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Connectivity, Computation, and Information Coding

Michael N. Shadlen' and William T. Newsome?2

1Department of Physiology and Biophysics and Regional Primate Research Center, University of Washington, Seattle,
Washington 98195-7290, and 2Howard Hughes Medical Institute and Department of Neurobiology, Stanford University

School of Medicine, Stanford, California 94305

Cortical neurons exhibit tremendous variability in the number
and temporal distribution of spikes in their discharge patterns.
Furthermore, this variability appears to be conserved over large
regions of the cerebral cortex, suggesting that it is neither
reduced nor expanded from stage to stage within a processing
pathway. To investigate the principles underlying such statisti-
cal homogeneity, we have analyzed a model of synaptic inte-
gration incorporating a highly simplified integrate and fire
mechanism with decay. We analyzed a “high-input regime” in
which neurons receive hundreds of excitatory synaptic inputs
during each interspike interval. To produce a graded response
in this regime, the neuron must balance excitation with inhibi-
tion. We find that a simple integrate and fire mechanism with
balanced excitation and inhibition produces a highly variable
interspike interval, consistent with experimental data. Detailed
information about the temporal pattern of synaptic inputs can-
not be recovered from the pattern of output spikes, and we infer
that cortical neurons are unlikely to transmit information in the

temporal pattern of spike discharge. Rather, we suggest that
quantities are represented as rate codes in ensembles of 50—
100 neurons. These column-like ensembles tolerate large frac-
tions of common synaptic input and yet covary only weakly in
their spike discharge. We find that an ensemble of 100 neurons
provides a reliable estimate of rate in just one interspike interval
(10-50 msec). Finally, we derived an expression for the variance
of the neural spike count that leads to a stable propagation of
signal and noise in networks of neurons—that is, conditions
that do not impose an accumulation or diminution of noise. The
solution implies that single neurons perform simple algebra
resembling averaging, and that more sophisticated computa-
tions arise by virtue of the anatomical convergence of novel
combinations of inputs to the cortical column from external
sources.
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Since the earliest single-unit recordings, it has been apparent that
the irregularity of the neural discharge might limit the sensitivity
of the nervous system to sensory stimuli (for review, see Rieke et
al., 1997). In visual cortex, for example, repeated presentations of
an identical stimulus elicit a variable number of action potentials
(Schiller et al., 1976; Dean, 1981; Tolhurst et al., 1983; Vogels et
al., 1989; Snowden et al., 1992; Britten et al., 1993), and the time
between successive action potentials [interspike interval (ISI)] is
highly irregular (Tomko and Crapper, 1974; Softky and Koch,
1993). These observations have led to numerous speculations on
the nature of the neural code (Abeles, 1991; Konig et al., 1996;
Rieke et al., 1997). On the one hand, the irregular timing of
spikes could convey information, imparting broad information
bandwidth on the neural spike train, much like a Morse code.
Alternatively this irregularity may reflect noise, relegating the
signal carried by the neuron to a crude estimate of spike rate.
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In principle we could ascertain which view is correct if we knew
how neurons integrate synaptic inputs to produce spike output.
One possibility is that specific patterns or coincidences of presyn-
aptic events give rise to precisely timed postsynaptic spikes.
Accordingly, the output spike train would reflect the precise
timing of relevant presynaptic events (Abeles, 1982, 1991; Lesti-
enne, 1996). Alternatively, synaptic input might affect the prob-
ability of a postsynaptic spike, whereas the precise timing is left to
chance. Then presynaptic inputs would determine the average
rate of postsynaptic discharge, but spike times, patterns, and
intervals would not convey information.

In this paper we propose that the irregular ISI arises as a
consequence of a specific problem that cortical neurons must
solve: the problem of dynamic range or gain control. Cortical
neurons receive 3000-10,000 synaptic contacts, 85% of which are
asymmetric and hence presumably excitatory (Peters, 1987; Brait-
enberg and Schiiz, 1991). More than half of these contacts are
thought to arise from neurons within a 100-200 wm radius of the
target cell, reflecting the stereotypical columnar organization of
neocortex. Because neurons within a cortical column typically
share similar physiological properties, the conditions that excite
one neuron are likely to excite a considerable fraction of its
afferent input as well (Mountcastle, 1978; Peters and Sethares,
1991), creating a scenario in which saturation of the neuron’s
firing rate could easily occur. This problem is exacerbated by the
fact that EPSPs from individual axons appear to exert substantial
impact on the membrane potential (Mason et al., 1991; Otmakhov
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et al., 1993; Thomson et al., 1993b; Matsumura et al., 1996). An
individual EPSP depolarizes the membrane by 3-10% of the
necessary excursion from resting potential to spike threshold, and
this seems to hold for synaptic contacts throughout the dendrite
regardless of the distance between synapse and soma (Hoffman et
al., 1997), suggesting that a large fraction of the synapses are
capable of influencing somatic membrane potential. Absent inhi-
bition, a neuron ought to produce an action potential whenever
10-40 input spikes arrive within 10-20 msec of each other.

These findings begin to reveal the full extent of the cortical
neuron’s problem. The neuron computes quantities from large
numbers of synaptic input, yet the excitatory drive from only
10-40 inputs, discharging at an average rate of 100 spikes/sec,
should cause the postsynaptic neuron to discharge near 100
spikes/sec. If as few as 100 excitatory inputs are active (of the
=3000 available), the postsynaptic neuron should discharge at a
rate of =200 spikes/sec. It is a wonder, then, that the neuron can
produce any graded spike output at all. We need to understand
how cortical neurons can operate in a regime in which many (e.g.,
=100) excitatory inputs arrive for every output spike. We will
refer to this as a “high-input regime” to distinguish it from
situations common in subcortical structures in which the activity
of a few inputs determines the response of the neuron. We
emphasize that we refer only to the active inputs of a neuron,
which may be as few as 5-10% of its afferent synapses, although
our arguments apply to all larger fractions as well. The actual
fraction active is not known for any cortical neuron, but most
cortical physiologists realize that large numbers of neurons are
activated by simple stimuli (McIlwain, 1990) and would probably
estimate the fraction as considerably greater than 5-10%.

In this paper we analyze a simple model of synaptic integration
that permits presynaptic and postsynaptic neurons to respond
over the same dynamic range, solving the gain control problem.
The model is a variant of the random walk model proposed by
Gerstein and Mandelbrot (1964) and others (for review, see
Tuckwell, 1988). Although constrained by neural membrane bio-
physics, the model is not a biophysical implementation. There are
no synaptic or voltage-gated conductances, etc. Instead, we have
chosen to attack the problem of synaptic integration as a counting
problem, focusing on the consequences of counting input spikes
to produce output spikes. We show in Appendix 1, however, that
a more realistic, conductance-based model undergoes the same
statistical behavior.

The paper is divided into three main parts. The first concerns
the problem of synaptic integration in the high-input regime.
Given a plethora of synaptic input, how do neurons achieve an
acceptable dynamic range of response? It turns out that the
solution to this problem imposes a high degree of irregularity on
the pattern of action potentials—the price of a reasonable dy-
namic range is noise. The rest of the paper concerns implications
of this noise on the reliability of neural signals. Part 2 explores the
consequences of shared connections among neurons. Redun-
dancy is a natural strategy for encoding information in noisy
neurons and is a well established principle of cortical organiza-
tion (Mountcastle, 1957). We examine its implications for corre-
lation, synchrony, and coding fidelity. In part 3 we consider how
neurons can receive variable inputs, compute with them, and
produce a response with variability that is, on average, neither
greater nor less than its inputs. We find a stable solution to the
propagation of noise in networks of neurons and in so doing gain
insight into the nature of neural computation itself. Together the
exercise supports a view of neuronal coding and computation that
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requires large numbers of connections, much redundancy, and,
consequentially, a great deal of noise.

BACKGROUND: THE OBSERVED VARIABILITY OF
SINGLE NEURONS

The variability of the neuronal response is characterized in two
ways: interval statistics and count statistics. Interval statistics
refer to the time between successive action potentials, known as
the ISI. For cortical neurons, the ISI is highly irregular. Because
this interval is simply the reciprocal of the discharge rate at any
instant, a neuron that modulates its discharge rate over time must
exhibit variability in its ISIs. Yet even a neuron that fires at a
constant rate over some epoch will exhibit considerable variability
among its ISIs. In fact the distribution of ISIs resembles the
exponential probability density of a random (Poisson) point pro-
cess. To a first approximation, the time to the next spike depends
only on the expected rate and is otherwise random.

Count statistics refer to the number of spikes produced in an
epoch of fixed duration. Under experimental conditions it is
possible to estimate the mean and variability of the spike count by
repeating the measurement many times. A typical example is the
number of spikes produced by a neuron in the primary visual
cortex when a bar of light is passed through its receptive field. For
cortical neurons, repeated presentations of the identical stimulus
yield highly variable spike counts. The variance of spike counts
over repeated trials has been measured in several visual cortical
areas in monkey and cat. The relationship between the count
variance and the count mean is linear when plotted on log-log
graph, with slope just greater than unity. A reasonable approxi-
mation is that the response variance is about 1.5 times the mean
response (Dean, 1981; Tolhurst et al., 1983; Bradley et al., 1987;
Scobey and Gabor, 1989; Vogels et al., 1989; Snowden et al., 1992;
Britten et al., 1993; Softky and Koch, 1993; Geisler and Albrecht,
1997).

What is particularly striking about both interval and counting
statistics is that they seem to be fairly homogeneous throughout
the cerebral cortex (Softky and Koch, 1993; Lee et al., 1998).
Measurements of ISI variability are difficult, because any mea-
sured variation is only meaningful if the rate is a constant.
Nevertheless, the sound of a neural spike train played through a
loudspeaker is remarkably similar in most regions of the neocor-
tex and contrasts remarkably with subcortical spike trains, whose
regularity often evokes tones. Such gross homogeneity among
cortical areas implies that the inputs to, and the outputs from, a
typical cortical neuron conform to common statistical principles.
To the electrophysiologist recording from neurons in cortical
columns, it is clear that nearby neurons respond under similar
conditions and that their response magnitudes are roughly simi-
lar. Neurons encountered within the column are fairly represen-
tative of the inputs of any one neuron and, in a rough sense, the
targets of any one neuron (Braitenberg and Schiiz, 1991). Again,
we emphasize that it is only the neuron’s active inputs to which we
refer.

Table 1 lists properties of the neural response that apply more
or less equivalently to a neuron as well as to its inputs and its
targets. These properties are to be interpreted as rough rules of
thumb, but they pose important constraints for the flow of im-
pulses and information through networks of cortical neurons.

Figure 1 illustrates these properties for a neuron recorded from
the middle temporal visual area (MT or V5) of a behaving
monkey, a visual area that is specialized for processing motion
information (for review, see Albright, 1993). Figure 1 shows 210
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Table 1. Properties of statistical homogeneity for cortical neurons

Response property Approximate value

0-200 spikes/sec
Approximately exponential

Dynamic range of response

Distribution of interspike
intervals

Spike count variance Variance ~1-1.5 times the mean
count

Expected rate can vary in ~1 ISI,

5-10 msec

Spike rate modulation

repetitions of the spike train produced by this neuron when an
identical sequence of random dots was displayed dynamically in
the receptive field of the neuron. The stimulus contained rapid
fluctuations of luminance and random motion, which produced
similarly rapid fluctuations in the neural discharge. The fluctua-
tions in discharge appear stereotyped from trial to trial, as is
evident from the vertical stripe-like structure in the raster and
from the peristimulus time histogram (PSTH) below. The PSTH
shows the average response rate calculated in 2 msec epochs. The
spike rate varied between 15 and 220 impulses/sec (mean * 20).
A power spectral density analysis of this rate function reveals
significant modulation at 50 Hz, suggesting that the neuron is
capable of expressing a change in its rate of discharge every 10
msec or less (Bair and Koch, 1996). Thus the neuron is capable of
computing quantities over an interval comparable to the average
ISI of an active neuron.

At first glance, the pattern of spike arrival times appears fairly
consistent from trial to trial, but this turns out to be illusory. A
closer examination of any epoch reveals considerable variability in
both the time of spikes and their counts. Figure 1B magnifies the
spikes occurring between 360 and 460 msec after stimulus onset
for 50 consecutive trials, corresponding to the shaded region of
Figure 14. We selected this subset of the raster, because the
discharge rate was fairly constant during this epoch and because
it represents one of the more consistent patterns of spiking in the
record. Nevertheless, the ISIs show marked variability. The mean
is 7.35 msec, and the SD is 5.28. We will frequently refer to the
ratio, SD/mean, as the coefficient of variation of the ISI distribu-
tion (Cy, ). The value from these intervals is 0.72. The ISI
frequency histogram (Fig. 1C) is fit reasonably well by an expo-
nential distribution (solid curve)—the expected distribution of
interarrival times for a random (Poisson) point process. Although
some of the variability in the ISIs may be attributable to fluctu-
ations in spike rate, the pattern of spikes is clearly not the same
from trial to trial.

This point is emphasized further by simply counting the spikes
produced during the epoch. If the pattern of spikes were at all
reproducible, we would expect consistency in the spike count. The
mean for the highlighted epoch was 12.8 spikes, and its variance
was 8.22. We made similar calculations of the mean count and its
associated variance for randomly selected epochs lasting from 100
to 500 msec, including from 50 to 200 consecutive trials. The
mean and variance for 500 randomly chosen epochs are shown by
the scatter plot in Figure 1D. The main diagonal in this graph,
(Var = mean), is the expected relationship for a Poisson process.
Notice that the measured variance typically exceeds the mean
count. The example illustrated above (highlighted region of Fig.
14) is one of the rare exceptions. The variance is commonly
described by a power law function of the mean count. The solid
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curve depicts the fit, Var = 0.4mean'-, but the fit is only mar-
ginally better than a simple proportional rule: Var ~ 1.3mean.
Both the timing and count analyses suggest that the structured
spike discharge apparent in the raster could be explained as a
random point process with varying rate. The process is not
exactly Poisson (e.g., the variance is too large), a point to which
we shall return in detail. However, the key point is that the
structure evident in the raster of Figure 1 is only a manifestation
of a time-varying spike rate. The visual stimulus causes the
neuron to modulate its spike rate consistently from trial to trial,
whereas the timing of individual spikes—their intervals and pat-
terns—is effectively random, hence best regarded as noise.

The neuron in Figure 1 illustrates the four properties of statis-
tical homogeneity listed in Table 1: dynamic range, irregularity of
the ISI, spike count variance, and the time course of spike rate
modulation. As suggested above, it seems likely that these prop-
erties are characteristic of the neuron’s afferent inputs and its
output targets alike. Its dynamic range is typical of MT neurons,
as well as of V1 neurons that project to MT (Movshon and
Newsome, 1996) and neurons in MST (Celebrini and Newsome,
1994), a major target of MT projections. Indeed, neurons
throughout the neocortex appear to be capable of discharging
over a dynamic range of ~0-200 impulses/sec. Second, the ISIs
from this neuron are characteristic of other neurons in its column
and elsewhere in the visual cortex (Softky and Koch, 1993).
Where it has been examined, the distribution of ISIs has a long
“exponential” tail that is suggestive of a Poisson process. Third,
the variance of the spike count of this neuron exceeds the mean
by a margin that is typical of neurons throughout the visual
cortex. Finally, the rapid modulation of the discharge rate occurs
at a time scale that is on the order of an ISI of any one of its
inputs. Our goal is to understand the basis of these statistical
properties in single neurons and their conservation in networks of
interconnected neurons.

MATERIALS AND METHODS

Physiology. Electrophysiological data (as in Fig. 1) were obtained by
standard extracellular recording of single neurons in the alert rhesus
monkey (Macaca mulatta). A full description of methods can be found in
Britten et al. (1992). Experiments were in compliance with the National
Institutes of Health guidelines for care and treatment of laboratory
animals. The unit in Figure 1 was recorded from the middle temporal
visual area (MT or V5). These trials were extracted from an experiment
in which the monkey judged the net direction of motion of a dynamic
random dot kinematogram, which was displayed for 2 sec in the receptive
field while the monkey fixated a small spot. In the particular trials shown
in Figure 1, dots were plotted at high speed at random locations on the
screen, resulting in a stochastic motion display with no net motion in any
direction. Importantly, however, the exact pattern of random dots was
repeated for each of the trials shown.

Model neuron. We performed computer simulations of neural dis-
charge using a simple counting model of synaptic integration. Both
excitatory and inhibitory inputs to the neuron are modeled as simple time
series. With a few key exceptions, they are constructed as a sequence of
spike arrival times with intervals that are drawn from an exponential
distribution. The model neuron counts these inputs; when the count
exceeds some threshold barrier, it emits an output spike and resets the
count to zero. Each excitatory synaptic input increments the count by one
unit step. The count decays to zero with a time constant, 7, representing
the membrane time constant or integration time constant. Each inhibi-
tory input decrements the count by one unit. If the count reaches a
negative barrier, however, it can go no further. Thus inhibition subtracts
from any accumulated count, but it does not hyperpolarize the neuron
beyond this barrier. Except where noted, we placed this reflecting barrier
at the resting potential (zero) or one step below it.

Figure 2, B, D, and F, represents the count by the height of a particle.
Excitation drives the particle toward an absorbing barrier at spike thresh-
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Figure 1. Response variability of a neuron re-
corded from area MT of an alert monkey. A4,
Raster and peristimulus time histogram (PSTH)
depicting response for 210 presentations of an
identical random dot motion stimulus. The mo-
tion stimulus was shown for 2 sec. Raster points
represent the occurrence of action potentials.
The PSTH plots the spike rate, averaged in 2
msec bins, as a function of time from the onset
of the visual stimulus. The response modulates
between 15 and 220 impulses/sec. Vertical lines
delineate a period in which spike rate was fairly
constant. The gray region shows 50 trials from
this epoch, which were used to construct B and
C. B, Magnified view of the shaded region of the
raster in 4. The spike rate, computed in 5 msec
bins, is fairly constant. Notice that the magnified
raster reveals substantial variability in the timing
of individual spikes. C, Frequency histogram
depicting the spike intervals in B. The solid line
is the best fitting exponential probability density
function. D, Variance of the spike count is plot-
ted against the mean number of spikes obtained
from randomly chosen rectangular regions of the
raster in 4. Each point represents the mean and
variance of the spikes counted from 50 to 200
adjacent trials in an epoch from 100 to 500 msec
long. The shaded region of A would be one such

20 30 40

1500 2000 g 20

0 500

1000
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old, whereas inhibition drives the particle toward a reflecting barrier
(represented by the thick solid line) just below zero. The particle repre-
sents the membrane voltage or the integrated current arriving at the axon
hillock. The height of the absorbing barrier is inversely related to the size
of an excitatory synaptic potential. It is the number of synchronous
excitatory inputs necessary to depolarize the neuron from rest to spike
threshold.

The model makes a number of simplifying assumptions, which are
known to be incorrect. There are no active or passive electrical compo-
nents in the model. We have ignored electrochemical gradients or any
other factor that would influence the impact of a synaptic input on
membrane polarization—with one exception. The barrier to hyperpo-
larization at zero is a crude implementation of the reversal potential for
the ionic species that mediate inhibition. We have intentionally disre-
garded any variation in synaptic efficacy. All excitatory synaptic events
count the same amount, and the same can be said of inhibitory inputs.
Thus we are considering only those synaptic events that influence the
postsynaptic neuron (no failures). We have ignored any variation in
synaptic amplitude that would affect spikes arriving from the same
input—because of adaptation, facilitation, potentiation, or depression—
and we have ignored any differences in synaptic strength that would
distinguish inputs. In this sense we have ignored the geometry of the
neuron. We will justify this simplification in Discussion but state here
that our strategy is conservative with respect to our aims and the
conclusions we draw. Finally, we did not impose a refractory period or
any variation that would occur on reset after a spike (e.g., afterhyperpo-
larization). The model rarely produces a spike within 1 msec of the one
preceding, so we opted for simplicity. Appendix 1 describes a more
realistic model with several of the biophysical properties omitted here.

We have used this model to study the statistics of the output spike
discharge. It is important to note that there is no noise intrinsic to the
neuron itself. Consistent with experimental data (Calvin and Stevens,
1968; Mainen and Sejnowski, 1995; Nowak et al., 1997), all variability is
assumed to reflect the integration of synaptic inputs. Because there are
no stochastic components in the modeled postsynaptic neuron, the vari-
ability of the spike output reflects the statistical properties of the input
spike patterns and the simple integration process described above.

A key advantage to the model is its computational simplicity. It enables
large-scale simulations of synaptic integration under the assumption of
dense connectivity. Thus a unique feature of the present exercise is to
study the numerical properties of synaptic integration in a high-input

Mean count

40 60 example. The best fitting power law is shown by
the solid curve. The dashed line is the expected
relationship for a Poisson point process.

regime, in which one to several hundred excitatory inputs arrive at the
dendrite for every action potential the neuron produces.

RESULTS

1.1: Problem posed by high-input regime

Figure 2 illustrates three possible strategies for synaptic integra-
tion in the high-input regime. Figure 24 depicts the spike dis-
charge from 300 excitatory input neurons over a 100 msec epoch.
Each input is modeled as a random (Poisson) spike train with an
average discharge rate of 50 impulses/sec (five spikes in the 100
msec epoch shown). The problem we wish to consider is how the
postsynaptic neuron can integrate this input and yet achieve a
reasonable spike rate. To be concrete, we seek conditions that
allow the postsynaptic neuron to discharge at 50 impulses/sec.
There is nothing special about the number 50, but we would like
to conceive of a mechanism that produces a graded response to
input over a range of 0-200 spikes/sec. One way to impose this
constraint is to identify conditions that would allow the neuron to
respond at the average rate of any one of its inputs (that is, output
spike rate should approximate the number of spikes per active
input neuron per time).

A counting mechanism can achieve this goal through three
types of parameter manipulations: a high absorption barrier
(spike threshold), a short integration time (membrane time con-
stant), or a balancing force on the count (inhibition). Figure 2
shows how each of these manipulations can lead to an output
spike rate that is approximately the same as the average input.
The simplest way to get five spikes out of the postsynaptic neuron
is to impose a high spike threshold. Figure 2B depicts the output
from a simple integrate-and-fire mechanism when the threshold is
set to 150 steps. Each synaptic input increments the count toward
the absorption barrier, but the count decays with an integration
time constant of 20 msec. The counts might be interpreted as
voltage steps of 50-100 wV, pushing the membrane voltage from
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Figure 2. Three counting models for synaptic
integration in the high-input regime. The dia-
grams (B, D, F) depict three strategies that
would permit a neuron to count many input
spikes and yet produce a reasonable spike out-
put. For each of the strategies, model param-
eters were adjusted to produce an output spike
count that is the same, on average, as any one
input. The membrane state is represented by a
particle that moves between a lower barrier
and spike threshold (fop bar). The height of the
particle reflects the input count. Each EPSP
drives the particle toward spike threshold, but
the height decays to the ground state with time
constant, 7 (insets). When the particle reaches FA )
the top barrier, an action potential occurs, and LR AT U 1
the process begins again with the count reset to 0
0. A, Excitatory input to the model neurons. S
The 300 input spike trains are depicted as rows PRI AT
of a raster. Each input is modeled as a Poisson KN
point process with a mean rate of 50 spikes/sec. R T IR I
The simulated epoch is 100 msec. C, E, G, ! AL e
Model response. The particle height is inter- o ' '
preted as a membrane voltage that is plotted as
a function of time. These outputs were ob-
tained using input spikes in 4 and the model e A
illustrated in the middle column (B, D, F). B, |
C, Integrate-and-fire model with negligible in- kY
hibition and 20 msec time constant. To achieve il
an output of five spikes in the 100 msec inter- RS
val, the spike threshold was set to 150 steps
above the resting/reset state. Notice the regu- [ R
lar interspike intervals in C. D, E, Coincidence TR
detector. The spike threshold is only 16 steps

above rest/reset, but the time constant must be L ., N

1 msec to achieve five spikes out. The coinci- ST %
dence detector fires if and only if there is I'.I. .u || l' TR
sufficient synchronous excitation. F, G, Bal-
anced excitation—inhibition. A second set of )
inputs, like the ones shown in A, provide in- 0
hibitory input. Each inhibitory event moves the
particle toward the lower barrier. The spike
threshold is 15 steps above rest/reset, and the

time constant is 20 msec. The particle follows a
random walk, constrained by the lower barrier

and the absorption state at spike threshold.

This model is most consistent with known
properties of cortical neurons. A more realistic
implementation is described in Appendix 1.

0.05
Time (sec)

its resting potential (—70 mV) to spike threshold (—55 mV). This
textbook integrate-and-fire neuron (Stein, 1965; Knight, 1972)
responds at approximately the same rate as any one of its 300
excitatory inputs. There are problems, however, that render this
solution untenable. The mechanism grossly underestimates the
impact of individual excitatory synaptic inputs (Mason et al.,
1991; Otmakhov et al., 1993; Thomson et al., 1993a, b; Thomson
and West, 1993), and it produces a periodic output spike train.
The regularity of the spike output in Figure 2C contrasts mark-
edly with the random ISIs that constitute the inputs in Figure 24.
As suggested by Softky and Koch (1993), these observations are
clear enough indication to jettison this mechanism.

If relatively few counts are required to reach the absorption
barrier, then the synaptic integration process must incorporate an
elastic force that pulls the count back toward the ground state.
This can be accomplished by shortening the integration time
constant or by incorporating a balancing inhibitory force that
diminishes the count. Figure 2D depicts a particle that steps
toward the absorption barrier with each excitatory event. It takes
only 16 steps to reach spike threshold, but the count decays
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according to an exponential with a short time constant (7 = 1
msec). There is no appreciable inhibitory input. The resulting
output is shown in Figure 2E. The simulated spike train is quite
irregular, reflecting occasional coincidences of spikes among the
inputs. Because of the short time constant, the coincidences are
sensed with precision well below the average interspike interval.
Again, had we chosen a higher threshold, we could have achieved
a proper spike output with a longer time constant, but only at the
price of a regular ISI (even 3 msec is too long). The mechanism
illustrated in Figure 2, D and E, detects coincidental synaptic
input such that only the synchronous excitatory events are repre-
sented in the output spike train. Although the coincidence detec-
tor produces an irregular ISI, it requires an unrealistically short
membrane time constant (Mason et al., 1991; Reyes and Fetz,
1993). This requirement can be relaxed somewhat when spike
rates are low and the inputs are sparse (Abeles, 1982), but the
mechanism is probably incompatible with the high-input regime
considered in this paper. This is disappointing because this model
would effectively time stamp presynaptic events that are sufficient
to produce a spike, providing the foundation for propagation of a
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precise temporal code in the form of spike intervals (Abeles,
1991; Engel et al., 1992; Abeles et al., 1993; Softky, 1994; Konig
et al., 1996; Meister, 1996).

The third strategy is to balance the excitation with inhibitory
input. This is illustrated in the bottom panels of Figure 2. For each
of the 300 excitatory inputs shown in Figure 24, there is an
equivalent amount of inhibitory drive (data not shown). Each
excitatory synaptic input drives the particle toward the absorption
barrier, as in Figure 2, B and C; each inhibitory input moves the
particle toward the ground state. The accumulated count decays
with a time constant of 20 msec. The particle follows a random
walk to the absorption barrier situated 15 steps away. The lower
barrier just below the reset value crudely implements a synaptic
reversal potential for the inhibitory current. The membrane po-
tential is not permitted to fall below this value. In other words,
inhibitory synaptic input is only effective when the membrane is
depolarized from rest.

This model is an integrate-and-fire neuron with balanced ex-
citation and inhibition. It implies that the neuron varies its dis-
charge rate as a consequence of harmonious changes in its exci-
tatory and inhibitory drive. Conditions that lead to greater
excitation also lead to greater inhibition. This idea is reasonable
because most of the inhibitory input to neurons arises from
smooth stellate cells within the same cortical column (Somogyi et
al., 1983a; DeFelipe and Jones, 1985; Somogyi, 1989; Beaulieu et
al., 1992). Thus excitatory and inhibitory inputs are activated by
the same stimuli; e.g., they share the same preference for orien-
tation (Ferster, 1986), or they are affected similarly by somato-
sensory stimulation (Carvell and Simons, 1988; McCasland and
Hibbard, 1997). Contrast this idea with the standard concept of a
push—pull arrangement in which the neural response reflects the
degree of imbalance between excitation and inhibition. In
the high-input regime, more inhibition is needed to balance the
excitatory drive. The balance confers a proper firing rate without
diminishing the impact of single EPSPs or the membrane time
constant (but see Appendix 1). The cost, however, is an irregular
ISI. Gerstein and Mandelbrot (1964) first proposed that such a
process would give rise to an irregular ISI, and numerous inves-
tigators have implemented similar strategies, termed random
walk or diffusion models (Ricciardi and Sacerdote, 1979; Lansky
and Lanska, 1987; for review see Tuckwell, 1988). What is novel
in our analysis is that the same idea allows the neuron to respond
over the same dynamic range as any one of its many inputs. That
is, it allows the neuron to operate in a high-input regime. This
simple idea has important implications for the propagation of
signal and noise through neural networks of the neocortex.

1.2: Dynamic range

The counting model with balanced excitation and inhibition
achieves a proper dynamic range of response using reasonable
parameters. Figure 34 shows the response of a model neuron as
a function of the average response of the inputs. We used 300
excitatory and 300 inhibitory inputs in these simulations. The
output response is nearly identical to the response of any one
input, on average. This neuron is performing a very simple
calculation, averaging, but it is doing so in a high-input regime.
Consider that there are ~300 excitatory synaptic inputs for every
spike, yet each excitatory input delivers is the depolarization
necessary to reach spike threshold. By balancing the surfeit of
excitation with a similar inhibitory drive, the neuron effectively
compresses a large number of presynaptic events into a more
manageable number of spikes. Sacrificed are details about the
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Figure 3. Conservation of response dynamic range. The spike rate of the
model neuron is plotted as a function of the average input spike rate. A4,
Simulations with 300 excitatory inputs and 300 inhibitory inputs; param-
eters are the same as in Figure 2, F and G (barrier height, 15 steps; 7 =
20 msec). The balanced excitation—inhibition model produces a response
that is approximately the same as one of its many inputs. B, Simulations
with 600 excitatory and inhibitory inputs. Open symbols and dashed curve
show the response obtained using the same model parameters as in A.
Solid symbols and curve show the response when the barrier height is
increased to 25 steps. These simulations suggest that a small hyperpolar-
ization could be applied to enforce a unity gain input—output relationship
when the number of active inputs is large.

input spike times; they are only reflected in the tiny bumps and
wiggles that describe the membrane voltage during the interspike
interval. This capacity for compression permits the neuron to
integrate inputs from its dendrites and thus to perform calcula-
tions on large numbers of inputs.

The mechanism should also allow the neuron to adapt to a
broad range of activation in which more or fewer inputs are
active. Figure 3B shows the results of simulations using twice the
number of excitatory and inhibitory inputs. The dashed curve
depicts the model response using the identical parameters to
those in Figure 34. The output response is now a little larger than
the average input, and the relationship is approximately qua-
dratic. The departure from linearity is attributable to the mem-
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brane time constant. At higher input rates, the count frequently
accumulates toward spike threshold before there is any time to
decay. Although the range of response is reasonable, it is not a
sustainable solution. If every neuron were to exhibit such ampli-
fication, the response would exceed the observed dynamic range
in very few synapses. Imagine a chain of neurons, each squaring
the response of its averaged input.

A small adjustment to the model repairs this. The solid curve in
this graph was obtained after changing the height of the threshold
barrier from 15 to 25. The neuron can now accommodate a
doubling of the number of inputs. With what amounts to a few
millivolts of hyperpolarization, the neuron can achieve substan-
tial control of its gain. Such a mechanism has been shown to
underlie the phenomenon of contrast adaptation in visual cortical
neurons (Carandini and Ferster, 1997). In addition, the curves in
Figure 3B raise the possibility that a neuron could compute the
square of a quantity by a small adjustment in its resting membrane
potential or conductance. This observation may be relevant to
computational models that use squaring-type nonlinearities (Ad-
elson and Bergen, 1985; Heeger, 1992a).

Our central point is that a simple counting model can accom-
modate large numbers of inputs with relatively modest adjust-
ment of parameters. It is essential, however, that a balance of
inhibition holds. Because excitatory synapses typically outnumber
inhibitory inputs by about 6:1 for cortical neurons (Somogyi,
1989; Braitenberg and Schiiz, 1991), it is possible that the control
of excitation (e.g., presynaptic release probability or synaptic
depression) may play a role in maintaining the balance (Markram
and Tsodyks, 1996; Abbott et al., 1997).

1.3: Irregularity of the interspike interval

As indicated in the preceding section, a consequence of the
balanced excitation—inhibition model is an irregular ISI. Figure
44 shows a representative interval histogram for one simulation.
The intervals were collated from 20 sec of simulated response at
a nominal rate of 50 spikes/sec. The solid curve is the best fitting
exponential probability density function.

The variability of the ISI is commonly measured by its coeffi-
cient of variation (Cy,, = SD/mean). The value for the example
in Figure 44 is 0.9, just less than the value expected of a random
process (for an exponential distribution, Cy, = 1). The value is
typical for these simulations, appearing impervious to spike rate
or the number of inputs. Figure 4B shows the distribution of Cy,
obtained for 128 simulations incorporating a variety of parame-
ters including those used to produce Figure 3 (solid symbols). The
simulations encompassed a broad range of spike rates, but all
produced an irregular spike output. The Cy; of 0.8-0.9 reflects
a remarkable degree of variation in the ISI. Because the model is
effectively integrating the response from a very large number of
neurons, one might expect such a process to effectively “clean up”
the irregularity of the inputs, as in Figure 2C (Softky and Koch,
1993). The irregularity is a consequence of the balance between
excitation and inhibition, suggesting an analogy between the ISI
and the distribution of first passage times of random-walk (dif-
fusion) processes.

In our simple counting model, the relationship between input
and output spikes is entirely deterministic. All inputs affect the
neuron with the same strength, and there is no chance for an
input to fail. The only source of irregularity in the model is the
time of the input spikes themselves. We simulated the input spike
trains as random point processes, and the counting mechanism
nearly preserved the exponential distribution of ISIs in its output.
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Figure 4. Variability of the interspike interval. 4, Frequency histogram
of ISIs from one simulation using 300 inputs at 50 spikes/sec. Notice the
substantial variability. The SD divided by the mean interval is known as
the coefficient of variation of the interspike interval (Cy,, ). The value for
this simulation is 0.9. The distribution is approximated by an exponential
probability density (solid curve), which would predict Cy, = 1. B, Coef-
ficient of variation of the interspike interval (Cy,,,) from 128 simulations
using 300 and 600 inputs and a variety of spike rates. Each simulation
generated 20 sec of spike discharge using parameters that led to a similar
rate of discharge for input and output neurons (i.e., a common dynamic
range). The average Cy,, was 0.87.

But it did not do so completely; the Cy, was slightly <1. This
raises a possible concern. To what extent does the output spike
irregularity depend on our choice of inputs? Suppose the input
spike trains are more regular than Poisson spike trains; suppose
they are only as irregular as the spike trains produced by the
model. Would the counting mechanism reduce the irregularity
further?

Figure 5 shows the results of a series of simulations in which we
varied the statistics of the input spike trains. We used the same
simulation parameters as in Figure 34 but constructed the input
spike trains by drawing ISIs from families of y distributions which
lead to greater or less irregular intervals than the Poisson case
(Mood et al., 1963). By varying the parameters of the distribution
we maintained the same input rate while affecting the degree of
irregularity of the spike intervals. Figure 5 plots the Cy;  of our
model neuron as a function of the Cy  for the inputs. The
Poisson-like inputs would have a Cy, _ of 1. Notice that for a wide
range of input Cy, , the output of the counting model attains a
Cy,, that is quite restricted and relatively large. The fit intersects
the main diagonal at Cy,; = 0.8. This implies that the mechanism
would effectively randomize more structured input and tend to
regularize (slightly) a more irregular input. Most importantly, the
result indicates that the output irregularity is not merely a reflec-
tion of input spike irregularity. The irregular ISI is a conse-
quence of the balanced excitation—inhibition model.

These ideas are consistent with Calvin and Steven’s (1968)
seminal observations in motoneurons that the noise affecting
spike timing is attributable to synaptic input rather than stochas-
tic properties of the neuron itself (e.g., variable spike threshold)
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Figure 5. Irregularity of the spike discharge is not merely a reflection of
input spike irregularity. The graph compares the irregularity of the ISI
produced by the balanced excitation—inhibition model with the irregular-
ity of the intervals constituting the 300 excitatory and inhibitory input
spike trains. The input spike trains were constructed by drawing intervals
randomly from a gamma distribution. By varying the parameters of the
gamma distribution, the input Cy, was adjusted from relatively regular to
highly irregular (abscissa). Each point represents the results of one sim-
ulation, using different parameters for the input interval distribution.
Notice that the degree of input irregularity has only a weak effect on the
distribution of output interspike intervals. Points above the main diagonal
represent simulations in which the counting model produced a more
irregular discharge than the input spike trains. Points below the main
diagonal represent simulations in which the output is less irregular than
the input spike trains. The dashed line is the least squares fit to the data.
This line intersects the main diagonal at Cy,, = 0.8. The best fitting line
does not extrapolate to the origin, because the inputs are not necessarily
synchronous.

(Calvin and Stevens, 1968; Mainen and Sejnowski, 1995; Nowak
et al.,, 1997). Nonetheless, if the random walk to a barrier offers an
adequate explanation of ISI variability, then it is natural to view
the irregular ISI as a signature of noise and to reject the notion
that it carries a rich temporal code. The important insight is that
the irregular ISI may be a consequence of synaptic integration
and yet may reflect little if any information about the temporal
structure of the synaptic inputs themselves (Shadlen and New-
some, 1994; van Vreeswijk and Sompolinsky, 1996).

1.4: Variance of spike count

It is important to realize that the coefficient of variation that we
have calculated is an idealized quantity. It rests on the assumption
that the input rates are constant and that the input spike trains are
uncorrelated. Under these assumptions the number of input
spikes arriving in any epoch would be quite precise. For example,
at an average input rate of 100 spikes/sec, the number of spikes
arising over the ensemble of 300 inputs varies by only ~2% in any
100 msec interval. Variability produced by the model is therefore
telling us how much noise the neuron would add to a simple
computation (e.g., the mean) when the solution ought to be the
same in any epoch. This will turn out to be a useful concept (see
section 3 below), but it is not anything that we can actually
measure in a living brain. In reality, inputs are not independent,
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Figure 6. Frequency histogram of the spike count variance-to-mean
ratios obtained from the same simulations as in Figure 4B. For each of the
simulations, the spikes were counted in 200 epochs of 100 msec duration.
The variance in the number of spikes produced by the model in each of
these epochs is proportional to the mean of the counts obtained for these
epochs. Spike count variability is therefore conveniently summarized by
the variance-to-mean ratio. The average ratio is 0.75 (arrow).

and the number of spikes among the population of inputs would
be expected to be more variable. We will attach numbers to these
caveats in subsequent sections. For now, it is interesting to cal-
culate one more idealized quantity.

If, over repeated epochs, the number of input spikes were
indeed identical (or nearly so), how would the spike count of the
output neuron vary over repeated measures? Using the same
simulations as in Figures 3 and 4, we divided each 20 sec simu-
lation into 200 epochs of 100 msec. We computed the mean and
variance of the spikes counted in these epochs and calculated the
ratio: variance/mean. Figure 6 shows the distribution of variance/
mean ratios for a variety of spike output rates and model param-
eters. The ratios are concentrated between 0.7 and 0.8, just
slightly less than the value expected for a random Poisson point
process.

There are two salient points. First, notice that the histogram of
variance/mean ratios appears similar to the histogram of Cy,
from the same simulations (Fig. 4B). In fact, the ratios in Figure
6 are approximated by squaring the values for Cy;  in Figure 4B.
This is a well known property of interval and count statistics for
a class of stochastic processes known as renewals (Smith, 1959).
We will elaborate this point in section 3. Second, the variance/
mean ratios fall short of the value measured in visual cortex (i.e.,
1-1.5). Clearly the variability observed in vivo reflects sources of
noise beyond the mechanisms we have considered. In contrast to
our simulations, a real neuron does not receive an identical
number of input spikes in each epoch; the input is itself variable.
A key part of this variability arises from correlation among the
inputs. In the next section we turn attention to properties of
cortical neurons that lead to correlated discharge. We will return
to the issue of spike count variance in section 3.

2: Redundancy, correlation, and signal fidelity

The preceding considerations lead us to depict the neuronal spike
train as a nearly random realization of an underlying rate term
reflecting the average input spike rate (i.e., the number of input
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spikes per input neuron per time), or some calculation thereon.
Whether we accept this argument on principle, there is little
doubt that many cortical neurons indeed transmit information via
changes in their rate of discharge. Yet, the irregular ISI precludes
single neurons from transmitting a reliable estimate of this very
quantity. Because the spike count from any one neuron is highly
variable, several ISIs would be required to estimate the mean
firing rate accurately (Konig et al., 1996). The irregular ISI
therefore poses an important constraint on the design of cortical
architecture: to transmit rate information rapidly—say, within a
single ISI—several copies of the signal must be transmitted. In
other words, the cortical design must incorporate redundancy. In
this section we will quantify the notion of redundancy and explore
its implications for the propagation of signal and noise in the
cortex.

2.1: Redundancy necessitates shared connections

By redundancy we refer to a group of neurons, each of which
encodes essentially the same signal. Ideally, each neuron would
transmit an independent estimate of the signal through its rate of
discharge. If the variability of the spike trains were truly uncor-
related (independent), then an ensemble of neurons could con-
vey, in its average, a high-fidelity signal in a very short amount of
time (e.g., a fraction of an ISI; see below). Although this is a
desirable objective, the assumption of independence is unlikely to
hold in real neural systems. Redundancy implies that cortical
neurons must share connections and thus a certain amount of
common variability.

The need for shared connections is illustrated in Figure 7A4.
The flow of information in this figure is from the bottom layer of
neurons to the top. The neurons at the top of the diagram
represent some quantity, y. Many neurons are required to repre-
sent vy accurately, because the discharge from any one neuron is
so variable. To compute its estimate of vy, each neuron in the
upper layer requires an estimate of some other quantity, f3,
supplied by the neurons in middle tier of the diagram. To compute
v rapidly, however, each neuron at the top of the diagram must
receive many samples of B. Note, however, that to compute S,
each of the neurons in the middle of the diagram needs an
estimate of some other quantity, . What was said of the neurons
at the rop applies to those in the middle panel as well. Thus each
B neuron must receive inputs from many « neurons. The chain of
processing resembles a pyramid and is clearly untenable as a
model for how neurons deep in the CNS come to encode any
particular quantity. We cannot insist on geometrically large num-
bers of independent, lower-order neurons to sustain the responses
of a higher-order neuron positioned a few synaptic links away.
From this perspective, shared connectivity is necessary to achieve
redundancy, and hence rapid processing, in a system of noisy
neurons.

In Figure 7B, the same three tiers are illustrated, but the
neurons encoding vy receive some input in common. Each neuron
projects to many neurons at the next stage. Viewed from the top,
some fraction of the inputs to any pair of neurons is shared. In
principle, a shared input scheme, such as the one in Figure 7B,
would permit the cortex to represent quantities in a redundant
fashion without requiring astronomical numbers of neurons.
There is, however, a cost. If the neurons at the fop of the diagram
receive too much input in common, the trial-to-trial variation in
their responses will be similar; hence the ensemble response will
be little more reliable than the response of any single neuron.

We therefore wish to explore the influence of shared inputs on
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the responses of two cortical neurons such as the ones shaded at
the fop of Figure 7B. How much correlated variability results from
differing amounts of shared input? How does correlated variabil-
ity among the input neurons themselves (as in the middle tier of
Fig. 7B) influence the estimate of vy at the top tier? To what extent
does shared connectivity lead to synchronous action potentials
among neurons at a given level? How does synchrony among
inputs influence the outputs of neurons in higher tiers? We can
use the counting model developed in the previous section to
explore these questions. Our goal is to clarify the relationship
among common input, synchronous spikes, and noise covariance.
A useful starting point is to consider the effect of shared inputs on
the correlation in spike discharge from pairs of neurons.

2.2: Shared connections lead to response correlation

We simulated the responses from a pair of neurons like the ones
shaded at the fop of Figure 7B. Each neuron received 100-600
excitatory inputs and the same number of inhibitory inputs. A
fraction of these inputs were identical for the pair of neurons. We
examined the consequences of varying the fraction of shared
inputs on the output spike trains. Except for this manipulation,
the model is the same one used to produce the results in Figures
3 and 4. Thus each neuron responded approximately at the
average rate of its inputs. We now have a pair of spike trains to
analyze, and once again we are interested in interval and count
statistics. For a pair of neurons, interval statistics are commonly
summarized by the cross-correlation spike histogram (or cross-
correlogram); count statistics have their analogy in measures of
response covariance. We will proceed accordingly.

Figure 8 depicts a series of cross-correlograms (CCGs) ob-
tained for a variety of levels of common input. We obtained these
functions from 20 sec of simulated spike trains using the same
parameters as in Figure 34. The normalized cross-correlogram
depicts the relative increase in the probability of obtaining a spike
from one neuron, given a spike from the second neuron, at a time
lag represented along the abscissa (Melssen and Epping, 1987,
Das and Gilbert, 1995b). The probabilities are normalized to the
expectation given the base firing rate for each neuron. Two
observations are notable. First, the narrow central peak in the
CCG reflects the amount of shared input to a neuron, as previ-
ously suggested (Moore et al., 1970; Fetz et al., 1991; Nowak et
al., 1995). Second, no structure is visible in the correlograms until
a rather substantial fraction of the inputs are shared. This is
despite several simplifications in the model that should boost the
effectiveness of correlation. For example, introducing variation in
synaptic amplitude attenuates the correlation. Thus it is likely
that the modest peak in the correlation obtained with 40% shared
excitatory and inhibitory inputs represents an exaggeration of the
true state of affairs.

Rather than viewing the entire CCG for each combination of
shared excitation and inhibition, we have integrated the area
above the baseline and used it to derive a simpler scalar value:

o= v (1)
‘ \A11A22’

where A,, and A,, represent the area under the normalized
autocorrelograms for neurons 1 and 2, respectively, and A, is the
area under the normalized cross-correlogram (the autocorrelo-
gram is the cross-correlogram of one neural spike train with
itself). The value of r. reflects the strength of the correlation
between the two neurons on a scale from —1 to 1. This value is
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Figure 7. Redundancy necessitates shared connections. Three ensembles of neurons represent the quantities «, 8, and . Each neuron that represents
v receives input from many neurons that represent B, and each neuron that represents 3 receives input from many neurons that represent a. A, There
are no shared connections; each neuron receives a distinct set of inputs from its neighbor. The shaded neurons receive no common input, and the same
can be said of any pair of neurons in the ensemble that represents . The scheme would require an inordinately large number of neurons. B, Neurons
share a fraction of their inputs. The shaded neurons receive some of the same inputs from the ensemble that represents . Likewise, any pair of neurons
in the B ensemble receive some common input from the neurons that represent «. This architecture allows for redundancy without necessitating immense
numbers of neurons. Neither the number of neurons nor the number of connections are drawn accurately. Simulations suggest that the pair of shaded
neurons might receive as much as 40% common input, and each needs about 100 inputs to compute with the quantity .

equivalent to the correlation coefficient that would be computed Using r, we can summarize the effect of shared excitation and
from pairs of spike counts obtained from the two neurons across
many stimulus repetitions (W. Bair, personal communication).” It
provides a much simpler measure of correlation than the entire
CCG function.

50

Ajk = E ®(T)[Cjk(7) - ]]7

T=-50

“We were advised of this relationship by H. Sompolinsky and W. Bair. The area of where (1) = T — |1 is a triangular weighting function with a peak that
the correlogram is: lies at the center of the trial epoch of duration, 7 msec, and
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Figure 8. Cross-correlation response histograms from a pair of simulated
neurons. The correlograms represent the relative change in response from
one neuron when a spike has occurred in the other neuron at a time lag
indicated along the abscissa. The spike train for each neuron was simu-
lated using the random walk counting model with 300 excitatory and 300
inhibitory inputs. Plots A-F differ in the amount of common input that is
shared by the simulated pair. A small central peak in the correlogram is
apparent when the pair of neurons share 20-50% of their inputs.

inhibition in a single graph. Figure 9 is a plot of r. as a function
of the fraction of shared excitatory and shared inhibitory inputs.
The points represent correlation coefficients from simulations
using 100, 300, and 600 excitatory and inhibitory inputs and a
variety of spike rates. The threshold barrier was adjusted to
confer a reasonable dynamic range of response (input spike rate
divided by output spike rate was 0.75-1.5). Over the range of
simulated values, the correlation coefficient is approximated by
the plane:

re=0.36dg + 0.226;, (2)

where ¢ and ¢; are the fraction of shared excitatory and inhib-
itory inputs, respectively. The graph shows that both the fractions

T-1

Colr) = — > xi()x i+
jk(T) = )\i)\kG)(T) - xj(l)xk(l )
’ =0 (trials)
is the normalized cross- or autocorrelation function computed from bins
of binary values, x;,(/), denoting the presence or absence of a spike in the
i"™ millisecond from neuron j or k. Mathematical details and a proof of
Equation 1 will appear in a paper by E. Zohary, W. Bair, and W.T.
Newsome (unpublished data).
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Figure 9. Effect of common input on response covariance. The correla-
tion coefficient is plotted as a function of the fraction of shared excitatory
and shared inhibitory input to a pair of model neurons. Each point was
obtained from 20 sec of simulated spike discharge using a variety of model
parameters (input spike rate, number of inputs, and barrier height). In
each simulation, the output spike rate was approximately the same as the
average of any one input (within a factor of =0.25). The best fitting plane
through the origin is shown. A substantial degree of shared input is
required to achieve even modest correlation.

of shared excitatory and shared inhibitory connections affect the
correlation coefficient. Shared excitation has a greater impact,
because it can lead directly to a spike from both neurons.

Over the range of counting model parameters tested, we find
this planar approximation to be fairly robust (the fraction of
variance of r, accounted for by Eq. 2 is 42%). We can improve the
fit with a more complicated model (e.g., spike rate has a modest
effect), but such detail is unimportant for the exercise at hand. Of
course, Equation 2 must fail as the fraction of shared input
approaches 1; the two neurons will follow identical random walks
to spike threshold, and the correlation coefficient must therefore
approach 1.

The most striking observation from Figure 9 is that only mod-
est correlation is obtained when nearly half of the inputs are
identical. The counting model is impressively resilient to common
input, especially from inhibitory neurons. Electrophysiological
recordings in visual cortex indicate that adjacent neurons covary
weakly from trial to trial on repeated presentations of the same
visual stimulus, with measured correlation coefficients typically
ranging from 0.1 to 0.2 (van Kan et al., 1985; Gawne and Rich-
mond, 1993; Zohary et al., 1994). The counting model suggests
that such modest correlation might entail rather substantial com-
mon input, ~30% shared connections, by Equation 2. This is
larger than the amount of common input that might be expected
from anatomical considerations. The probability that a pair of
nearby neurons receive an excitatory synapse from the same axon
is believed to be ~0.09 (Braitenberg and Schiiz, 1991; Hellwig et
al., 1994). Comparable estimates are not known for the axons
from inhibitory neurons, although the probability is likely to be
considerably larger (Thomson et al., 1996), because there are
fewer inhibitory neurons to begin with. Still, it is unlikely that
pairs of neurons share 50% of their inhibitory input; yet this is the
value for ¢; needed to attain a correlation of 0.15 (when ¢y =
0.09, Eq. 2). We suspect that this discrepancy arises in part
because the covariation measured electrophysiologically exists
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not only because of common input to a pair of neurons at the
anatomical level, but also because the signals actually transmitted
by the input neurons are contaminated by common noise arising
at earlier levels of the system. As an extreme example, small eye
movements could introduce shared variability among all neurons
performing similar visual computations (Gur et al., 1997).

2.3: Response correlation limits fidelity

Why should we care about such modest correlation? The reason
is that even weak correlation severely limits the ability of the
neural population to represent a particular quantity reliably
(Johnson, 1980; Britten et al., 1992; Seung and Sompolinsy, 1993;
Abbott, 1994; Zohary et al., 1994; Shadlen et al., 1996). Impor-
tantly for our present purposes, developing an intuition for this
principle will help us understand a major component of the
variability in the discharge of a cortical neuron.

Consider one of the shaded neurons shown in the top tier of
Figure 7B. Its rate of discharge is supposed to represent the result
of some computation involving the quantity 8. For present pur-
poses we need not worry about exactly what the neuron is com-
puting with this value. What is important is that in any epoch, all
that the shaded neuron knows about 3 is the number of spikes it
receives from neurons in the middle tier of Figure 7B. Clearly, the
variability of the shaded neuron’s spike output depends to some
extent on the variability of the number of input spikes, no matter
what the neuron is calculating. If the shaded neuron receives
input from hundreds of neurons, each contributing an independent
estimate of 3, then the number of input spikes per neuron per unit
time would vary minimally. For example, suppose that some
visual stimulus contains a feature represented by the quantity g =
40 spikes/sec. Each of the neurons representing this quantity
would be expected to produce four spikes in a 100 msec epoch,
but because the spike train of any neuron is highly variable, each
produces from zero to eight spikes. This range reflects the 95%
confidence interval for a Poisson process with an expected count
of four. We might say that the number of spikes from any one
neuron is associated with an uncertainty of 50% (because the SD
is two spikes; we use the term uncertainty here, rather than
coefficient of variation, to avoid confusion with Cy, ). In contrast,
the average number of spikes from 100 independent neurons
should almost always fall between 3.6 and 4.4 spikes per input
(i.e., £ 2 SE of the mean). The shaded neuron would receive a
fairly reliable estimate of B, which it would incorporate into its
calculation of v. In this example, the uncertainty associated with
the average input spike count is 5%, that is, a 10-fold reduction
because of averaging from 100 neurons. With more neurons, the
uncertainty can be further reduced, as illustrated by the gray line
(r = 0) in Figure 10.

Unfortunately, the neurons representing 8, or any other quan-
tity, do not respond independently of each other. Some covaria-
tion in response is inevitable, because any pair of neurons receive
a fraction of their inputs in common, a necessity illustrated by
Figure 7. The preceding section suggests that the amount of
shared input necessary to elicit a small covariation in spike
discharge may be quite substantial, but even a small departure
from independence turns out to be important. It is easy to see
why; any noise that is transmitted via common inputs cannot be
averaged away. This is true even when the number of inputs is
very large. For example, Zohary et al. (1994) showed that the
signal-to-noise ratio of the averaged response cannot exceed 7 ~'/?
where 7 is the average correlation coefficient among pairs of
neurons.
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Figure 10. Weak correlation limits the fidelity of a neural code. The plot
shows the variability in the number of spikes that arrive in an average ISI
from a pool of input neurons modeled as Poisson point processes. Pool
size is varied along the abscissa. In one ISI, the expected number of input
spikes equals the number of neurons. Uncertainty is the SD of the input
spike count divided by the mean. For one input neuron, the uncertainty is
100%. The diagonal gray line shows the expected relationship for inde-
pendent Poisson inputs; uncertainty is reduced by the square root of the
number of neurons. If the input neurons are weakly correlated, then
uncertainty approaches an asymptote of V7 (see Appendix 2). For an
average correlation of 0.2, the uncertainty from a pool of 100 neurons
(arrow) is approximately the same as for five independent neurons or,
equivalently, the count from one neuron in an epoch of five average ISIs.

We would like to know how correlation among input neurons
affects the variability of neural responses at the next level of
processing. We can start by asking how variable are the quantities
that a neuron inherits to incorporate in its own computation.
From the perspective of one of the neurons in the top tier of
Figure 7B, what is the variability in the number of spikes that it
receives from neurons in the middle layer? In other words, how
unreliable is the estimate of B?

The answer is shown in Figure 10. We have calculated the
uncertainty in the number of spikes arriving from an ensemble of
neurons in the middle layer. Each curve in Figure 10 shows
uncertainty as a function of the number of neurons in the input
ensemble, where uncertainty is expressed as the percentage vari-
ation (SD/mean) in the number of spikes that a neuron in the top
layer would receive from the middle layer in an epoch lasting one
typical ISI. This characterization of variability is appealing, be-
cause it bears directly on neural computation at a natural time
scale.

If there is just one neuron, then the mean number of spikes
arriving in an average ISI is one, of course, and so is the SD,
assuming a Poisson spike train. Hence the uncertainty is 100%. If
there are 100 inputs from the middle layer, then the expected
number of spikes is 100: one spike per neuron. If each spike train
is an independent Poisson process (Fig. 10, gray line), then the SD
is 10 spikes (0.1 spikes per neuron), for a percentage uncertainty
of 10%. If the spike trains are weakly correlated, however, then
the percentage uncertainty is given by:

o 1+mr—r
%variation = 100 \/T, (3)
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where m is the number of neurons, and 7 is the average correla-
tion coefficient among all pairs of input neurons (see Appendix
2). Each of the curves in Figure 10 was calculated using a different
value for 7. The solid curves indicate the approximate level of
correlation that is believed to be present among pairs of cortical
neurons and that is consistent with our simulations using a large
fraction of common input (7 = 0.1-0.3). Even at the lower end of
this range, there is a substantial amount of variability that cannot
be averaged away. For an average correlation coefficient of 0.2,
the percentage uncertainty for 100 neurons is 45%; only a twofold
improvement (approximately) over a single neuron!

Three important points follow from this analysis. First, modest
amounts of correlated noise will indeed lead to substantial un-
certainty in the quantity B, received by the top tier neurons in
Figure 7B that compute vy, even if =100 neurons provide the
ensemble input. This variability in the input quantity will influ-
ence the variance of the responses of the top tier neurons, an
issue to which we shall return in section 3. Second, the modest
reduction in uncertainty achieved by pooling hardly seems worth
the trouble until one recalls that what is gained by this strategy is
the capacity to transmit information quickly. For example, using
100 neurons with an average correlation of 0.19, the brain trans-
mits information in one ISI with the same fidelity as would be
achieved from one neuron for five times this duration. This fact is
shown by the dotted lines in Fig. 10. If we interpret the abscissa for
the r = 0 curve as m ISIs from one neuron (instead of one ISI
from m input neurons), we can appreciate that the uncertainty
reduction achieved in five ISIs is approximately the same as the
uncertainty achieved by about 100 weakly correlated neurons (¥ =
0.2; Fig. 10, arrow). Third, the fidelity of signal transmission
approaches an asymptote at 50-100 input neurons; there is little
to be gained by adding more inputs. This observation holds for
any realistic amount of correlation, suggesting that 50-100 neu-
rons might constitute a minimal signaling unit in cortex. Here lies
an important design principle for neocortical circuits. Returning
to Figure 7, we can appreciate that the more neurons that are
used to transmit a signal, the more common inputs the brain is
likely to use. The strategy pays off until an asymptotic limit in
speed and accuracy is approached: ~50-100 neurons.

A most surprising finding of sensory neurophysiology in recent
years is that single neurons in visual cortex can encode near-
threshold stimuli with a fidelity that approximates the psycho-
physical fidelity of the entire organism (Parker and Hawken,
1985; Hawken and Parker, 1990; Britten et al., 1992; Celebrini
and Newsome, 1994; Shadlen et al., 1996). This finding is under-
standable, however, in light of Equation 3, which implies that
psychophysical sensitivity can exceed neural sensitivity by little
more than a factor of 2, given a modest amount of correlation in
the pool of sensory neurons.

2.4: Synchrony among input neurons
If pairs of neurons carrying similar signals are indeed correlated,
it is natural to inquire whether such correlation influences the
spiking interval statistics considered earlier. How do synchronous
spikes such as those reflected in the cross-correlograms of Figure
8 influence the postsynaptic neuron? What is the effect on ISI
variability of weak correlation and synchronization in the input
spike trains themselves (recall that the inputs in the simulations of
Fig. 8 were independent)?

We tested this by simulating the response of two neurons using
inputs with pairwise correlation that resembles Figure 8E. We
generated a large pool of spike trains using our counting model

Shadlen and Newsome ¢ Variable Discharge of Cortical Neurons

o
-

Frequency O

Figure 11. Homogeneity of synchrony among input and output ensem-
bles of neurons. A, Normalized cross-correlogram from a pair of neurons
receiving 300 excitatory and inhibitory inputs, the typical pairwise cross-
correlogram of which is shown in B. The pair share 40% common
excitatory and inhibitory input. The CCG was computed from 80 1 sec
epochs. The simulation produced a correlation coefficient of 0.29. B, The
average correlogram for pairs of neurons serving as input to the pair of
neurons, whose CCG is shown in 4. The correlogram was obtained from
80 1 sec epochs using randomly selected pairs of input neurons. The mean
correlation coefficient, 7, was 0.3. Vertical scale reflects percent change in
the odds of a spike, relation to background. C, Spike interval histogram
for the output neurons. Synchrony among input neurons does not lead to
detectable structure in the output spike trains (Cy,, = 0.94).

with 300 excitatory and 300 inhibitory inputs. Each spike train was
generated by drawing 300 inputs from a common pool of 750
independent Poisson spike trains representing excitation and an-
other 300 inputs from a common pool of 750 Poisson spike trains,
which represented the inhibitory input. The strategy ensures that,
on average, any pair of spike trains was produced using 40%
common excitatory input and 40% common inhibitory input.
Thus any pair of spike trains has an expected correlation of
0.25-0.3 and a correlogram like the one in Figure 8E. We simu-
lated several thousand responses in this fashion and used these as
the input spike trains for a second round of simulations. The
correlated spike trains now served as inputs to a pair of neurons
using the identical model. Again, 40% of the inputs to the pair
were identical. By using the responses from the first round of
simulations as input to the second, we introduced numerous
synchronized spikes to the input ensemble.

The result is summarized in Figure 11. The cross-correlogram
among the output neurons (Fig. 114) resembles the correlogram
obtained from the inputs (Fig. 11B). We failed to detect an
increase in synchrony. In fact the correlation coefficient among
the pair of outputs was 0.29, compared with 0.30 for the inputs.
The synchronized spikes among the input ensemble did not lead
to more synchronized spikes in the two output neurons. Nor did
input correlation boost the spike rate or cause any detectable
change in the pattern of spiking. As in our earlier simulations, the
output response was approximately the same as any one of the
600 inputs. Moreover, the spike trains were highly irregular,
the distribution of ISIs approximating an exponential probability
density function (Fig. 11, inset; Cy, = 0.94). We detected no
structure in the output response or in the unit autocorrelation
functions.

The finding contradicts the common assumption that synchro-
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nous spikes must exert an exaggerated influence on networks of
neurons (Abeles, 1991; Singer, 1994; Aertsen et al., 1996; Lumer
et al., 1997). This idea only holds practically when input is
relatively sparse so that a few presynaptic inputs are likely to yield
a postsynaptic spike (Abeles, 1982; Kenyon et al., 1990; Murthy
and Fetz, 1994). The key insight here is that the cortical neuron
is operating in a high-input regime in which the majority of inputs
are effectively synchronous. Given the number of input spikes
that arrive within a membrane time constant, there is little that
distinguishes the synchronous spikes that arise through common
input. If as few as 5% of the ~3000 inputs to a neuron are active
at an average rate of 50 spikes/sec, the neuron receives an average
of 75 input spikes every 10 msec. The random walk mechanism
effectively buffers the neuron from the detailed rhythms of the
input spike trains just as it allows the neuron to discharge in a
graded fashion over a limited dynamic range.

3: Noise propagation and neural computation

As indicated previously, a remarkable property of the neocortex
is that neurons display similar statistical variation in their spike
discharge at many levels of processing. For example, throughout
the primary and extrastriate visual cortex, neurons exhibit com-
parable irregularity of their ISIs and spike count variability.
When an identical visual stimulus is presented for several repe-
titions, the variance of the neural spike count has been found to
exceed the mean spike count by a factor of ~1-1.5 wherever it has
been measured (see Background). The apparent consistency im-
plies that neurons receive noisy synaptic input, but they neither
compound this noise nor average it away. Some balancing equi-
librium is at play.

Recall that our simulations led to a spike count variance that
was considerably less than the mean count (Fig. 6), in striking
contrast to real cortical neurons. Because the variance of the spike
count affects signal reliability, it is important to gain some under-
standing of this fundamental property of the response. In this
section we will develop a framework for understanding the rela-
tionship between the mean response and its variance under ex-
perimental conditions involving repetitions of nominally identical
stimuli. Why does the variance exceed the mean spike count, and
how is the ratio of variance to mean count preserved across levels
of processing? The elements of the variance turn out to be the
very quantities we have enumerated in the preceding sections:
irregular ISIs and weak correlation.

3.1: Background and terminology

At first glance it may seem odd that investigators have measured
the variance of the spike count; after all it is the SD that bears on
the fidelity of the neural discharge. However, a linear relationship
between the mean count and its variance would be expected for a
family of stochastic point processes known as renewal processes.
A stochastic point process is a random sequence of stereotyped
events (e.g., spikes) that are only distinguishable on the basis of
their time of occurrence. In a renewal process the intervals from
one event to the next (e.g., ISIs) are independent of one another
and drawn from a common distribution (i.e., they are indepen-
dent and identically distributed; Karlin and Taylor, 1975). The
Poisson process (e.g., radioactive decay) is a well known example.
Recall that the intervals of a Poisson process are described by the
exponential probability density function:

flx) = re ™, (4)

where A is the average event rate, and A" is both the mean
interval and SD (i.e., Cy, = 1). The number of events observed in
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an epoch of duration, 7, is also a random number. The count,
which we shall denote, N(T), obeys a Poisson distribution; the
mean count is AT, as is the variance. We will use angled brackets
to indicate the mean of many repetitions and summarize the
Poisson case by writing, Var[N(T)] = (N(T)) = AT. For any
renewal process (not just the Poisson process), the number of
events counted in an epoch, N(T'), is a random number with
variance that scales linearly with the mean count. The constant of
proportionality is the squared coefficient of variation (Cy,) of the
interval distribution: Var[N(T)] = CZ{(N(T)) (Smith, 1959).

Spike trains from cortical neurons bear certain similarities to
Poisson processes, and it is presumably for this reason that
investigators have sought a lawful relationship between the mean
spike count and its variance. However, as we have noted, the spike
counts from cortical neurons exhibit even greater variance than
the Poisson case: Var[N(T)] > (N(T)). In general, real spike
trains are not renewal processes. ISIs often fail independence
(e.g., during bursts), and, unless the spike rate is constant, ISIs
cannot be described by a common distribution (Teich et al., 1997).
The latter concern is particularly important when we consider the
behavior of the neuron over many repetitions, for as we will see in
a moment, the spike rate is emphatically not the same from epoch
to epoch. In contrast to real spike trains, the random walk model
described in section 1 produced a sequence of independent ISIs,
described by a common distribution, whether viewed in one or
several epochs; it describes a renewal process. We would like to
relate this process to the variance of the spike count that would be
observed over many stimulus repetitions.

Table 2 lists the main mathematical symbols used in our argu-
ment as well as some guidance to their interpretation. The sce-
nario we will develop can be summarized as follows. In an epoch
of duration, 7, the neuron receives n;(7T) synaptic inputs from m
input neurons (i = 1.m). The postsynaptic neuron computes
some quantity from these inputs, which it attempts to represent as
a spike rate, A, by emitting a sequence of spikes modeled as a
renewal. From here on we will no longer simulate spike trains
using the random walk model and instead identify a desired spike
rate—the result of some neural computation—and adopt A~ as
the expected ISI of a renewal process. The strategy will allow us
to write equations for the spike count variance.

3.2: Two components of response variance

The observed spike count variance can be divided into two
components. The first is related to the irregular ISIs that would
arise from a renewal process when the rate is known. We will
refer to this source of variance as conditional noise, because it
assumes precise knowledge of the desired output spike rate. It is
the variance in the spike count that we would anticipate if a
neuron were to compute the same quantity on each stimulus
repetition. It is the kind of variability that we might associate with
a Poisson process (or some other renewal) when the rate is
known. The second source of noise reflects the fact that for any
one spike train, we do not really know the expected rate with
certainty. For repeated presentations of the same stimulus, the
quantity actually computed by the neuron varies from trial to trial.
As we discovered in section 2, this is because the inputs are
weakly correlated. This source of variability might be called
extrinsic noise or, more accurately, the variability of the computed
expectation.

In general, when a random quantity, y, depends on a second
quantity, x, which is also variable, the variance of y can be
expressed as the sum:
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Table 2. Mathematical symbols used in the description of a counting process and their interpretation in a model of neural computation

Symbol Interpretation Notes

T Duration of epoch Chosen by experimenter

N(T) Number of spikes from the output neuron in epoch, 7' Measured experimentally

(N(T)) Mean spike count from the output neuron; also read Measured experimentally using repetitions of identical stimuli
as the expectation of the spike count

Var[N(T)] Variance of spike count from the output neuron Measured experimentally using repetitions of identical stimuli

ny(T) Number of spikes from the i'" input neuron in epoch, Unknown; we assume that input and output spike counts are the
T same, on average: (N(T)) = (ny(T))

A Intended spike rate of the output neuron; result of the Theoretical quantity; assumed to be constant over the epoch, so
neural computation (N(T)) = (AT); this assumption can be relaxed, however; then,

(N(T) = (S " A dr)
Cyg Coefficient of variation of ISI distribution, which char- Theoretical quantity; can only be measured when A is constant;

acterizes a renewal process: oyg/sy

~I

Average correlation coefficient between pairs of input
neurons

for the renewal processes considered here Cy, is the same for
all possible values of A

Estimated experimentally from pairwise recording, using repeti-
tions of identical stimuli

Note the distinction between experimentally measurable and theoretical quantities.

Varly] = (Var[y[x]) + Var[(y[x)], (5)

where (- - -) denotes the average over all values of x. The expres-
sion y|x denotes the random value, y, conditional on knowledge
that x has taken on some particular value. In words, Equation 5
says that the observed variance of y is the sum of its mean
conditional variance plus the variance of its conditional mean. The
equation applies intuitively to random numbers drawn from a
distribution with mean and variance that change on every pick.
The conditional variance describes the variance that would apply
on any one draw, whereas the variance of conditional mean
describes the distribution of expectations across the picks.

In a similar fashion, we can conceive of the spike count as a
random number drawn from a distribution with expectation that
changes for each repetition of the stimulus or trial. The expecta-
tion reflects some computation on the input spike trains. Thus on
any one trial, the neuron computes a spike rate, A, and emits a
random spike train with an expected count of AT. Representing
the spike count by N(T), we can rewrite Equation 5 as follows:

Var[N(T)] = (Var[N(T)|A]) + Var[(N(T)|A)]
= (Var[N(T)|A]) + Var[{AT)]. (6)

The idea is that the variance of the spike count can be divided
into a portion that would be present even if the neuron were to
compute the same value for A on every trial and another portion
that reflects the fact that it does not compute the same A on every
trial.”

It is helpful to relate this concept briefly to the counting model
used in previous sections. In section 1, we designed the model to
respond at a spike rate equal to the average of its inputs. For m
inputs, the computation is:

PKnowledge of A does not imply exact knowledge of the input spike trains. Presum-
ably there are many patterns of inputs that give rise to the same result, . Because
our model for synaptic integration is deterministic, identical inputs would produce
identical outputs. If x were an exhaustive description of the input spike trains, that
is, the time of every spike among all excitatory and inhibitory inputs, then
var[N(T)x] = 0. To make sense of Equation 5, we need to make it clear that what
we know about the inputs, as reflected in the conditional probabilities, is a scalar
value that is computed from them, i.e., A.

1

i=1

A

where 1,(T) is the input spike count from the i*" input neuron
during the epoch 7. Thus, A reflects the average spike rate among
the active inputs, and the computation satisfies our desire for
homogeneity of input and output spike rates. Recall from section
1 that the model produced a variable spike count even though the
average input rate was the same on each repetition. Because the
inputs were modeled as independent, there was little variation in
the mean rate of the inputs from trial to trial. Hence A was known
precisely, or nearly so, implying that the variance of the condi-
tional mean was negligible. In short, all of the spike count vari-
ance is attributed to the renewal process. When correlation was
introduced among the inputs, however (section 2), additional
variance arose because of the uncertainty in A. Equation 6 tells us
that these two sources of variance add.

Figure 12 is intended to convey an intuition for the two sources
of variance and their importance for networks of interconnected
neurons. The three neurons at the fop of Figure 12 are idealized
as Poisson generators, and all compute the same quantity, A,
which is the mean input spike rate (Eq. 7). The neurons at the
bottom provide the input spikes; they are also Poisson generators
and represent the same expected rate. (By Poisson generator, we
mean that the neuron computes a rate value and generates a spike
train with intervals that are independent and exponentially dis-
tributed.) Suppose that the input spike rate is 100 spikes/sec and
T = 100 msec. Then the expected spike count from the input
neurons is (n;(T)) = 10 spikes, and the variance is 10 spikes?, as
shown by distribution in the bottom graph. Each of the neurons
shown at the fop of Figure 12 computes the average spike rate
among the inputs: 100 spikes/sec, or 10 spikes in the 100 msec
epoch. The top graphs depict the distribution of spike counts
emitted by these “output” neurons.

If there were just one input neuron, as in Figure 124, then two
sources of variance, extrinsic and conditional in the terms estab-
lished above, would combine to produce an output that is more
variable than the single neuron input. Extrinsic noise reflects the
fact that the input is not constant on each trial but instead takes
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the form of a random pick from the probability distribution
shown in the middle row. This is the distribution of AT estimated
by applying Equation 7 to just one neuron. Thus, we imagine that
the output neuron receives a random pick of AT from this distri-
bution and generates a Poisson spike train with this expected
count. The total variance is the sum of the extrinsic (input)
variance and the conditional variance arising from the Poisson
renewal process. In this case the mean is 10 spikes, and the
variance is 20 spikes?. In just one synapse the variance-to-mean
ratio has doubled. Such a scheme is obviously untenable for
extended chains of neural processing.

If the neuron were to compute the average spike rate from
many independent neurons, then the extrinsic noise would ap-
proach zero. This is represented by the delta function in Figure
12B (middle row). On every repetition, the computation produces
100 spikes/sec (10 spikes/100 msec per neuron) by pooling across
the ensemble of input neurons. The output neuron necessarily
incorporates conditional noise and therefore generates a Poisson
spike train with an expected count of 10 and a variance of 10. The
output response is only as variable as a Poisson process with rate
100 spikes/sec. This situation resembles the simulations per-
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Figure 12. Propagation of noise among en-
sembles of neurons. Each of the neurons de-
picted in this figure emits a spike train ideal-
ized as a Poisson point process. The three
neurons at the fop compute the average spike
rate among their inputs and emit the answer as
a Poisson spike train. During a 100 msec ep-
och, the input neurons (bottom) discharge at
100 spikes/sec. Each input neuron is therefore
expected to generate 10 spikes, but in any one
epoch the count may vary. The bottom graph
shows the Poisson distribution of spike counts
from one input neuron. The middle row of
graphs shows the probability density of the
quantity that the output neuron has computed:
the number of spikes per input neuron. The
neuron obtains an estimate of the input spike
count by calculating with one (4) or more
neurons (B, C). The value is represented as an
expectation, (AT), which can be thought of as a
desired rate times the epoch duration. In any
one epoch, the neuron emits a Poisson spike
train at a rate, A, resulting in N(7) spikes. The
distribution of N(7) from many 100 msec rep-
etitions is shown at the fop. A, If the output
neuron receives input from just one input neu-
ron, the variance of the input count, var[(AT)],
is 10. The output neuron emits an average of
10 spikes, but the variance is 20, reflecting the
sum of input and (its own) Poisson variance. B,
If there are many independent inputs, then the
variance of the mean input count is negligible
(delta function; middle plot). The output neu-
ron emits an average of 10 spikes, and the
variance is 10, the amount of variance ex-
pected for a Poisson spike train. C, If there are
many weakly correlated input neurons, then
the variance of the mean input count is ap-
proximately 10 times the average correlation
coefficient among the input neurons. If 7 = 0.2,
then the variance is 2. The output neuron
emits an average of 10 spikes, but the total
variance is 12. Notice that in 4 and C, the
variance of the output spike count exceeds the
variance of the inputs.

formed in section 1.4. The variance of the mean input count was
negligible because we simulated each of the inputs independently.
Here we have simply bypassed the random walk model and
instead postulated that the neuron computes A = 100 spikes/sec
and emits a Poisson spike train accordingly.

A more realistic situation, involving correlated noise among
the inputs, is shown in Figure 12C. Again, we suppose that the
neuron computes the mean of many input spike counts, but that
the response of any one input neuron is correlated weakly with
the response of the others. Averaging no longer leads to a precise
value but retains some variability. For the computation in Equa-
tion 7, the variance would be estimated by multiplying the average
correlation coefficient, 7, by the variance of a single input:

Var[(AT)] = 7 Var[n(T)]. 8)

This approximation is implied by Equation 3 for large numbers of
inputs (see Appendix 2). If 7 = 0.2, then the variance of the
computed quantity would be 2 spikes?. The value transmitted to
the neuron at the fop of Figure 12 is 10 spikes per neuron per
epoch, with a variance of 2. Once again, the top neuron repre-
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sents this quantity by emitting a Poisson spike train. The total
variance in this case is 12 spikes?, 1.2 times the mean.

The idea that spike count variance arises as a sum of condi-
tional and input variances is appealing for its simplicity. It pro-
vides some intuition about how the spike count variance would
exceed its mean, and it suggests that the ratio of spike count
variance to the mean count ought to be a constant. However, we
have yet to achieve an adequate explanation for the apparent
homogeneity of this relationship among input and output neu-
rons. The example in Figure 12B would be regarded as successful
were it not for the unrealistic assumption of independent inputs,
hence noise-free computation. The example in Figure 12C comes
close, but the variance of the input neurons at the bottom does not
match the variance of the spike count produced by the neuron at
the top (10 and 12, respectively). It would be untenable for
neurons to boost the variance by 20% at each stage of synaptic
integration.

3.3: A stable solution for spike count variance

We therefore seek a stable ratio of variance to mean spike count,
one that encompasses input neurons and output neurons alike
and one that more accurately reflects the variability of real neu-
rons. For the moment, we will continue to make our simplifying
assumption that the neuron computes the average firing fre-
quency of its active inputs (Eq. 7). This case allows us to elaborate
the scheme depicted in Figure 12 and serves as a reference point
for further discussion.

In section 1.2 we established that a random walk model for
synaptic integration allows the neuron to respond at a rate that is
approximately equal to the average rate of its inputs, but that the
output spike train is highly irregular. Recall that the coefficient of
variation of the ISIs (Cy, ) was 0.8-0.9 for a variety of model
parameters. When we computed the spike counts from many
epochs, we found that the variance-to-mean ratio of the spike
counts was 0.75 on average (Fig. 6). This value is sensible because
the random walk model produced spike trains that conformed to
a renewal process: spike intervals were independent, and the
expected spike rate was the same for all repetitions. As noted
earlier, the predicted relationship between the spike interval
distribution and the variance in the number of spikes counted in
an epoch, 7, is given by Var[N(T)] = C%,ISI(N(T», which would
predict a variance-to-mean ratio of 0.64-0.81. This relationship
presumes a fixed spike rate, A. If A is variable, however, this same
relationship then applies only to the average conditional variance:

(Var[N(T)|A]) = (CYy N(T)|X) = C3, (N(T)). 9)

Equation 9 works because the Cy,, is the same regardless of spike
rate.” The left side of Equation 9 is the average of the variances
computed at each fixed spike rate. We referred to this as the mean
conditional variance in Equation 5. It is the amount of variance
that we would observe if only the neuron were instructed to
produce the same spike rate in each epoch.

In reality, of course, correlation among the inputs guarantees
that the neuron receives somewhat different instructions on each
trial. This additional variance is represented by the second term
in Equation 6: the variance of the conditional mean. The amount

“For many stochastic processes, including our random walk model, a change in rate
is equivalent to scaling time. Hence the Cy, is constant. For these cases, Equation 9
also holds for time varying spike rates, A(f), as long as the rate function can be
repeated for each epoch contributing to the conditional variance. Thus, for a
nonstationary Poisson process, the variance of the counts equals the mean of the
counts.
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of this additional variation depends on what the neuron is calcu-
lating. If the neuron computes the number of spikes per active
input, then we can use the expression in Equation 8. The total
variance is therefore:

Var[N(T)] = C4(N(T)) + 7 Var[n(T)].  (10)

This equation is obtained by combining Equations 6-9. It says
that the variance of the spike count reflects (1) the irregularity of
the spike train, and (2) an inability to average out common noise.

We seek conditions in which the input and output neurons
exhibit the same degree of variability. This would describe a
steady state in which noise neither compounds nor attenuates in
a neural processing chain. For the mean spike rate calculation
(Eq. 7), the expected counts are the same for input and output
neurons. In the steady state, the expected variance of the input
and output neurons must be equal as well: var[N(T')] = var[n(T)].
This equality allows us to rearrange Equation 10 to yield a
steady-state solution:

C%/ISI
Var[N(T)] = [ N(T)). (11)
This expression tells us the relationship between the variance and
the mean spike count for any neuron in any tier of a network that
is designed to compute the mean response of its inputs.

In Figure 12, we assumed that the neuron behaves as a Poisson
generator. Choosing Cy, = 1 and r = 0.2, Equation 11 indicates
that the variance of the spike count should be 1.25 times its mean
value. This is the homogeneous solution for populations of neu-
rons that behave as Poisson generators whose spike rate is the
mean of the input spike rates. If the input neurons in Figure 12C
had a spike count variance of 12.5 (instead of 10), then the
variance of the output, shown at the fop, would have been 12.5 as
well. The neuron at the fop of Figure 12C would inherit a variance
of 2.5 (because Var[(AT)] ~ r Var[n(T)] = (0.2)(12.5) = 2.5),
which adds to the conditional variance of the Poisson generator
(10 spikes?). The simulations in section 1 lead us to suggest that
a better estimate of the Cy, might be 0.8 (Figs. 4 and 5). The
stable solution for the variance is then 0.8 times the mean (by Eq.
11), which is less than the value of 1-1.5, measured
experimentally.

It is possible that this discrepancy between theory and exper-
iment arises from additional sources of signal variability in vivo,
such as fluctuations in eye position in awake animals (Gur et al.,
1997) or fluctuations in cortical excitability (Arieli et al., 1996).
More likely, in our opinion, is that our theoretical analysis un-
derestimates the real variance, because we have assumed a very
simple computation—averaging. In the next section we will ex-
plore this proposition.

3.4: Neural calculations other than the mean

Throughout this paper we have assumed that a cortical neuron
computes something like the average rate of its inputs. This was
a convenient choice to satisfy the homogeneity constraints listed
in Table 1. In general, however, a postsynaptic neuron is likely to
compute something more complicated than the average of its
inputs, and the variance of this quantity will typically exceed the
amount deduced for averaging (Eq. 8). Even to compute the
average number of spikes per active input, the neuron needs an
estimate of the number of active inputs (m in Eq. 7). We have
tacitly assumed knowledge of this value in Equation 7 and in the
adjustment of barrier height in the random walk model. The



Shadlen and Newsome ¢ Variable Discharge of Cortical Neurons

neuron needs an estimate of this quantity, however, and to
the extent that this estimate carries uncertainty, it will augment
the variance associated with computation Var[(AT)]. This is just
one of many possible sources of uncertainty that would boost the
variance of the neural discharge. We have referred to this addi-
tional variance as pooling noise in previous work (Shadlen et al.,
1996).

How much additional variance can be anticipated if the neural
computation combines several quantities, each carrying its own
uncertainty? The following contrivance offers surprising insight.
Suppose that in addition to computing the average rate among
some set of inputs, the neuron were to add and subtract two other
quantities. Let the expected spike rate reflect the addition of two
values and the subtraction of a third, as ina + b — ¢. Analogous
to Equation 7, we can represent the computation as:

mp

1 Ma 1 1 me
A= 1:21 m(T) + - > ni(T) — m. ,:21 ni(T), (12)

i=1

where m,, m,,, and m, are the number of inputs that convey the
quantities a, b, and c. We are not proposing that this is how a
neuron might add and subtract quantities; we use this contrived
example only to illustrate a computation with more variance than
a simple average. The important aspect of Equation 15 is that it
combines distinct entities after the averaging steps. Each term
therefore introduces variance into the computation of A7. Thus,
Equation 15 might be interpreted as a special case of a class of
computations that would include multiplication and logical com-
parisons between inputs arriving at distinct parts of the dendrite.
This particular calculation allows us to extend the intuitions
gained from the preceding section. If we take the average spike
rates of all the inputs to be the same, then the expected output
rate is the same as any one of the inputs, and we can apply the
same strategy as before to find a stable solution for the spike
count variance.

Assume that 100 or more inputs represent each of the three
quantities, a, b, and ¢, and that the neurons that comprise the
pools are weakly correlated among themselves.? The extra quan-
tities boost the uncertainty of the computation. Using the same
notation as before, the variance of the conditional expectation
reflects the sum of the variances from each of the three terms:

Var[{AT)] = 3r Var[n(T)], (13)

triple the amount in Equation 8. The rest of the argument is
identical to the last section. The observed spike count 18 variance
reflects this uncertainty plus the variability that arises because of
the stochastic nature of the ISI (i.e., the fact that the neuron
realizes its intended rate as a renewal process):

Var[N(T)] = C3,(N(T)) + 3r Var[n(T)]. (14)
Because the expected spike count is the same for input and

output, we can equate the variances to find a stable solution:

2
Vist

Var[N(T)] = T

(N(T)). (15)

Plugging in 0.8 for the Cy,, and 0.2 for 7, we obtain a stable
variance-to-mean ratio of 1.6. If input neurons were less variable

dWeak correlation between the pools representing a, b, and ¢ would not affect the
calculations substantially, because the resulting covariance terms would offset each
other due to the sum and difference.
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Figure 13. Stable solution for the variance-to-mean spike count in net-
works of neurons when the computation involves three independent
quantities. A, Numerical approximation to the stable solution. We simu-
lated the response by estimating three values using 100 weakly correlated
neurons per value (7 = 0.2). The three means were combined as a sum and
difference (@ + b — c) to generate the expected spike count from the
output neuron, the spike train of which was modeled as a renewal process
with Cy, = 0.8. The variance-to-mean ratio for the input neurons is
shown along the abscissa. The output variance-to-mean ratio is plotted
along the ordinate. The least squares fit line crosses the main diagonal at
a ratio of 1.6. This variance-to-mean ratio would be common to input and
output neurons that compute similarly complex quantities. B, Effect of
correlation on the stable variance-to-mean ratio. Each point represents a
numerical approximation like the one obtained in A. The procedure was
repeated for a range of average correlation coefficients. The solid line is
the theoretical result (Eq. 18). Simulations led to larger estimates of
variance, because the number of neurons is finite.

than this, then a neuron that computes the quantity in Eq. 15
would be more variable than its inputs. If the inputs had a
variance exceeding 1.6 times the mean count, then the output
response would be less variable than the inputs.

This point is illustrated by the numerical simulation in Figure
13A4. The variance of the spike count is shown for a neuron that
computes the sum and difference described by Equation 15. We
used 100 neurons in each of the three pools representing the
quantities a, b, and ¢, and we assumed an average correlation of
0.2 among all neuronal pairs within the pools. We adjusted the
variance of the input neuron spike counts, using a variance-to-
mean ratio of from 0.6 to 1.8, as shown on the abscissa. The
variance of the output neuron response reflects the uncertainty in
the computation of AT and the additional variation attributable to
the irregularity of the ISI, which we modeled as a renewal with
Cy,, = 0.8. Notice that the input and output neurons share the
same variability when the variance-to-mean ratio is 1.6, as pre-
dicted by Equation 15. This is the stable value for the variance-
to-mean ratio in a network of neurons that compute quantities
that necessitate combining sources of variance, in the manner of
the sum and difference in Equation 12. In Figure 13B we show the
stable solution for a range of correlation strengths. For 7 between
0.1 and 0.2, the variance-to-mean ratio approximates the value
measured experimentally (Table 1).
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It is sobering to realize that such a simple calculation leads to
such large variance in the neural response. This observation is
particularly ominous for models in which separate computations
are performed on major dendritic branches, with the resulting
quantities being summed or multiplied at the soma (Koch et al.,
1983; Shepherd and Brayton, 1987; Segev, 1992; Mel, 1993). Our
results suggest that in terms of response variance, little headroom
is available for such algebra to occur within the postsynaptic
neuron. How, then, do neurons compute complex quantities such
as orientation, disparity, and motion while keeping response
variance stable? In thinking about this question, we find it useful
to distinguish between computations that are performed within
the postsynaptic neuron and computations that are imposed from
outside the postsynaptic neuron by virtue of its afferent anatom-
ical connections. Our results suggest that the primary computa-
tion performed within most neurons is a relatively simple
weighted average of its many inputs (a slight elaboration of Eq. 7
yields a weighted average). On the other hand, sophisticated
quantities can emerge from a weighted average, provided that the
inputs and their weights are arranged properly. This computa-
tional principle lies at the heart of most neural network models;
complex quantities are computed by means of a network of
intricately connected “units,” each of which calculates a weighted
average of its inputs (Pouget et al., 1998). This principle is also
congenial with recent “normalization” models in which neurons
in different visual areas compute in a similar manner (linear
summation followed by response normalization), whereas the
diverse response properties that characterize different cortical
areas emerge from different patterns of input (Heeger et al., 1996;
Simoncelli and Heeger, 1998).

From this point of view, the burden of neural computation falls
on the pattern of connections to each postsynaptic neuron or, by
extension, on the pattern of connections to the cortical column.
The present analysis predicts, in other words, that cortically
derived properties such as orientation and direction tuning will be
apparent in the organization of synaptic inputs to layer 4 of a
given cortical column (Ferster et al., 1996). Outside of layer 4, the
majority of neurons receive ascending input predominantly from
other neurons in the same column and will thus inherit substan-
tially similar response properties. The intrinsic circuitry of the
column may amplify and modulate the quantities generated by
the novel anatomical convergence onto layer 4 (Douglas et al.,
1995; Somers et al., 1995).

DISCUSSION

We have identified several principles of statistical homogeneity
that pertain to networks of neurons operating in a high-input
regime. The central idea is that from the point of view of statis-
tics, input and output neurons should be indistinguishable. They
respond over the same dynamic range; they exhibit the same
irregularity in their spike output patterns; and they manifest the
same uncertainty in their spike counts over epochs of a few ISIs.
These constraints are satisfied by a simple integrate-and-fire
model with decay, assuming balanced excitation and inhibition. If
cortical neurons operate in this fashion, then the irregular spike
patterns they exhibit ought to be interpreted as noise. This
implies that the intervals themselves do not convey meaningful
information beyond their expression of spike rate. More specifi-
cally, precise arrangements of spikes and constellations of inter-
vals among ensembles of neurons are unlikely to play a role in
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neural signaling.® The idea that neurons encode information
through modulation of their spike rate is hardly novel, but we
have shown that it takes an ensemble of neurons to do so reliably
and, moreover, that the ensemble need not exceed 100 neurons.
Because the rate can change quickly, our argument is not incon-
sistent with the broad concept of temporal coding. Indeed, Figure
1 illustrates responses of a neuron with a rate that varies rapidly
with changes in the visual stimulus.

Our arguments presuppose that neurons in neocortex receive a
surfeit of excitatory synaptic input. This is likely to be so because
the conditions that cause a neuron to discharge also cause some
considerable fraction of its inputs to discharge as well. This
proposition is difficult to quantify precisely, but it is consistent
with optical imaging studies, which suggest that simple visual
patterns elicit activity in very large populations of neurons (Grin-
vald et al., 1994; Das and Gilbert, 1995a), and it conforms to the
informal observations of a great many physiologists. Where re-
sponse properties respect a columnar organization, it can be
surmised that neurons within a cylindrical radius of 50-100 wm
respond under similar conditions. Such a cylinder accounts for
approximately half of the 3000-10,000 excitatory synapses to a
neuron (Braitenberg and Schiiz, 1991; Douglas et al., 1995).
Moreover, many of the inputs from outside this cylinder come via
horizontal connections from columns with overlapping response
properties as well (Ts’o et al., 1986; Gilbert and Wiesel, 1989;
Weliky et al., 1995; Bosking et al., 1997). These rules are best
documented for the primate visual cortex, but they are probably
valid for other regions of neocortex as well (Braitenberg and
Schiiz, 1991; Amir et al., 1993; Lund et al., 1993). Thus stimulus
conditions that induce one neuron to respond also affect a large
number of the neuron’s inputs.

As long as the neuron operates in such a high-input regime,
excitation needs to be balanced with inhibition to maintain a
proper dynamic range of responses. Several considerations sug-
gest that the net excitatory and inhibitory inputs may be approx-
imately balanced. At a membrane potential below spike thresh-
old, for example, outward currents follow weaker electrochemical
gradients, but they are longer-lasting than inward currents, and
their synaptic contacts are positioned closer to the soma (Beau-
lieu et al., 1992; Kisvarday et al., 1993). In addition, inhibitory
inputs tend to make multiple synapses on a given neuron, ensur-
ing more secure transmission (e.g., fewer failures) (Somogyi et al.,
1983b; Thomson et al., 1996). To the extent that excitation of the
distal dendrite relies on active (voltage-dependent) dendritic con-
ductances to reach the soma (Amitai et al., 1993; Schwindt and
Crill, 1995; Stuart and Sakmann, 1995; Johnston et al., 1996;
Schwindt and Crill, 1997a), inhibitory input may have a dispro-
portionately large impact by affecting the gain of this amplifica-
tion mechanism (Bernander et al., 1994; Hoffman et al., 1997,
Schwindt and Crill, 1997b). Finally, powerful evidence favoring
such a balance emerges from intracellular recordings performed
by Ferster (1986) in simple and complex cells of the visual cortex
in the cat (also see Douglas et al., 1991; Nelson et al., 1995;
Borg-Graham et al., 1996). Contrary to previous expectations,
IPSPs, like EPSPs, were elicited predominantly by a bar of the
preferred orientation of the cell. This finding is entirely sensible

“One way to appreciate this is to try to reconstruct the spike intervals among a subset
of input neurons from the pattern of output spikes. This is obviously impossible with
just one output neuron, but it is equally hopeless with an arbitrarily large number of
output neurons. The requisite information is encoded in the path of the membrane
voltage between spikes, but such information is jettisoned from the spike code. If, in
principle, there is no way to reconstruct such intervals, then they cannot encode
information, except insofar as they reflect changes in spike rate.
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from the point of view of the counting model; the massive exci-
tatory input characteristic of the high-input regime must be
balanced by inhibitory input of similar stimulus selectivity.

In the high-input regime, in which excitation and inhibition are
in approximate balance, synaptic integration may be viewed as a
counting process resembling a random walk. We emphasize that
our conclusions apply only to neurons operating in the high-input
regime. In such a setting the neural response reflects the activity
of a large ensemble of inputs, and the arrival of any one presyn-
aptic spike has negligible effect on the time of a postsynaptic
spike. In some brain structures, of course, the high-input regime
does not hold, and a small number of inputs reliably produces an
action potential. This appears to be the case for the visual relay
neurons in thalamus (Hubel and Wiesel, 1961; Hoffmann et al.,
1972; Kaplan and Shapley, 1984) and is paramount in brainstem
auditory structures that preserve precise temporal information in
their spike trains (Oertel, 1983). Such “privileged” connections
may also exist at the initial input stage of the neocortex. For
example, individual afferents from the thalamus seem to exert a
strong influence on visual cortical neurons (Tanaka, 1983; Reid
and Alonso, 1995; Stratford et al., 1996). We suspect, however,
that this is true for only a small minority of neocortical connec-
tions, and we have ignored them in this paper by adopting the
generic perspective that the statistical properties of input and
output neurons are grossly indistinguishable.

Simplifications in the counting model

The counting model we have analyzed incorporates several
flawed assumptions, most for the sake of simplicity. For example,
the model assumes that all PSPs are of identical magnitude.
Obviously, this is an overly simple view; different synapses can
vary in strength as a function of their location on the dendritic
tree, their history of activation on long time scales as in long-term
potentiation and depression, and short time scales as in adapta-
tion. Inputs arriving via stronger synapses might be expected to
produce a postsynaptic spike with greater probability, but the
importance of this stratagem deserves further scrutiny in the
context of the high-input regime under consideration here. Al-
though it is true that synchronous input from just a few strong
synapses would produce a spike, such events occur against a
setting in which the neuron is inundated with synaptic input. Thus
it is likely that such spikes, secure and well timed as they may be,
are responsible for only a minority of the output spikes of a
neuron.

Interestingly, recent advances in synaptic physiology raise the
possibility that variation in synaptic efficacy plays a less pivotal
role in shaping the response of the neuron than previously
thought. Active conductances along the dendrite can increase the
effect at the soma of distal synaptic input, thus ensuring more
equal access to the spike-generating region of the neuron for all
synaptic currents (Cauller and Connors, 1994; Johnston et al.,
1996; Cook and Johnston, 1997). Importantly, increased access to
the soma via active dendritic conductances reinforces the central
problem motivating our preoccupation with the high-input regi-
men: all 3000-10,000 synaptic inputs to a neuron can influence the
discharge of the cell, regardless of their distance from the soma.

In our model we have ignored conductance changes and active
membrane properties. Obviously, synaptic integration is not re-
ally a counting process but an electrical one involving dynamic
conductance changes. A proper model would incorporate the
variety of ion channels, their locations on the dendrite, and the
propagation of current through the dendrite to the soma. These
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models are terribly complicated and are therefore difficult to
incorporate into network simulations. One salient example of this
type of model, moreover, does not predict an irregular ISI (Softky
and Koch, 1993). Douglas et al. (1995) have proposed a
conduction-based model that makes explicit account of the net-
work of connections of the neuron, but their model does not deal
with the time of synaptic inputs and therefore offers limited
insight into the statistics of the neural spike train. Recently,
Troyer and Miller (1996) analyzed a realistic model of the layer 5
pyramidal cell using a balance of excitation and inhibition. Their
model is especially elegant because the parameters (e.g., conduc-
tances) were derived from intracellular recording in the striate
cortex of the cat (McCormick et al., 1985). This model produces
an irregular ISI and therefore supports our contention that the
simplified counting process captures essential characteristics of
more realistic neural models. In Appendix 1 we implement a
conductance-based model similar to the one used by Troyer and
Miller (1996) to determine how it performs in the high-input
regime with which we are concerned. The model replicates the
main results obtained in this paper with the simpler counting
model, although it seems to require a substantially larger synaptic
conductance (approximately a factor of eight) than has been
measured experimentally (Borg-Graham et al., 1996). In fact, it is
very difficult to measure synaptic conductance changes in vivo
under conditions leading to the kind of response shown in Figure
1. We suspect that existing physiological studies underestimate
the actual conductance, but we also believe that single-
compartment models such as ours tend to overestimate conduc-
tance (see Appendix 1). Plainly, substantially more work is
needed on both the experimental and theoretical fronts to resolve
this discrepancy.

Fortunately, the key insight of the random walk model does not
depend critically on biophysical details. It is that the path fol-
lowed by the membrane voltage from one spike to the next is
complex, reflecting a large number of synaptic events. The de-
tailed history of input activity cannot be revealed in the time
between output spikes, because there are many possible paths
leading to each ISI. Whether it is balanced inhibition or some
other mechanism that allows hundreds of synaptic inputs to result
in just one spike, the detailed timing relationships of inputs at the
dendrites cannot be reconstructed from the output spike dis-
charge. A similar argument has been put forth by van Vreeswijk
and Sompolinsky (1996) using an entirely different mathematical
framework.

Principles of statistical homogeneity

We have emphasized the notion that the statistical properties of
the neural response are similar for input and output neurons
alike. These properties, summarized in Table 1, should be inter-
preted as loose approximations. Some neurons, of course, re-
spond more strongly than others, and spiking patterns can vary to
some extent (McCormick et al., 1985; Gray and McCormick,
1996). Nevertheless, it seems likely that the stimulus conditions
that drive a given neuron produce similar changes in an appre-
ciable minority of its inputs and immediate targets. Moreover, the
neuron’s inputs and its targets probably respond over a similar
range of spike rates. This general point of view is central to our
analysis, but it is little more than a caricature of a somewhat
heterogeneous population of neurons. The problem of excess
excitation and the consequences of weak correlation that we have
discussed do not depend on an exact sense of homogeneity but on
this relaxed sense of a common dynamic range.
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In addition to a common dynamic range, cortical neurons
exhibit similar response statistics. Interspike intervals and spike
counts obey similar properties for cortical inputs and targets
(Softky and Koch, 1993). The balanced excitation—inhibition
model presented in section 1 of Results mimics this property of
cortical neurons, consistently leading to a Cy, near 0.8. Interest-
ingly, the model suggests that this degree of variability in the
output spike train would result nearly independently of the de-
gree of variability of the input spike trains, as indicated in Figure
5. Thus a network of neurons conforming to our model of syn-
aptic integration will find a steady state near the cited value. This
finding might help resolve the puzzle of how relatively regular
spike trains from thalamus (Funke and Worgotter, 1995) give rise
to such irregular spike trains in cortex.

In section 3 of Results we tried to identify conditions that
would allow the variance of the spike count to maintain a fixed
relationship to its mean through several stages of processing. This
is a critically important property of cortical circuitry, because a
quantity computed by neurons at one location in the cortex should
not be overwhelmed by an accumulation of noise across subse-
quent synaptic connections leading to a motor response. Across a
wide range of cortical areas, the variance of the neural response
appears to remain approximately constant at ~1-1.5 times the
mean count.

We quantified two sources of response variance in cortical
neurons: the near-Poisson nature of the synaptic integration
process (the random walk model) and response covariance result-
ing from common input. Together these factors account for a
surprisingly large amount of the experimentally observed vari-
ance, yielding a variance-to-mean ratio of ~0.8. This result is
quite unexpected, because it leaves little headroom for additional
variance that would accompany computations more complex than
taking a mean (as in our simulations). For example, a relatively
simple operation that incorporates just two additional terms leads
to a stable variance-to-mean ratio of 1.6, fully accounting for
experimentally observed variability. Disconcertingly, Gur et al.
(1997) have recently raised the possibility that experimentally
measured variance is in fact exaggerated (but see Bair and
O’Keefe, 1998), implying that neural calculations may be simpler
even than the three-term operation considered above.

As we have shown, response covariance resulting from com-
mon input sacrifices fidelity in the sense of signal/noise, but it
must be remembered that this redundancy yields a great benefit:
speedy transmission of signals from point to point in the cortex.
Input and output neurons can only calculate over the same time
scale if there is no accumulation of waiting time for the requisite
information to arrive at subsequent stages (Knight, 1972). We
have assumed that a natural time scale for computation is on the
order of 10 msec, which is about half of a membrane time
constant, or an average ISI of a neuron with a rate of discharge of
100 spikes/sec. Computation on this time scale is only possible if
the neuron receives many samples of the quantities that it needs
for its calculations. This convergence, or fan-in, of many inputs
imposes a requirement of shared connections and, consequently,
limits the fidelity of signals embedded in noise, even after
averaging.

Finally, our simulations revealed new insights into the effects of
spike synchrony in the high-input regime, insights that may ulti-
mately form a fifth homogeneity principle if confirmed by more
extensive measurement and simulations. Succinctly, the fraction
of synchronous spikes appears to be conserved from an input
ensemble to an output ensemble when a common signal is passed
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from stage to stage in a processing pathway (Fig. 11). Common
input leads to a modest percentage of synchronous spikes in an
ensemble of neurons, but the synchronous spikes do not appear to
propagate consistently or to establish a consistent pattern of
activity among neurons at the next level of processing. We failed
to observe any tendency for synchronous spikes to dominate the
population response as signals propagate from one stage to the
next. Again, this observation follows naturally from the exigencies
of the high-input regime. Given the large numbers of input spikes
that arrive in a given membrane time constant, each arriving
spike is effectively synchronous with some population of inputs,
although the composition of the “synchronous” population
changes randomly from epoch to epoch. Thus synchrony is ubig-
uitous in the high-input regime; “special” spikes defined by con-
sistent synchrony among a specific subpopulation of input neu-
rons will have no more effect postsynaptically than the random
collections of synchronous inputs that arise stochastically in the
high-input regime. Synchronous spikes do not represent anything
extraordinary.

Concluding remarks

Together, these principles inform a view of information coding by
cortical neurons that draws diverse physiological and anatomical
data into a coherent framework. In the high-input regime, neu-
rons attain their dynamic range of response by balancing excita-
tion with inhibition. As a consequence, they spike with great
irregularity and lack the capacity to transmit information in
patterns of spikes. The spike output for a single neuron therefore
resembles a stochastic point process, and the rate term, A(?), is the
currency of information transfer from neuron to neuron. Because
the spikes from any one neuron arrive with such irregularity,
however, A(f) must be represented in a population of neurons to
gain signal/noise and, more importantly, speed. Neurons in such
a signaling population must share common input, resulting in a
certain amount of common noise that ultimately limits the fidelity
of signal transmission. Within this limit, rate changes can be
signaled in approximately one ISI using pools of ~100 neurons,
but little or no improvement is gained with larger pools.

Finally, quantitative comparison of known noise sources and
experimentally observed response variance suggests that a single
neuron is unable to compute quantities much more complicated
than a weighted average of the spikes arriving at its dendritic
field. This implies that interesting neural response properties do
not arise from sophisticated computation within single neurons
but rather reflect the anatomical convergence of novel combina-
tions of inputs to the ensemble (the column) from external
sources. This insight is consistent with the basic computational
principles incorporated in neural network models. From this
point of view, the basic function of the column is to amplify these
convergent inputs while controlling the gain of single neurons so
that in any interspike interval sufficient spikes are available to
represent appropriate quantities for subsequent computation.
Several investigators have emphasized the importance of cortical
amplification and gain control (Douglas and Martin, 1991; Hee-
ger, 1992b; Douglas et al., 1995; Stratford et al., 1996).

Ideas about synaptic integration and ideas about neural com-
putation tend to use different languages—the first involving con-
ductances, membrane properties and spikes and the second hav-
ing reference primarily to formal mathematical operations. Our
analysis attempts to form a framework for unifying the view of
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the neuron as an integrator of synaptic input with the problem of
what and how a neuron computes.

APPENDIX 1

Here we describe a simple conductance-based model with prop-
erties similar to the random walk counting model described in the
text. Instead of counting to a threshold, we have modeled synaptic
inputs as brief changes in Na™ (excitatory inputs) or C1~ (inhib-
itory inputs) conductance, and solved for the membrane voltage.
The membrane voltage, V(¢), is described by the differential
equation:

dv
C“‘E = —(Igy+ Ity + Ix + L), (A1.1)
where C,, is the membrane capacitance, and I represents the
transmembrane current attributable to excitatory synaptic input
(Igy), inhibitory input ({,), a spike-triggered potassium current
(Ix), and a leak current (,.,.). The model contains just one
compartment (i.e., no variation in V" as a function of location).

The synaptic currents were computed by multiplying a time-
varying conductance by the driving force:

Iy = ge()(V — Exa);

Iy = gn@®)(V — Ec).

The neuron receives 300 excitatory inputs and 300 inhibitory
inputs. Each excitatory synaptic conductance was modeled by a
simple exponential decay:

(A12)

gEX(t) = gE_peakeXp( _t/TEx)a (A13)

with gg . = 6 1S, and 7, = 2 msec. The peak conductance was
set so that 15 synchronous inputs would elicit a spike from rest
(=70 mV), as illustrated in Fig. 14B. Spike threshold was —55
mV, which implies that the average EPSP was just >1 mV when
the membrane was at rest. The inhibitory conductances were
modeled similarly, but they were larger and longer-lasting (g;_pcax
= 11.25 nS; 7, = 4 msec). These parameters were chosen to
balance the excitation, thereby yielding an output spike rate equal
to the spike rates of the inputs (see below). An IPSP had no
impact on the resting membrane, because E| = V., = —70 mV.
In addition to the synaptic conductance, we modeled a leak
conductance, [, = Zieax(V — Viest), Which was not time-varying.
The leak conductance and membrane capacitance were chosen to
achieve a 40 M() input resistance and 20 msec time constant at
rest (gieax = 25 nS).

Spikes were modeled as brief voltage transients, which we
simply added to the membrane voltage: AV,, = 55¢ > mV (i..,
a decay time constant of 0.5 msec). This model does not incor-
porate a voltage reset, but each spike triggered a K conductance
(peak conductance, 0.15 uS; Ex = —90 mV; 7 = 40 msec),
leading to the spike frequency adaptation shown in Figure 14A4.
The K current, leak conductance and membrane capacitance
produce the f~I curve shown (Fig. 14C), which plots the steady-
state firing rate as a function of current step amplitude. The
model is similar to one described by Troyer and Miller (1996)
except for the large number of synaptic inputs and absence of any
reset voltage.

We stimulated the model with 300 excitatory inputs, each
modeled as independent Poisson spike trains with an average rate
of 80 spikes/sec. The inhibitory inputs were of the same number
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and rate. We adjusted the peak inhibitory conductance so that the
model produced an output of 78.9 spikes/sec. A half-second
sample of the model neuron response is shown in Figure 14D. As
with our counting model, the cost of a reasonable firing rate is an
irregular ISI. This is apparent in the membrane voltage sample
and in the distribution of ISIs (Fig. 14E) obtained from a 10 sec
simulation. The Cy, was 0.77 for this simulation, which is near
the upper bound for a Poisson process with a refractory dead
zone (Troyer and Miller, 1996).

To achieve a firing rate that approximates an average input,
the peak inhibitory conductance was set to 11.25 nS (7, = 4
msec). This led to a very large conductance, as shown in Figure
14F. With 300 excitatory and inhibitory inputs, the model
incorporated a total synaptic conductance of >600 nS, which is
~25 times the conductance at rest. Interestingly, this massive
conductance change does not produce a large net current; only
2-4 nA is sufficient to produce the simulated spike trains in
Figure 14D. In contrast to the large conductances incorporated
in our model, Borg-Graham et al. (1996) measured a 200-
300% change in conductance using whole-cell patch recordings
of cortical neurons in vivo during periods of modest discharge
(we know of no other comparable measurements of synapti-
cally activated neurons under the high-input conditions that
interest us). We suspect that the discrepancy results both from
an underestimate of the actual conductance by Borg-Graham
et al. (1996) and to an overestimate in our model. Borg-
Graham et al. (1996) estimated the conductance by measuring
current-voltage relationships during voltage clamp of the cell
soma. To the extent that the synapses are electrotonically
distant from the soma, however, these measurements will in-
evitably underestimate synaptic conductance changes. On the
other hand, our single-compartment model probably overesti-
mates the total conductance. In a more realistic model, which
includes the dendrites, it is likely that less inhibitory conduc-
tance would be required to balance a given amount of excita-
tory input [e.g., if excitatory synapses are further from the
soma or if inhibitory synapses were to interfere with dendritic
amplification (Cook and Johnston, 1997; Hoffman et al., 1997,
Schwindt and Crill, 1997b)]. We therefore suspect that the
actual state of affairs is intermediate between that estimated
by Borg-Graham et al. (1996) and that incorporated in our
model. Measurements of the dendritic conductance during
vigorous sensory stimulation will be necessary to resolve this
discrepancy fully.

There is one aspect of the simulation that we regard as decep-
tive. The membrane voltage appears to hover near spike thresh-
old and to cross occasionally at random intervals, resembling the
coincidence detector depicted in Figure 2, D and E. In light of the
large conductance, it might be argued that the membrane time
constant is effectively shortened from 20 to <1 msec (Koch et al,,
1995), and that therefore the model neuron only spikes when it
senses rare coincidences of excitatory input within a time frame of
~1 msec. Although the effective integration time is indeed short,
spikes are not the result of an occasional volley of excitation. As
shown in Figure 14F, the events preceding a spike include a pause
in the inhibition as well as a rise in excitation. In this simulation
the neuron was affected by synaptic input throughout much of the
IST (mean ISI was 14 msec). Moreover, the increased excitation
immediately preceding a spike hardly constitutes a rare coinci-
dence. The change in excitatory conductance (Fig. 14F, solid line)
was just 20 nS, on average, consistent with just three or four extra
synaptic inputs over the background. In the simulation depicted
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Figure 14. A single-compartment model using brief synaptic conductance changes instead of voltage steps. The model behaves like the simpler random
walk counting model. The resting potential is —70 mV, 7,, = 20 msec, and spike threshold is —55 mV. 4, Response to (.75 nA current step. The trace
lasts 250 msec. B, Fifteen synchronous excitatory synaptic inputs depolarize the neuron sufficiently to trigger a spike. C, Response to simulated current
steps of varying size. The f~I plot depicts the steady-state firing rate as a function of injected current. D, Response to 300 excitatory and 300 inhibitory
inputs. Each input neuron spikes at an average of 80 spikes/sec. The size of the inhibitory conductance was adjusted to produce an average spike rate
similar to the input rate. Notice that the membrane voltage hovers near spike threshold. E, ISI distribution from the simulated response, which includes
the trace in C. Solid line is an exponential fit to the distribution. F, Average synaptic conductance preceding a spike. The spike-triggered average
excitatory conductance is shown by the solid curve (left ordinate scale); the inhibitory conductance is shown by the dashed curve (right ordinate scale).

Although the effective membrane time constant is ~0.5 msec, the synaptic activity affects the neuron for 5-10 msec preceding a spike.

here, such excesses occur in 1 of 4 msec. In other words, the
putative coincidences are ubiquitous. In general, spikes are not
the consequence of particular patterns of excitatory input, be-
cause the sequence of inhibitory inputs also affects the time of the
postsynaptic spike. Inhibition does not merely shorten the inte-
gration time for excitation. Thus, unlike the coincidence detector

portrayed in Figure 2, D and E, the present model would require
a fine orchestration of excitatory and inhibitory synaptic input to
produce reliably timed spikes. This insight is likely to hold for
other biophysical implementations of balanced excitation—inhibi-
tion, as long as the balancing inhibition comes from spiking
neurons.
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The conductance-based model described here embodies the
same constraints as our simpler counting model, and it achieves a
highly irregular ISI. It is just one example of a biophysical imple-
mentation of the random walk to a barrier idea that solves the
problem faced by neurons that receive a surfeit of excitatory
input. Although the conduction-based model may be more bio-
physically plausible than the counting model pursued in the main
text, it remains highly simplified and sacrifices much of the
conceptual simplicity inherent in counting to a barrier. It would
be useful to determine whether a more realistic model using
active dendritic conductances (e.g., Cook and Johnston, 1997)
would behave similarly.

APPENDIX 2

Here we derive the standard error of the mean spike count from
m weakly correlated neurons over a duration lasting one average
ISI. Throughout the paper we refer to a computation of the
average input spike rate, in which the expected output spike rate
is the same, on average, as any one of its active inputs. Equation
7 expresses the expected spike rate as a function of the m input
spike counts transmitted in an epoch, 7. The expected spike
count is:

1 m
(\T) = > n(T). (A2.1)
i=1

Each of the m inputs is a random quantity with variance denoted
var[n;(T)]. If the m input counts are independent, then the vari-
ance of the mean is just the average variance of one input, divided
by m:

1
2

1
VarlAT)] = —(Varln(T)]) =

> Varlni(T)],
- (A2.2)

where (- - -); denotes the average across all values of i. If the m
inputs are weakly correlated, then the variance of the mean is
derived from the sum of the covariance among the m inputs:

Cov[n;, nj]
1

m

1
Var[(\T)] = 5 >,

1j

m

1

1 m m m
= | 2 Varln(D] + 2 Xy \Varln(D)]Varlny()] |,

i=1 i=1 j#i
(A2.3)

where r;; is the correlation coefficient between the i th and j*
input. This is just the sum of the elements forming the m-by-m
covariance matrix. If all m inputs are identically distributed, then
we can eliminate the subscripts on the terms for variance and

substitute the mean correlation coefficient, 7, for 7;;:
1 _
Var[{(AT)] = W(m Var[n(T)] + m(m — 1)r Var[n(T)])

~r Var[n(T)], for large m. (A2.4)

If the m inputs do not share the same mean and variance, as is
often the case, then a useful approximation is to substitute the
average variance:
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Var[(AT)] = r(Var[ni(T)]);, forlargem. (A2.5)

In practice, m need only be =100 for the approximations in
Equations A2.4 and A2.5 to hold.

For the special case in which »;(7T") is the count of events in a
Poisson point process, and the duration, Tyg; = A, is the
expected ISI, we have:

Var[n(Tis)] = (ni(Tis)) = 1. (A2.6)
Substituting into Equation A2.4 yields:
1+mr—r
Var (AT = ————, (A2.7)

from which follows the expression in Equation 3 and the curves in
Figure 10.
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