Immune Surveillance in the Injured Nervous System: T-Lymphocytes Invade the Axotomized Mouse Facial Motor Nucleus and Aggregate around Sites of Neuronal Degeneration

Gennadij Raivich,1 Leonard L. Jones,1 Christian U. A. Kloss,1 Alexander Werner,1 Harald Neumann,2 and Georg W. Kreutzberg1

Departments of 1Neuromorphology and 2Neuroimmunology, Max-Planck-Institute for Neurobiology, D-82152 Martinsried, Germany

Although the CNS is an established immune-privileged site, it is under surveillance by the immune system, particularly under pathological conditions. In the current study we examined the lymphocyte infiltration, a key component of this neuroimmune surveillance, into the axotomized facial motor nucleus and analyzed the changes in proinflammatory cytokines and the blood–brain barrier.

Peripheral nerve transection led to a rapid influx of CD3-, CD11a (αL, LFA1α)-, and CD44-immunoreactive T-cells into the axotomized mouse facial motor nucleus, with a first, low-level plateau 2–4 d after injury, and a second, much stronger increase at 14 d. These T-cells frequently formed aggregates and exhibited typical cleaved lymphocyte nuclei at the EM level. Immunohistochemical colocalization with thrombospondin (TSP), a marker for phagocytotic microglia, revealed aggregation of the T-cells around microglia removing neuronal debris. The massive influx of lymphocytes at day 14 was also accompanied by the synthesis of mRNA encoding IL1β, TNFα, and IFN-γ. There was no infiltration by the neutrophil granulocytes, and the intravenous injection of horseradish peroxidase also showed an intact blood–brain barrier. However, mice with severe combined immunodeficiency (SCID), which lack differentiated T- and B-cells, still exhibited infiltration with CD11a-positive cells. These CD11a-positive cells also aggregated around phagocytotic microglial nodules.

In summary, there is a site-selective infiltration of activated T-cells into the mouse CNS during the retrograde reaction to axotomy. The striking aggregation of these lymphocytes around neuronal debris and phagocytotic microglia suggests an important role for the immune surveillance during neuronal cell death in the injured nervous system.

Key words: CD3; chemotaxis; microglia; cytokines; NK cells; scid
degenerative process, can lead to a local production of proinflammatory cytokines and chemotactic molecules (Wesselingh et al., 1994; Calvo et al., 1996; McGeer and McGeer, 1996; Schluesener et al., 1996; Klein et al., 1997), followed by secondary changes in the adhesion properties of the surrounding vascular endothelium and a site-specific chemotaxis of circulating lymphocytes. Interestingly, recent studies have shown a site-specific lymphocyte infiltration in human neurodegenerative diseases such as Alzheimer’s dementia (McGeer et al., 1993) and amyotrophic lateral sclerosis (Kawamata et al., 1992; Engelhardt et al., 1993), providing indirect evidence for such a parenchymal recruitment.

In the current study we explored this possible interaction between injured brain parenchyma and lymphocytes in the adult mouse facial motor nucleus after a peripheral nerve transection. Facial motoneurons in the adult rat exhibit very little degeneration after a simple axotomy (Streit and Kreutzberg, 1988). In the adult mouse, however, this model leads to an easily visible, late degeneration of ~20–35% of the axotomized motoneurons (Sendtner et al., 1996; Ferri et al., 1998) and their removal by phagocytic microglia, with a maximum 14 d after injury (Tovrik and Skjéterl, 1971; Möller et al., 1996). As shown in this study, axotomy of the mouse facial nerve is accompanied by a significant influx of T-cells to the sites of neuronal degeneration and production of proinflammatory cytokines, but also by the maintenance of an intact blood–brain barrier.

MATERIALS AND METHODS

Animals and surgical procedures. Three different groups of experimental animals (2- to 3-month-old mice) were used in this study. C57BL/6 mice were imported from Jackson Laboratory (Bar Harbor, ME; BL/6JL) and Charles River (Hannover, Germany; BL/CR). Normal BALB/c mice and homozygous animals with severe combined immunodeficiency (SCID) on a BALB/c background were bred in our animal facility. In BL/6JL, the right facial nerve was cut under ether anesthesia, and the animals survived for 1–6 d after axotomy. Axotomized BL/6CR, BALB/c, and SCID-BALB/c mice were used for the day 14 time point.

The animals were killed and processed for light and EM analysis. The brainstem was fixed in a TEM buffer (4% FA/4% FA/MgPBS to wash out glutaraldehyde. MgCl2 was added to avoid loss of PBS (10 mM Na2HPO4, pH 7.4) to wash out red blood cells, followed by 80 ml of 0.5% glutaraldehyde/4% FA/MgPBS to achieve rapid cross-linking and then by 80 ml of 4% FA/MgPBS to wash out glutaraldehyde. MgCl2 was added to avoid vascular spasms during glutaraldehyde perfusion. The brainstem was rotation post-fixed for 2 hr at 4°C in 1% FA/PBS, and the sections were cut at the level of the facial motor nucleus, followed by pre-embedding immunohistochemistry with a CD3 rat monoclonal antibody (Becton-Dickenson), to specifically stain T-cells in tissue sections. For EM analysis, the samples were embedded in an epoxy/paraffin mixture and sectioned on floating sections: treatment with acetone was omitted, the sections were preincubated for 4 hr in PBS/5% goat serum containing 0.01% Triton X-100, the secondary antibody was applied for 8 hr, and incubation with the ABC reagent was performed overnight (4°C). For DAB staining with Co/Ni intensification, vibratome sections were first preincubated for 20 min in DAB/CoNi without H2O2, followed by a 15 min DAB/H2O2/CoNi reaction. After 20 min at room temperature, the reaction was stopped, sections were fixed for 1 week in 2% glutaraldehyde in PBS and then processed for electron microscopy (araldite embedding) as described in Möller et al. (1996). For high resolution light microscopy (LM) (Fig. 3A–D), 1 µm semithin araldite sections were scanned with a 100x objective and Predica Color Scanner (Dresden, Germany) with 24-bit RGB and 2700 pixels resolution.

Detection of cytokine mRNA. For RNA studies, the brainstem was removed immediately after animals were killed, frozen on dry ice, and cut to the level of the facial motor nucleus. The facial motor nuclei were cut out on the operated and contralateral side, and the RNA was isolated and reverse-transcribed as described by Klein et al. (1997). PCR was performed in a volume of 50 µl containing 1 µl of the transcribed cDNA sample, dNTPs (0.2 mM each; Pharmacia, Piscataway, NJ), 2.5 U of Ampli Taq (Perkin-Elmer/Cetus, Emeryville, CA), and PCR buffer (Perkin-Elmer/Cetus). The cDNA was first denatured at 95°C for 3 min, and primers (100 pmol) were added at 80°C (hot start). The PCR to detect gene transcripts for IFN-γ, TNFα, and IL-1β was performed by 35 cycles of the following regimen: 93°C, 1 min; 60°C, 1 min; 72°C, 1 min. The PCR to detect message for glucose 6-phosphate dehydrogenase (GAPDH) was performed in parallel using the same protocol with 30 cycles. Forward (plus strand), 5’-TACGGAAGCCATGCCAGTGA-3’ (minus strand), 5’-CACGGAAGGCCATGCCAGTGA-3’ (plus strand), 5’-ATGCCATGTGCTTGAGT-3’ (minus strand); TNFα (plus strand), 5’-CCACAGGTCCAGCGCCAAGTC-3’ (plus strand), 5’-CTGGATT-3’ (minus strand); IL-1β (GenBank-EMBL accession number M15131) 5’-AAAGCTTGTGCTCTGAGGACCAGTT-3’ (minus strand); TNFα (GenBank-EMBL accession number M13049) 5’-GGGGTATCGTGTCCTTTGACC-3’ (plus strand), 5’-CCGGGCAAGCTTGTGCTTTGTTGTTGATT-3’ (minus strand); IL-1β (GenBank-EMBL accession number M15131) 5’-AAAGCTTGTGCTCTGAGGACCAGTT-3’ (minus strand), 5’-TACGGAAGCCATGCCAGTGA-3’ (plus strand). PCR amplification was controlled with a water sample and molecular weight marker (dX 174, HaeIII-digested, Pharma- cia) on a 1% agarose gel stained with ethidium bromide. For Southern blotting, the PCR fragments subjected to electrophoresis were then blotted onto a nylon transfer membrane (Hybond-N+, Amersham, Arlington Heights, IL) and hybridized with a digoxigenin 3-end-labeled (DNA 3′-End Labeling, Boehringer Mannheim, Mannheim, Germany) oligonucleotide probe. The nucleotide sequences of the probes were designed with the program Oligo v.5.0 (N.BI, Plymouth, MN) from the published sequence data: GAPDH, 5’-CCCCCTGGGCAAGGTGATATCGGTTGACTC-3′ (21-mer); IFN-γ: 5’-CCACAGGTCCAGCGCCAAGTC-3’ (21-mer); TNFα: 5’-TACGGAAGCCATGCCAGTGA-3′ (20-
Table 1. Summary of primary antibodies

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Antibody</th>
<th>Dilution</th>
<th>Cellular IR</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD3</td>
<td>α-CD3, RtM</td>
<td>1:500</td>
<td>T</td>
<td>Chemicon (Palo Alto, CA)</td>
</tr>
<tr>
<td>CD11a/aL</td>
<td>MCA819, RtM</td>
<td>1:6000</td>
<td>T, NK</td>
<td>Camon (Wiesbaden, Germany)</td>
</tr>
<tr>
<td>CD11b/aM</td>
<td>5C6, RtM</td>
<td>1:6000</td>
<td>MG</td>
<td>Camon</td>
</tr>
<tr>
<td>CD44</td>
<td>α-CD44, RtM</td>
<td>1:3000</td>
<td>T, NK, N*</td>
<td>Chemicon</td>
</tr>
<tr>
<td>MHC1</td>
<td>ER-HR52, RtM</td>
<td>1:50</td>
<td>pMG, MG*</td>
<td>Camon</td>
</tr>
<tr>
<td>MHC2</td>
<td>1199293, RtM</td>
<td>1:1000</td>
<td>PVM</td>
<td>Boehringer, Mannheim (Mannheim, Germany)</td>
</tr>
<tr>
<td>NG</td>
<td>MCA771, RtM</td>
<td>1:400</td>
<td>PG</td>
<td>Camon</td>
</tr>
<tr>
<td>TCR αβ</td>
<td>H57-597, RtM</td>
<td>1:800</td>
<td>T*</td>
<td>Pharmingen (Hamburg, Germany)</td>
</tr>
<tr>
<td>TSP</td>
<td>α-TSP, RbP</td>
<td>1:6000</td>
<td>pMG, MG*, N*</td>
<td>Alexis (Grenberg, Germany)</td>
</tr>
<tr>
<td>IBA1</td>
<td>α-IBA1, RhP</td>
<td>1:6000</td>
<td>MG</td>
<td>Dr. Y. Imai, Department of Neurochemistry, National Institute of Neuroscience (Tokyo, Japan)</td>
</tr>
</tbody>
</table>

αL, αL integrin subunit; αM, αM integrin subunit; IR, immunoreactivity; MHC1, MHC class I; MHC2, MHC class II; TCRαβ, T-cell receptor αβ; TSP, thrombospondin; NG, neutrophil granulocytes; T, T-cells; NK, natural killer cells; N, neurons; MG, microglia, pMG, phagocytic microglia (microglial nodules); PVM, perivascular macrophages; RM, rat monoclonal; RbP, rabbit polyclonal.

α: Weak immunoreactivity.

RESULTS

CD3-immunoreactive cells in the normal and axotomized facial motor nucleus

All of the primary antibodies used in the current study are summarized in Table 1. Infiltrating T-lymphocytes were detected using CD3 immunoreactivity. These CD3-positive cells are very rare in the normal CNS, with a density of ~0.3 cells per 20-μm-thick section of the facial motor nucleus (~1 cell/mm²). Facial nerve transection led to a biphasic increase in the number of CD3-positive, round cells in the axotomized facial motor nucleus. The first increase was observed as soon as 1 d after injury (1 DAI) and reached a plateau of two to three cells per facial motor nucleus section 2–4 DAI (Fig. 1). A small but statistically not significant increase was also observed on the contralateral unoperated side (Fig. 1, bottom right). A second, much stronger increase was observed 7–21 DAI, with a maximum of 27 ± 10 CD3-positive cells per section (mean ± SEM, n = 3) at day 14 (Fig. 1, bottom right), a 90-fold increase over the normal facial motor nucleus. This second increase was followed by a gradual decline to almost normal levels 66 DAI.

T-lymphocytes aggregate around neuronal debris and phagocytic microglia

Figure 2 shows the distribution of the CD3-positive lymphocytes at their peak level at 14 DAI. Although some tissue sections showed a scattered distribution (Figs. 1, 2A), CD3-positive cells frequently formed aggregates (one to two per section) consisting of 5–50 cells around focal points in neural parenchyma (Fig. 2C). Very rarely, some CD3-positive cells also aggregated around big vessels passing through the facial motor nucleus (Fig. 2B).

Interestingly, a similar distribution was also observed for TSP immunostaining on the cellular nodules in the axotomized mouse facial motor nucleus, with a maximum 14 d after transection (Möller et al., 1996). At high magnification, these nodules consisted of dying neurons or neuronal debris, surrounded by TSP-immunoreactive, phagocytic microglia (Fig. 3A–C). To define a possible correlation between both phenomena, infiltration of lymphocytes and phagocytic microglia, we performed immunofluorescence double staining using polyclonal rabbit antibody against thrombospondin and rat monoclonal antibodies against CD3, 14 DAI. As shown in Figure 3E, these TSP-immunoreactive microglial nodules were often surrounded by CD3-positive cells with a direct contact to the TSP-immunoreactive structures. Figure 3, D, F, and G, shows a similar contact of the microglial nodule with two further lymphocyte activation markers, CD11a (LFA-1α, αL-integrin subunit) and CD44 (Raine et al., 1990; Zeine and Owens, 1992). This direct contact was further confirmed at the electron microscopic level using the CD11a immunoreactivity. Figure 4A shows a degenerating neuron surrounded by microglia, astrocytes, and numerous CD11a-immunoreactive cells. These CD11a-positive cells frequently demonstrated typical features of activated lymphocytes with extensive membrane ruffling, clear cytoplasm, and cleaved nuclei. Similar structural details were also observed on T-lymphocytes in the facial motor nucleus identified by the CD3 immunoreactivity (Fig. 4B, C).

Effects of timing and SCID background on lymphocyte infiltration

The data presented in Figures 1–3 show a time-dependent infiltration of T-lymphocytes into the axotomized mouse facial motor nucleus, with a maximum at 14 DAI. This could be caused by an
autoimmune process of lymphocyte activation, which reaches a peak 14 DAI and is selective for the axotomized facial nucleus. To explore this possible autoimmune-mediated infiltration, we examined the effects of timing and SCID phenotype.

The effects of timing were studied using a sequential approach, with a 14 d axotomy of the right and a 3 d axotomy of the left facial nucleus in the same animal, with the two operations 11 d apart. The reasoning was that if infiltration depended on periph-
eral lymphocyte activation, this sequential axotomy should lead to a similar influx on both sides. As shown in Figure 5A, however, the technique caused a massive infiltration of CD3+ cells in the 14 d axotomized nucleus (22.5 ± 4.7, mean ± SD; n = 4), but only a 10-fold lower number on the 3 d injured side (2.3 ± 0.4).

Mice with the homozygous SCID mutation exhibit an almost complete absence of differentiated T- and B-lymphocytes (Bosma et al., 1983; Dorshkind et al., 1984), which can be used to differentiate between autoimmune and nonautoimmune mechanisms. This defect is specific for T- and B-lymphocytes, and the animals still have a persistent population of the lymphocyte-related natural killer cells (Bancroft and Kelly, 1994), which carry the CD11a antigen (Nishimura and Itoh, 1988). As demonstrated in Figure 6A,B, both normal (BALB/c wild type) and SCID mice (BALB/c, scid/scid) also show a strong, focal increase in MHC class I immunoreactivity in the axotomized facial motor nucleus, 14 DAI. There was no effect of the SCID phenotype on the axotomy-mediated increase in MHC class II (data not shown). Compared with normal animals, the SCID mice revealed an almost complete absence of the CD3+ cells in the axotomized facial motor nucleus (Figs. 5B, 6C,D). Of the five SCID mice examined, only one showed the presence of CD3+ cells, with two

Figure 3. A–D. Different stages of microglial nodules in the mouse facial motor nucleus 14 d after injury in normal B6C3 mice; immunohistochemistry (brown staining) for TSP (A–C) and CD11a (D). 1 μm semithin araldite sections, methylene blue counterstain. A, Two activated microglia with slender TSP-immunoreactive processes (short arrows) adhere to an apoptotic neuron with nuclear chromatin condensation (long arrows). The arrowheads point to the TSP-negative astrocytes with clear and regular oval nuclei (also in B–D). B, Microglial phagocytosis of neuronal debris; strongly TSP-immunoreactive microglial nodule (short arrow) containing fragmented, methylene blue-counterstained cellular remnants (long arrows). C, Late stage TSP-immunoreactive microglial nodule (short arrow) consisting of three microglial cells after removal of the neuronal debris. The cellular structure of the TSP-immunoreactive nodules in this and the preceding micrograph (Fig. 3B) is similar to that in E–H and Figure 7C–F. D, Two microglial cells at the center of the nodule (m, long arrows) surrounded by CD11a-immunoreactive lymphocytes (short arrows). E–H, Colocalization of infiltrating lymphocytes and phagocytotic microglial nodules in the axotomized facial motor nucleus. E–G, Normal B6C3 mice, double immunofluorescence for thrombospondin and the T-lymphocyte markers CD3 (E), CD11a (F), and CD44 (G) 14 d after injury. Note the direct contact of T-lymphocytes (green) with the TSP-immunoreactive microglia (red). The CD44 immunoreactivity (G) is also present on the surface of axotomized motoneurons (Jones et al., 1997). H, SCID mouse facial motor nucleus, 14 d after injury. Apposition of CD11a-immunoreactive cells (green) on an IBA1-labeled microglial nodule (red). Magnification: A, 1140×; B–D, 900×; E–H, 950×.
labeled cells in one of the two examined sections. Overall, this is a 98% reduction, compared with the average of 10 CD3+ cells per section in the wild-type mice (Fig. 5B). In contrast to the CD3+ lymphocytes, all SCID animals had round, CD11a+ cells in the axotomized facial nucleus 14 DAI, although their number was 60% lower compared with the control mice (Figs. 5C, 6E,F).

To further define these CD11a+ cells, Figures 3H and 6A–F show the results of a colocalization with a rabbit polyclonal antibody against IBA1, a cytoplasmic antigen expressed in cells of the monocyte/macrophage lineage (Imai et al., 1996). Interestingly, the CD11a+ cells were still able to aggregate around the IBA1+ microglial nodules, despite the SCID immunodeficiency (Fig. 3H). However, there was no direct colocalization of CD11a immunoreactivity on the IBA1-labeled microglia (Fig. 7A,B). In contrast to CD11a, the IBA1+ cells clearly exhibited the CD11b/αM-integrin immunoreactivity (Fig. 7C,D), a typical marker for both normal and activated brain microglia (Perry and Gordon, 1988; Raivich et al., 1994). As shown in Figure 7E,F, MHC1 immunoreactivity was present on both the IBA1+ microglia and the adjacent, round IBA1-negative cells. This MHC1 immunoreactivity was particularly prominent on the phagocytic microglial nodules.
nous peroxidase and by immunohistochemistry with a monoclonal antibody MCA771 against neutrophil granulocytes (Table 1). In both cases, mouse spleen served as a positive control (Fig. 8F, H). As shown in Figure 8E, G, both methods revealed the absence of neutrophil granulocytes in the axotomized facial motor nucleus, 14 DAI.

Figure 9 shows the expression of mRNA coding for proinflammatory cytokines IL1β, TNFα, and IFN-γ using RT-PCR in the axotomized and contralateral facial nuclei, at the time point of the first plateau at day 3, and of the maximal lymphocyte infiltration, 14 d after transection. The PCR amplification of specific DNA fragments was confirmed by Southern blotting with digoxigenin end-labeled internal oligonucleotide probes. At day 3, a moderate increase was observed for IL1β and TNFα, but only in one (TNFα) or two (IL1β) of the four axotomized facial motor nuclei. IFN-γ mRNA was not detected. At day 14, all three animals showed a clear increase in IL1β, TNFα, and IFN-γ mRNA on the axotomized side. The constitutively expressed glucose 6-phosphate dehydrogenase mRNA served as a recovery standard for RNA extraction, reverse transcription, and amplification with PCR.

DISCUSSION

The current study describes a significant, site-selective influx of T-lymphocytes into the mouse CNS after transection of the facial nerve. These lymphocytes targeted the affected facial motor nucleus, aggregated around neuronal debris and phagocytic microglia, and reached a maximum during the peak of delayed neuronal cell death 14 d after axotomy (Möller et al., 1996). The lymphocyte extravasation was also accompanied by the expression of proinflammatory cytokines IL1β, TNFα, and IFN-γ and a strong, focal increase in the MHC class I immunoreactivity. On the other hand, there was no disruption of the blood–brain barrier to intravenously injected horseradish peroxidase and no infiltration by neutrophil granulocytes. The scarcity of the perivascular lymphocytes and the site-specific infiltration of the CD11a-positive leukocytes even in animals with SCID also argue in favor of an initially not antigen-mediated, parenchymal recruitment of circulating lymphocytes into the axotomized mouse facial motor nucleus.

Lymphocyte recruitment into injured CNS: antigen-dependent versus antigen-independent mechanisms

Although the entry of lymphocytes into the CNS is known in both infectious and autoimmune disease, the initial stages of this process are not well understood. Recent studies provided evidence for a continuous patrol of the CNS by activated T-cells, which are able to enter the normal, uninjured brain (Wekerle et al., 1986; Hickey et al., 1991). Despite this presence of lymphocytes even in the normal brain, a critical requirement for the generation of the cellular immune response is the presentation of the antigen together with the appropriate MHC molecule. Although the levels of MHC class I and class II are very low in the normal CNS parenchyma, neural injury leads to a massive increase of these molecules on the activated and particularly the phagocytic microglia (Akiyama and McGeer, 1989; Streit et al., 1989b; Kaur and Ling, 1992), which can serve as a competent antigen-presenting cell (Ford et al., 1996; Dangond et al., 1997). Interestingly, there is considerable delay between the passive transfer of encephalitogenic T-cells and the onset of neurological symptoms (Raine et al., 1990; Wekerle et al., 1994). The drastic reduction of the delay phase after direct or indirect CNS trauma

Effects of axotomy on the blood–brain barrier, infiltration of neutrophil granulocytes, and the expression of proinflammatory cytokines

To assess possible changes in the blood–brain barrier, 13 d axotomized animals were injected intravenously with 8 mg of HRP and perfused after 24 hr with PBS to remove the intravenous enzyme. Sensitivity to HRP was further enhanced by the HRP-catalyzed reaction of H2O2 with biotinylated tyramide followed by detection of the tissue-conjugated biotin residues with routine ABC histochemistry (see Materials and Methods). In most parts of the brain, intravenous injection of HRP only led to a strong labeling of the vascular endothelium, with very little staining in the adjacent neural parenchyma (Fig. 8A–D). Brain regions with permeable vascular endothelium such as area postrema showed clear parenchymal staining (Fig. 8A). Interestingly, particularly strong staining was observed in the ~500 μm region surrounding area postrema, which may be attributable to the outward diffusion of HRP in the 24 hr interval between the injection and perfusion with PBS. Transection of the facial nerve, however, did not lead to enhanced peroxidase staining in the parenchyma of the axotomized facial motor nucleus, 14 DAI (Fig. 8D). Similar, low staining intensity was also seen on the unoperated side (Fig. 8C).

The presence or absence of neutrophil granulocytes was determined using two different methods, by staining for the endoge-
coincides with the expression of microglial MHC molecules (Maehlen et al., 1989; Konno et al., 1990; Molleston et al., 1993) and strongly supports the immune-regulatory function of these brain-resident cells. When presented with the right antigen, the stimulated lymphocytes can then initiate the immune response, which may be followed by a secondary recruitment of additional leukocytes (lymphocytes, monocytes, granulocytes) and perivascular infiltrates and a disruption of the blood–brain barrier (Brosnan and Raine, 1996; Prineas and McDonald, 1997). In this conceptual framework, the initial CNS entry of activated T-cells is a constitutive phenomenon, and the secondary recruitment of lymphocytes is a specific, immune-mediated response based on the accidental encounter between the activated T-cell and the right, correctly presented antigen by the MHC-positive, microglial cell.

The data described in the current study strongly suggest the presence of a second, not antigen-mediated pathway for lymphocyte recruitment into the injured CNS. Despite the massive lymphocyte extravasation in the 14 d axotomized facial motor nucleus, there was no disruption of the blood–brain barrier or infiltration by neutrophil granulocytes or by rounded, IBA1-positive cells with macrophage morphology. Perivascular infiltrates, a key feature of the secondary lymphocyte recruitment (Brosnan and Raine, 1996; Prineas and McDonald, 1997), were

Figure 6. Immunohistochemical distribution of MHC class I (A, B), CD3 (C, D), and CD11a (E, F) immunoreactivity in normal (A, C, E) and SCID mice (B, D, F), 14 d after facial axotomy. A, B, Strong, focal increase of MHC class I immunoreactivity in the axotomized facial motor nuclei (right side). No specific immunoreactivity on the contralateral, unoperated side. Note the similar increase in MHC class I in normal and SCID animals. Magnification, 15×. C, D, CD3 immunoreactivity. Complete absence of specific staining in the SCID animal. E, F, CD11a immunoreactivity. Note the reduction in the number of CD11a-positive cells in the immunodeficient mouse. Magnification: C–F, 110×.
very rare. Faced with the choice between day 3 and day 14 axotomized facial motor nucleus, the circulating CD3-positive lymphocytes showed a 10-fold higher influx to the longer-axotomized side. This argues against a general, time-dependent, peripheral activation of T-cells against the axotomized motoneurons with a maximum at day 14. Overall, these data support a site-specific chemotaxis by the degenerating neuron and the surrounding, phagocytotic microglia.

Morphological studies on lymphocyte recruitment, including the current work, are complicated by the ability of the T-cells to initiate an immune response, which could lead to a secondary lymphocyte influx. In the current study we examined this problem by looking at leukocyte infiltration in mice homozygous for SCID. As shown by previous studies, these SCID animals lack differentiated T- and B-lymphocytes (Bosma et al., 1983; Dorshkind et al., 1984), which can be used to differentiate between antigen-mediated and not antigen-mediated mechanisms (Nonoyama and Ochs, 1996). This defect is specific for T- and B-lymphocytes, and the animals still have a persistent population of the lymphocyte-related natural killer (NK) cells (Bancroft and Kelly, 1994), which carry the CD11a antigen, the α-subunit of the αLβ2 integrin (Nishimura and Itoh, 1988; Hynes, 1992). This CD11a antigen is also expressed on circulating T-cells, granulocytes, and monocytes (Patarroyo et al., 1990). However, the absence of the CD3-positive T-cells, the absence of the endogenous peroxidase-positive granulocytes, and the failure to detect a colocalization of CD11a with the microglia/macrophage-marker IBA1–1 all suggest that the CD11a-positive cells in the SCID axotomized facial motor nucleus are NK cells. Here, the clear infiltration of these CD11a-positive cells around sites of neuronal degeneration and phagocytotic microglia in the SCID-immunodeficient animals argues in favor of the initially not antigen-mediated, parenchymal recruitment of the activated, circulating lymphocytes.

Figure 7. Facial motor nucleus, 14 d after axotomy, SCID mouse. A–F, Double immunofluorescence of microglial IBA1 immunoreactivity (red, A, C, E) with superimposed CD11a (B), CD11b (D), and MHC class I (F) labeling (green). Note the absence of colocalization of IBA1 with CD11a (B) and the colocalization with CD11b immunoreactivity (D, yellow). MHC class I immunoreactivity (F) is present both on IBA1-positive microglia (yellow) and on round, IBA1-negative cells (green, arrows). The arrowheads point to the large microglial nodules. Magnification, 1050×.

Entry of lymphocytes into the axotomized facial motor nucleus: species differences, blood–brain barrier function, and the induction of proinflammatory cytokines

The extensive lymphocyte infiltration into the mouse facial motor nucleus provides a noticeable contrast to previous results in the other commonly used experimental animal, the rat. With the exception of the study by Olsson et al. (1992), transection of the facial nerve did not lead to clearly observable entry of lymphocytes into the affected rat facial motor nucleus (Streit and Kreutzberg, 1988; Graeber et al., 1990). The extent of post-
traumatic neuronal cell death could be an important reason for these species differences. Thus, facial motoneurons in the adult rat exhibit very little degeneration after a simple axotomy (Streit and Kreutzberg, 1988) but show pronounced, late neuronal cell death in the mouse model, affecting 20–35% of the axotomized neurons (Sendtner et al., 1996; Ferri et al., 1998). This notion is also supported by experiments with the retrograde axonal transport of ricin and adriamycin into the rat facial motor nucleus, which was followed by rapid neuronal cell death and lymphocyte infiltration (Graeber et al., 1990). However, the number of lymphocytes in these rat neurotoxic models was still just one to five T-cells per 20-μm-thick tissue section of the facial motor nucleus, and thus considerably lower than that observed in the current study in the mouse, with 10–30 CD3-positive T-cells per tissue section of the same thickness (Figs. 1F, 5A,B). These differences could point to the presence of additional, genetic factors that influence the extent of lymphocyte infiltration. For example, facial axotomy in the mouse is accompanied by a strong increase in the mRNA for three proinflammatory cytokines, IL1β, TNFα, and IFN-γ, which was not detected in the rat facial motor nucleus (Kiefer et al., 1993). Interestingly, these cytokines showed a similar increase in mRNA in the T- and B-cell-deficient scid mice, suggesting a local and T-cell-independent production in the injured mouse parenchyma (H. Neumann and G. Raivich, unpublished observations). Similar differences between rat and mouse were also observed for cell adhesion molecules such as ICAM−1, which were induced on activated mouse microglia in the axotomized facial motor nucleus (Werner et al., 1998) but not on the microglia in the rat model (Moneta et al., 1993). At present, the involvement of each of these molecules in the enhanced lymphocyte recruitment in the mouse facial motor nucleus remains to be shown. However, the current data do suggest important species differences between rat and mouse.

Figure 8. Effects of axotomy on the blood–brain barrier (A–D) and the infiltration of neutrophil granulocytes, 14 d after facial nerve transection (E–G). A, Detection of HRP extravasation in area postrema and in the surrounding parenchyma. B, No gross HRP extravasation in the brain stem at the level of the facial motor nucleus. C, D, Higher magnification of the contralateral (C) and axotomized facial nucleus (D) only shows a specific HRP staining of the brain vasculature. E–H, Histochemical and immunohistochemical staining for neutrophil granulocytes in the spleen (E, G) and in the axotomized facial nucleus (F, H). E, F, Immunohistochemistry with a rat monoclonal antibody MCA771 against neutrophil granulocytes. G, H, Endogenous peroxidase. Both methods show the absence of granulocyte staining in the facial nucleus. Magnification: A, B, 13×; C–H, 53×.
biotin residues with ABC histochemistry. In addition to the strong labeling in the BBB-free brain regions such as area postrema, this enhanced technique allowed the detection of the enzyme diffusing for ∼500 μm into the surrounding parenchyma with an intact endothelial barrier. It also allowed the detection of the minute amounts of HRP adsorbed to brain vascular endothelia. However, there was no increased detection of HRP in the facial motor nucleus at the peak of lymphocyte infiltration 14 d after transection of the facial nerve. Although we cannot exclude a subthreshold increase in permeability, the current data strongly suggest an intact BBB and argue against a 1:1 relationship between the presence of brain lymphocytes and permeability to serum proteins. Despite the rapid influx of activated lymphocytes into the normal brain (Wekerle et al., 1986) or in the adoptive transfer of encephalitogenic T-cells (Raine et al., 1990; Wekerle et al., 1994), a severe disruption of the BBB is a more delayed phenomenon that appears to occur after specific antigen recognition (Linington et al., 1988; Seeldrayers et al., 1993). The apparent absence of BBB disruption in the injured facial motor nucleus indicates that this antigen recognition is a phenomenon that does not always occur and that lymphocyte infiltration can also follow a benign course with little or no tissue damage.

Functional consequences of lymphocyte entry

As shown in the current study, a neurodegenerative process can lead to a highly selective, nonaccidental encounter between the phagocytic microglia and activated T-cells in the mouse CNS. The role of microglia as a professional brain phagocytic cell (Kreutzberg, 1996), the production of proteolytic enzymes (Banan et al., 1993) and proinflammatory cytokines (Seilhean et al., 1997; Uno et al., 1997; Williams et al., 1997), and the expression of MHC molecules (Akiyama and McGeer, 1989; Streit et al., 1989a,b; Kaur and Ling, 1992) all point to this cell as a competent antigen-presenting cell and a key counterpart of the immune system in the brain. Activated microglia produce several chemokines, such as MCP-1 (Calvo et al., 1996) and IL16 (Schluesener et al., 1996), which together with the proinflammatory cytokines (IL1, TNFa, IFN-γ) could change the adhesion properties of the vascular endothelium (Tang et al., 1996; Henninger et al., 1997) and induce lymphocyte extravasation and chemotaxis. Moreover, phagocytosis also leads to a strong upregulation of microglial cell adhesion molecules such as intercellular adhesion molecule 1/ICAM1 and the αMβ2-integrin (Möller et al., 1996; Werner et al., 1998). The presence of appropriate counter-receptors αLβ2-integrin and ICAM1, respectively, on the infiltrating lymphocytes [Raine et al. (1990); Werner et al. (1998); this study] could promote their adhesion to microglial nodules, enhancing the effect of antigen presentation.

Overall, the site-specific parenchymal recruitment of T-cells could play an important role as a protective mechanism that allows early contact of the immune system with cellular debris and then leads to a differentiation between unspecific degeneration and cell death caused by an infectious pathogen. In the latter case, the entry of lymphocytes and their specific activation will normally lead to the destruction of infected cells and the removal of pathogens from the CNS (Griffin et al., 1992; Dietzschold, 1993; Kreutzberg et al., 1996; Schluter et al., 1996; Deckert-Schlueter et al., 1997). The intensity of the first step of this neuroimmune surveillance, the initial lymphocyte entry, appears to vary even in closely related species such as mouse and rat and could have been subject to different evolutionary constraints. Interestingly, lymphocyte infiltration has also been described in
noninfectious human neurodegenerative diseases such as Alzheimer's dementia (McGeer et al., 1993) and amyotrophic lateral sclerosis (Kawamata et al., 1992; Engelhardt et al., 1993). In light of the current findings, this entry of lymphocytes could be a physiological phenomenon in response to a neurodegenerative process. However, the long-term presence of lymphocytes and the presentation of neural antigens by the surrounding phagocytotic microglia may lead to a secondary, antigen-mediated neurotoxicity (Shalit et al., 1995; McGeer and McGeer, 1996). This hypothesis is supported by the higher risk and/or the earlier onset of Alzheimer's disease associated with specific MHC class I (Payami et al., 1997) and MHC class II (Frecker et al., 1994; Curran et al., 1997) alleles. Here, interference with this putative immune response (Aisen, 1996; McGeer and McGeer, 1996), and specifically with the initial lymphocyte recruitment into the affected CNS, could be of benefit for the long-term progression of this neurodegenerative disease.

In summary, neuronal cell death can lead to a significant influx of activated T-cells, which home on the neuronal debris and the neighboring phagocytotic microglia. Interestingly, this site-specific recruitment may serve as an important protective mechanism that permits early contact of the immune system with cellular debris and then allows the differentiation between specific degeneration and cell death attributable to an infectious pathogen. Errors during this process could be detrimental in two ways: by inducing an autoimmune reaction against the injured nervous system or by causing tolerance to a neural infection. The identification of the molecular signals that regulate this early influx of lymphocytes after brain injury could therefore be of clinical interest.

REFERENCES

