receptors (Gerfen et al., 1995; Svenningsson et al., 1995), but we describe here for the first time the D2-mediated inhibition of *c-fos* expression in the two striatal output neurons. The full D_1 agonist SKF-82958 increased *c-fos* expression in the striatum in normal rats, as previously reported by Wang and McGinty (1996). A strong induction of *c-fos* expression in the D_1 rich cortical layer VIb (Gaspar et al., 1995) also was found. Interestingly, *c-fos* mRNA increased to a similar extent in D_1 - and D_2 -containing neurons in the striatum. The stimulation of *c-fos* Figure 5. Effect of the A_{2A} antagonist alone or in combination with the D_1 agonist on c-fos expression in the caudate putamen (A-C) and the globus pallidus (D-F). Dark-field
photomicrographs from single in situ hybridization with a 35 S-labeled riboprobe show the basal levels of c-fos mRNA in the caudate putamen (A) and in the globus pallidus (D). The A_{2A} antagonist SCH-58261 alone decreases the number of c-fos-positive neurons in the caudate putamen (B) but has no effect on the globus pallidus (E). Coadministration of the D_1 agonist, together with the A_{2A} antagonist, induces c-fos both in the caudate putamen (C) and in the globus pallidus (F) with a synergistic effect, as compared with the D_1 agonist alone (see also Table 1). Stars indicate the internal capsule. Quantitative data are listed in Table 1. Magnification, $40\times$. expression in D_1 -positive neurons was expected, because many studies have demonstrated that the dopamine-mediated induction of striatal Fos is dependent on D_1 activation [see Hughes and Dragunow (1995) and references therein]. The increased number of D_2 -positive neurons expressing *c-fos* after SKF-82958 was unexpected. In previous studies, using the partial D_1 agonist SKF-38393, researchers observed *c-fos* induction only in the D_1 receptor-containing striatonigral neurons (Robertson et al., 1990; Gerfen et al., 1995). However, these studies were performed in animals with nigrostriatal lesions, and we therefore suggest that *c-fos* induction by the D_1 agonist in striatopallidal neurons requires intact nigrostriatal neurons. We hypothesize that the D_1 agonist, when injected systemically, acts on D_1 receptors located on striatonigral terminals (Caillé et al., 1996) and stimulates GABA release (Cameron and Williams, 1993), which in turn inhibits nigrostriatal neurons and decreases the extracellular striatal dopamine level (Suaud-Chagny et al., 1992). This effect would be indirectly responsible for an increase of c-fos in striatopallidal neurons. Nevertheless, cholinergic interneurons expressing D_5 (C. Le Moine, unpublished results) in addition to D_2 receptors (Le Moine et al., 1990b) and corticostriatal glutamatergic neurons (Gaspar et al., 1995) also may be involved in this D_1 -dependent c-fos activation in the D_2 -containing neurons (Berretta et al., 1992). Figure 6. Phenotypical characterization of the striatal neurons expressing c-fos after D_1 and D_2 agonists, alone or in combination. Double in situ hybridization detects D_1 or D_2 receptor mRNA with digoxigenin-labeled riboprobe (stained cells), together with c-fos mRNA, with a 35 S-labeled riboprobe (silver grains). A and D show that c-fos mRNA is present both in D_1 mRNA-containing (A) and D_2 mRNA-containing (D) neurons under basal conditions. The D_1 agonist SKF-82958 increases c-fos expression both in D_1 mRNA-containing neurons (a-rowheads in B) and in D_2 mRNA-containing neurons (a-rowhead in E). As compared with the D_1 agonist alone, coadministration of D_1 and D_2 agonists potentiates the increase of c-fos expression in D_1 mRNA-containing neurons (a-rowheads in C) and decreases it in D_2 mRNA-containing neurons. Quantitative data are listed in Table 2. Magnification, 640×. ### Effect of combined D_1 and D_2 agonists on *c-fos* expression in the striatum Thus, the effects of D_1 or D_2 agonists probably can be attributed to both direct postsynaptic effects and indirect effects mediated by the mesencephalic dopamine neurons. However, when these drugs are combined, the effects of endogenous dopamine are likely to be masked. Indeed, in the striatum, combined treatment with D_1 and D_2 agonists potentiated *c-fos* expression in D_1 -containing neurons but inhibited it in D_2 -containing neurons. The fact that the combined treatment induces *c-fos* at 92% in D_1 -containing neurons is consistent with data obtained in conditions that enhance extracellular dopamine concentration (Graybiel et al., 1990; Young et al., 1991; Moratalla et al., 1993; Jaber et al., 1995; Wang et al., 1995; Chergui et al., 1996). ### Effect of an A_{2A} antagonist alone or in combination with D_1 or D_2 agonists in the striatum A_{2A} and D_2 receptors regulate pallidal GABA release in an opposite manner (Ferré et al., 1993; Mayfield et al., 1993, 1996) and are colocalized in striatopallidal neurons, but not in interneurons nor on nigrostriatal terminals (Schiffmann et al., 1991; Fink et al., 1992; Augood and Emson, 1994; Svenningsson et al., 1997). Therefore, studying the effects of A_{2A} receptors on striatal neurotransmission may be of interest not only to better under- Table 2. Density of D_1- or D_2 striatal neurons expressing $\emph{c-fos}$ mRNA after D_1 or/and D_2 agonists and A_{2A} antagonist, alone or in combination | Treatment group | n | $Fos+/D_2-$ neurons | Fos+/D ₂ + neurons | |-----------------|---|--------------------------|-------------------------------| | Saline (a) | 5 | 34.2 ± 4.6 | 26.7 ± 3.7 | | Quinelorane (b) | 4 | $5.3 \pm 1.7^{*a}$ | $0.75 \pm 0.4^{*a}$ | | SKF-82958 (c) | 5 | $84.2 \pm 14.8^{*a}$ | $73.0 \pm 10.4^{*a}$ | | SCH-58261 (d) | 4 | $22.5 \pm 3.8^{ns,a}$ | $10.8 \pm 3.1^{*a}$ | | SKF-82958 + | | | | | quinelorane | 5 | $233.5 \pm 25.3^{*b,c}$ | $22.4 \pm 2.5^{*b,c}$ | | SKF-82958 + | | | | | SCH-58261 | 4 | $166.6 \pm 18.0^{*c,d}$ | $65.6 \pm 7.7^{*d,ns,c}$ | | Quinelorane + | | | | | SCH-58261 | 5 | $10.8 \pm 2.3^{*b,ns,d}$ | $1.5 \pm 0.5^{*ns,b,d}$ | | | | | | Rats were treated with saline (NaCl 0.9%), with the D_2 agonist quinelorane (2 mg/kg), with the D_1 agonist SKF-82958 (1 mg/kg), with the A_{2A} antagonist SCH 58261 (5 mg/kg), or various combinations: SKF-82958 (1 mg/kg) + quinelorane (2 mg/kg), SCH 58261 (5 mg/kg) + SKF-82958 (1 mg/kg), and quinelorane (2 mg/kg) + SCH 58261 (5 mg/kg). c-fos mRNA was detected with double in situ hybridization (exposure times, 10 weeks). Values represent the mean \pm SEM of the number of c-fos mRNA-containing neurons per mm². Two-way ANOVA, followed by post hoc t tests corrected for the experiment-wise alpha level (Bonferroni correction). The results of the global ANOVA were for quinelorane/SKF-82958 interaction: $F_{(1,15)} = 31.55, p < 0.001$ for D_2 -negative neurons and $F_{(1,15)} = 4.155$ for D_2 -positive neurons; for SKF-82958/SCH-58261 interaction: $F_{(1,14)} = 15.45, p < 0.001$ for D_2 -negative neurons and $F_{(1,14)} = 0.35$ for D_2 -positive neurons. For the multiple post hoc t tests Bonferroni correction, an asterisk indicates relevant significant differences between indicated groups (p < 0.05). stand adenosinergic modulation but also to delineate effects specifically related to an altered activity of striatopallidal neurons. We show here that the A_{2A} antagonist SCH-58261 shared with the D_2 agonist the ability to decrease *c-fos* expression in the striatum. This decrease occurred only in D_2 -containing neurons, suggesting that this effect is mainly postsynaptic. Indeed, unlike the D_2 agonist, the A_{2A} antagonist does not affect dopamine release (Ferré et al., 1993). This supports the idea that endogenous adenosine acting at A_{2A} receptors regulates the constitutive expression of immediate early genes in the striatum (Svenningsson et al., 1995). Coadministration of the A2A antagonist with the D1 agonist potentiated the D_1 -induced increase in *c-fos* expression in D_1 containing neurons, like treatment with D_1 and D_2 agonists. However, this combination, unlike the D₁ plus D₂ combination, caused no inhibition of D₁-mediated c-fos induction in D₂containing neurons. This suggests that regulation of *c-fos* by dopamine is more potent than A2A-mediated effects on these neurons in our conditions. Whereas the D₁/D₂ combined treatment produced a change of the initial homogeneous striatal expression of c-fos into a "patchy" pattern, as previously described (Paul et al., 1992; Wang and McGinty, 1996), the pattern of c-fos expression after the D₁/A_{2A} combination was homogeneous in the striatum. These results suggest that D2 receptors located postsynaptically on striatopallidal neurons, like the A_{2A} receptors, are involved in the quantitative enhancement of c-fos mRNA in striatal neurons, whereas D₂ receptors located presynaptically or on interneurons might be involved more specifically in differential dopaminergic regulations between the patch/matrix compartments. ### D_1/D_2 and D_1/A_{2A} interactions in the globus pallidus In accordance with previous immunohistochemical studies (Robertson et al., 1992; Marshall et al., 1993), we show here an increase of *c-fos* expression in the globus pallidus after administration of D1 agonist D2 agonist D1 + D2 agonists D1 agonist + A2A antagonist Figure 7. Schematic representation of the interactions in the basal ganglia after treatments with D_1 and D_2 agonists or combined treatment with $D_1 + D_2$ agonist or D_1 agonist $+ A_{2A}$ antagonist. The variations of expression of c-fos mRNA as compared with basal conditions are indicated inside the structure or the neuronal populations that we have studied. Dark arrows represent excitatory pathways, and white arrows represent inhibitory pathways. The thickness of the arrows changes according to the supposed neuronal activity in the different pathways. ST, Striatum; GP, globus pallidus; SNc, substantia nigra pars compacta; SNr/EPN, substantia nigra pars reticulata/entopeduncular nucleus; STN, subthalamic nucleus; fos, c-fos mRNA. the D_2 agonist. A strong tendency for a decrease of *c-fos* expression was found after D_1 agonist treatment, although not significant in our statistical conditions. This tendency might be attributable to the D_1 -mediated *c-fos* expression in striatopallidal neurons. Taken together, these data suggest that stimulation of D_1 and D_2 receptors has opposite effects on pallidal neurons also. The combined treatment with D_1 and D_2 agonists potentiated the increase in *c-fos* expression induced by the D_2 agonist
alone, as previously shown (Paul et al., 1992, 1995; Marshall et al., 1993). This agrees with electrophysiological data showing that the D_1 plus D_2 coactivation is required for the maximal excitatory effect, demonstrating a potentiated effect mediated by D_1 receptors on D_2 receptor-activated responses (Walters et al., 1987). There was also a strong induction of c-fos expression after combined treatment, using the A_{2A} antagonist together with the D_1 agonist. Interestingly, coadministration of A_{2A} antagonist together with the D_2 agonist had no synergistic effects on c-fos expression in the globus pallidus. This implies that, despite their coexpression and their well established interactions (Ferré et al., 1992, 1993), the D_2 and A_{2A} receptors are not solely the key for adenosine/dopamine interactions in the basal ganglia. Instead, our findings suggest that the most important functional interactions may be between drugs that affect A_{2A} and dopamine receptors in distinct neuronal populations. This conclusion also has implications for our understanding of the D_1/D_2 interactions. Disinhibition of striatopallidal neurons is one of the mechanisms whereby c-fos is induced in globus pallidus. However, if c-fos expression can correlate with the activity of striatopallidal neurons, these neurons are likely to be stimulated rather than inhibited by combined treatments with D_1 plus D_2 agonists or D_1 agonist plus A_{2A} antagonist. Thus, the increase in pallidal c-fos expression may be attributable to the involvement of additional inputs to the globus pallidus. This may be attributable to an increased activity in the excitatory input from subthalamic nucleus. It has been found that NMDA receptor antagonists inhibit the induction of pallidal Fos immunoreactivity after combined administration of D_1 and D_2 agonists (Paul et al., 1992, 1995). Thus, it might turn out that concomitant stimulation of an excitatory input and inhibition of striatopallidal neurons act in synergy to increase c-fos in globus pallidus. #### Conclusion Although *c-fos* generally is used as a neuronal activation marker, we demonstrate here that basal *c-fos* expression is *up*regulated by a D_1 agonist but *down*regulated by a D_2 agonist or an A_{2A} antagonist. This suggests that *c-fos* mRNA levels may be used as an indicator of *inhibition* as well as activation of a neuronal pathway. Synergistic effects have been observed in the striatal output pathways after coadministration of D_1 plus D_2 agonists or D_1 agonist plus A_{2A} antagonist, providing evidence for important interactions between these parallel pathways. This work gives a basis for further investigations to elucidate the mechanisms whereby these synergistic effects occur, especially in the globus pallidus. ### **REFERENCES** - Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13:266–271. - Andersen PH, Jansen JA (1990) Dopamine receptor agonists: selectivity and dopamine D1 receptor efficacy. Eur J Pharmacol 188:335–347. - Augood SJ, Emson PC (1994) Adenosine A2A receptor mRNA is expressed by enkephalin cells but not by somatostatin cells in the rat striatum: a co-expression study. Mol Brain Res 22:204–210. - Berretta S, Robertson HA, Graybiel AM (1992) Dopamine and glutamate agonists stimulate neuron-specific expression of Fos-like protein in the striatum. J Neurophysiol 68:767–777. - Bymaster FP, Reid LR, Nichols CL, Kornfeld EC, Wong DT (1986) Elevation of acetylcholine levels in striatum of the rat brain by LY163502, *trans*-(-)5,5a,6,7,8,9a,10-octahydro-6-propylpyrimido<4,5-g>quinolin-2-amine dihydrochloride, a potent and stereospecific dopamine (D2) agonist. Life Sci 38:317–322. - Caillé I, Dumartin B, Bloch B (1996) Ultrastructural localization of D1 dopamine receptor immunoreactivity in the rat striatonigral neurons and its relation with dopaminergic innervation. Brain Res 730:17–31. - Cameron DL, Williams JT (1993) Dopamine D1 receptors facilitate transmitter release. Nature 366:344–347. - Chergui K, Nomikos GG, Mathé JM, Gonon F, Svensson TH (1996) Burst stimulation of the medial forebrain bundle selectively increases Fos-like immunoreactivity in the limbic forebrain of the rat. Neuroscience 72:141–156. - Creese I, Sibley DR, Hamblin MW, Leff SE (1983) The classification of dopamine receptors: relationship to radioligand binding. Annu Rev Neurosci 6:43–71. - Curran T, Gordon MB, Rubino KL, Sambucetti LC (1987) Isolation and characterization of the *c-fos* (rat) cDNA and analysis of post-translational modification *in vitro*. Oncogene 2:79–84. - Ferré S, Fuxe K, von Euler G, Johansson B, Fredholm BB (1992) Adenosine-dopamine interactions in the brain. Neuroscience 51:501–512. - Ferré S, O'Connor WT, Fuxe K, Ungerstedt U (1993) The striatopallidal neuron: a main locus for adenosine-dopamine interactions in the brain. J Neurosci 13:5402–5406. - Fink JS, Weaver DR, Rivkees SA, Peterfreund RA, Pollack AE, Adler EM, Reppert SM (1992) Molecular cloning of the rat A2 adenosine receptor: selective co-expression with D2 dopamine receptors in rat striatum. Mol Brain Res 14:186–195. - Gaspar P, Bloch B, Le Moine C (1995) D1 and D2 receptor gene expression in the rat frontal cortex: cellular localization in different classes of efferent neurons. Eur J Neurosci 7:1050–1063. - Gerfen CR (1992) The neostriatal mosaic: multiple levels of compartmental organization in the basal ganglia. Annu Rev Neurosci 15:285–320. - Gerfen CR, Wilson CJ (1996) The basal ganglia. In: Handbook of chemical neuroanatomy, Vol 12, Integrated systems of the CNS, Pt III (Swanson LW, Björklund A, Hökfelt T, eds), pp 371–468. Amsterdam: Elsevier. - Gerfen CR, Engber TM, Maham LC, Susel Z, Chase TN, Monsma FJ, Sibley DR (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250:1429–1432. - Gerfen CR, Keefe KA, Gauda EB (1995) D1 and D2 dopamine receptor function in the striatum: coactivation of D1 and D2 dopamine receptors on separate populations of neurons results in potentiated immediate early gene response in D1-containing neurons. J Neurosci 15:8167–8176. - Graybiel AM (1990) Neurotransmitters and neuromodulators in the basal ganglia. Trends Neurosci 13:244–253. - Graybiel AM, Moratalla R, Robertson HA (1990) Amphetamine and cocaine induce drug-specific activation of the *c-fos* gene in striosomematrix compartments and limbic subdivisions of the striatum. Proc Natl Acad Sci USA 87:6912–6916. - Hersch SM, Ciliax BJ, Gutekunst CA, Rees HD, Heilman CJ, Yung KKL, Bolam JP, Ince E, Yi H, Levey AI (1995) Electron microscopic analysis of D1 and D2 dopamine receptor proteins in the dorsal striatum and their synaptic relationships with motor corticostriatal afferents. J Neurosci 15:5222–5237. - Hughes P, Dragunow M (1995) Induction of immediate early genes and the control of neurotransmitters-regulated gene expression within the nervous system. Pharmacol Rev 47:133–178. - Imperato A, Tanda G, Frau R, Di Chiara G (1988) Pharmacological profile of dopamine receptor agonists as studied by brain dialysis in behaving rats. J Pharmacol Exp Ther 245:257–264. - Jaber M, Cador M, Dumartin B, Normand E, Stinus L, Bloch B (1995) Acute and chronic amphetamine treatments differently regulate messenger RNA levels and Fos immunoreactivity in rat striatal neurons. Neuroscience 65:1041–1050. - Jaber M, Robinson SW, Missale C, Caron MG (1996) Dopamine receptors and brain function. Neuropharmacology 35:1503–1519. - Jiang H, Jackson-Lewis V, Muthane U, Dollison A, Ferreira M, Espinosa A, Parsons B, Przedborski S (1993) Adenosine receptor antagonists potentiate dopamine receptor agonist-induced rotational behaviour in 6-hydroxydopamine-lesioned rats. Brain Res 613:347–351. - Le Moine C, Bloch B (1995) D1 and D2 dopamine receptor gene expression in the rat striatum: sensitive cRNA probes demonstrate prominent segregation of D1 and D2 mRNAs in distinct neuronal populations of the dorsal and ventral striatum. J Comp Neurol 355:418–426. - Le Moine C, Bloch B (1996) Expression of the D3 dopamine receptor in peptidergic neurons of the nucleus accumbens: comparison with D1 and D2 dopamine receptors. Neuroscience 73:131–143. - Le Moine C, Normand E, Guitteny AF, Fouque B, Teoule R, Bloch B (1990a) Dopamine receptor gene expression by enkephalin neurons in rat forebrain. Proc Natl Acad Sci USA 87:230–234. - Le Moine C, Normand E, Bloch B (1991) Phenotypical characterization of the rat striatal neurons expressing the D1 dopamine receptor gene. Proc Natl Acad Sci USA 88:4205–4209. - Marshall JF, Cole BN, LaHoste GJ (1993) Dopamine D2 receptor control of pallidal fos expression: comparisons between intact and 6-hydroxydopamine-treated hemispheres. Brain Res 632:308–313. - Mayfield RD, Suzuki F, Zahniser NR (1993) Adenosine A_{2A} receptor modulation of electrically evoked endogenous GABA release from slices of rat globus pallidus. J Neurochem 60:2334–2337. - Mayfield RD, Larson G, Orona RA, Zahniser NR (1996) Opposing actions of adenosine A_{2A} and dopamine D2 receptor activation on GABA release in the basal ganglia: evidence for an A_{2A}/D2 receptor interaction in globus pallidus. Synapse 22:132–138. - Monsma FJ, McVittie LD, Gerfen CR, Maham LC, Sibley DR (1989) Multiple D2 dopamine receptors produced by alternative RNA splicing. Nature 342:926–929. - Monsma FJ, Maham LC, McVittie LD, Gerfen CR, Sibley DR (1990) Molecular cloning and expression of a D1 dopamine receptor linked to adenylate cyclase activation. Proc Natl Acad Sci USA 87:6723–6727. - Moratalla R, Vickers EA, Robertson HA, Cochran BH, Graybiel AM (1993) Coordinate expression of *c-fos* and *jun* B is induced in the rat striatum by cocaine. J Neurosci 13:423–433. - Ongini E, Fredholm BB (1996) Pharmacology of adenosine A_{2A} receptors. Trends Pharmacol Sci
17:364–372. - Paul ML, Graybiel AM, David JC, Robertson HA (1992) D1-like and D2-like dopamine receptors synergistically activate rotation and *c-fos* expression in the dopamine-depleted striatum in a rat model of Parkinson's disease. J Neurosci 12:3729–3742. - Paul ML, Currie RW, Robertson HA (1995) Priming of a D1 dopamine receptor behavioural response is dissociated from striatal immediate-early gene activity. Neuroscience 66:347–359. - Pinna A, Di Chiara G, Wardas J, Morelli M (1996) Blockade of A_{2A} adenosine receptors positively modulates turning behaviour and *c-fos* expression induced by D1 agonists in dopamine denervated rats. Eur J Neurosci 8:1176–1181. - Pollack AE, Fink JS (1996) Synergistic interaction between an adenosine antagonist and a dopamine D1 agonist on rotational behaviour and striatal *c-fos* induction in 6-hydroxydopamine-lesioned rats. Brain Res 743:124–130. - Robertson GS, Vincent SR, Fibiger HC (1990) Striatonigral projections neurons contain D1 dopamine receptor-activated *c-fos*. Brain Res 523:288–290. - Robertson GS, Vincent SR, Fibiger HC (1992) D1 and D2 dopamine receptors differentially regulate *c-fos* expression in striatonigral and striatopallidal neurons. Neuroscience 49:285–296. - Schiffmann SN, Jacobs OP, Vanderhaegen JJ (1991) Striatal restricted adenosine A2 receptor (RDC8) is expressed by enkephalin but not substance P neurons: an *in situ* hybridization study. J Neurochem 57:1062–1067. Suaud-Chagny MF, Ponec J, Gonon F (1991) Presynaptic autoinhibition of the electrically evoked dopamine release studied in the rat olfactory tubercle by *in vivo* electrochemistry. Neuroscience 45:641–652. Le Moine et al. • D₁, D₂, and A_{2A}-regulated c-fos mRNA in Basal Ganglia - Suaud-Chagny MF, Chergui K, Chouvet G, Gonon F (1992) Relationship between dopamine release in the rat nucleus accumbens and the discharge activity of dopaminergic neurons during local *in vivo* application of amino acids in the ventral tegmental area. Neuroscience 49:63–72. - Surmeier DJ, Reiner A, Levine MS, Ariano MA (1993) Are neostriatal dopamine receptors co-localized? Trends Neurosci 16:299–305. - Svenningsson P, Nomikos G, Fredholm BB (1995) Biphasic changes in locomotor behavior and in expression of mRNA for NGFI-A and NGFI-B in rat striatum following acute caffeine administration. J Neurosci 15:7612–7624. - Svenningsson P, Le Moine C, Kull B, Sunahara R, Bloch B, Fredholm BB (1997) Cellular expression of adenosine A_{2A} receptor mRNA in the rat central nervous system with special reference to dopamine innervated areas. Neuroscience 80:1171–1185. - Swanson LW (1992) Brain maps: structure of the rat brain. Amsterdam: Elsevier. - Thompson RC, Mansour A, Akil H, Watson SJ (1993) Cloning and pharmacological characterization of a rat μ opioid receptor. Neuron 11:903–913. - Waddington JL, Daly SA (1993) Regulation of unconditioned motor behaviour by D1:D2 interactions. In: Neuroscience and psychopharmacology: D1:D2 dopamine receptor interactions (Waddington JL, ed), pp 51–78. San Diego: Academic. - Walters JR, Bergstrom DA, Carlson JH, Chase TN, Braun AR (1987) D1 dopamine receptor activation required for postsynaptic expression of D2 agonist effects. Science 236:719–722. - Wang JQ, McGinty JF (1996) Scopolamine augments *c-fos* and zif/268 messenger RNA expression induced by the full D1 dopamine receptor agonist SKF-82958 in the intact rat striatum. Neuroscience 72:601–616. - Wang JQ, Smith AJW, McGinty JF (1995) A single injection of amphetamine or methamphetamine induces dynamic alterations in *c-fos*, zif 268, and preprodynorphin messenger RNA expression in rat forebrain. Neuroscience 68:83–95. - White FJ, Hu XT (1993) Electrophysiological correlates of D1:D2 interactions. In: Neuroscience and psychopharmacology: D1:D2 dopamine receptor interactions (Waddington JL, ed), pp 79–114. San Diego: Academic. - Young ST, Porrino LJ, Iadarola MJ (1991) Cocaine induces striatal c-Fos immunoreactive proteins via dopaminergic D1 receptors. Proc Natl Acad Sci USA 88:1291–1295. - Yung KKL, Smith AD, Levey AI, Bolam JP (1996) Synaptic connections between spiny neurons of the direct and indirect pathways in the neostriatum of the rat: evidence from dopamine receptor and neuropeptide immunostaining. Eur J Neurosci 8:861–869. - Zocchi C, Ongini E, Conti A, Monopoli A, Negretti A, Baraldi PG, Dionisotti S (1996) The non-xanthine heterocyclic compound SCH 58261 is a new potent and selective A_{2A} adenosine receptor antagonist. J Pharmacol Exp Ther 276:398-404.