Defining Affinity with the GABA_A Receptor

Mathew V. Jones, Yoshinori Sahara, Jeffrey A. Dzubay, and Gary L. Westbrook

Vollum Institute and Department of Neurology, Oregon Health Sciences University, Portland, Oregon 97201, and Department of Physiology, Faculty of Dentistry, Tokyo Medical and Dental University, Tokyo 113, Japan

At nicotinic and glutamatergic synapses, the duration of the postsynaptic response depends on the affinity of the receptor for transmitter (Colquhoun et al., 1977; Pan et al., 1993). Affinity is often thought to be determined by the ligand unbinding rate, whereas the binding rate is assumed to be diffusion-limited. In this view, the receptor selects for those ligands that form a stable complex on binding, but binding is uniformly fast and does not itself affect selectivity. We tested these assumptions for the GABA_A receptor by dissecting the contributions of microscopic binding and unbinding kinetics for agonists of equal efficacy but of widely differing affinities. Agonist pulses applied to outside-out patches of cultured rat hippocampal neurons revealed that agonist unbinding rates could not account for affinity if diffusion-limited binding was assumed. However, direct measurement of the instantaneous competition between agonists and a competitive antagonist revealed that binding rates were orders of magnitude slower than expected for free diffusion, being more steeply correlated with affinity than were the unbinding rates. The deviation from diffusion-limited binding indicates that a ligand-specific energy barrier between the unbound and bound states determines GABA_A receptor selectivity. This barrier and our kinetic observations can be quantitatively modeled by requiring the participation of movable elements within a flexible GABA binding site.

Key words: ligand-gated channels; kinetics; selectivity; molecular modeling; synapse; thermodynamic

Interactions between neurotransmitters and receptors are often assessed by analyzing the equilibrium concentration–response relationship (Segel, 1976; Pallotta, 1991). However, the applicability of equilibrium conditions is problematic for fast chemical synapses in which the concentration of neurotransmitter rises and falls rapidly (Magleby and Stevens, 1972; Katz and Miledi, 1973; Lester et al., 1990; Clements et al., 1992). Transmitter binding primarily occurs early in the synaptic response when the free transmitter concentration is high, whereas unbinding primarily occurs as transmitter is decaying or after it has been cleared. Furthermore, the EC₅₀ does not reflect any individual transition but is instead an indicator of the total time spent in all channel states (for review, see Jones and Westbrook, 1996). The binding steps probably determine the fraction of receptors activated and the likelihood of intersynaptic communication (Barbour and Häusser, 1997), whereas the gating and unbinding steps determine the response duration. A quantitative understanding of the contributions of binding, gating, and unbinding in shaping synaptic transmission is greatly facilitated by a nonequilibrium approach.

Binding and unbinding kinetics also provide functional (and possibly structural) information about the binding site, which is especially important given the scarcity of crystallographic information for ligand-gated channels. For example, the binding of ACh to nicotinic ACh receptors is almost as fast as that predicted if the rate-limiting step is the diffusion of ligand into the binding site (Colquhoun and Sakmann, 1985; Colquhoun and Ogden, 1988; Papke et al., 1988; Jackson, 1989; Auerbach, 1993; Franke et al., 1993; Sine et al., 1995; Akk and Auerbach, 1996). Such efficient binding suggests that there are few significant barriers to binding and that there is an almost perfect “fit” between agonist and the activated receptor (Jackson, 1989). Binding at AMPA, NMDA, and GABA_A receptors appears to be somewhat slower than that for nicotinic ACh (nACh) receptors (Clements and Westbrook, 1991; Jonas et al., 1993; Celentano and Wong, 1994; Jones and Westbrook, 1995; Raman and Trussell, 1995; Häusser and Roth, 1997), although the structural and functional significance of slower binding at these receptors remains unknown.

One approach to understanding the nature of affinity and selectivity is to compare binding and unbinding between different ligands at the same receptor. For nACh and NMDA receptors, affinity was found to be inversely related to the unbinding rate (Colquhoun et al., 1977; Colquhoun and Sakmann, 1985; Papke et al., 1988; Benveniste et al., 1990a,b; Benveniste and Mayer, 1991; Lester and Jährl, 1992; Pan et al., 1993; Akk and Auerbach, 1996). However, there is also evidence that differences in affinity between agonists at nACh and GABA_A receptors are more strongly determined by the binding rate (Sine and Steinbach, 1986; Jones and Westbrook, 1995; Zhang et al., 1995; Akk and Auerbach, 1996). Here, we investigated the binding and unbinding of GABA_A receptor ligands with affinities spanning several orders of magnitude, using fast solution exchange methods in outside-out patches. Unbinding rates could not account for affinity if diffusion-limited binding was assumed. In contrast, affinity could be predicted from the binding rates that were much slower than the diffusion limit. These data indicate that an energy-requiring event, such as a conformational change of the GABA binding site, precedes or accompanies binding.
MATERIALS AND METHODS

Cell culture and recording. Cell culture methods were identical to those described previously (Jones and Westbrook, 1995). Outside-out patches were excised from neonatal rat hippocampal neurons maintained in culture from 1 to 4 weeks. Recordings were made under voltage-clamp (Vclamp = −60 mV; 25°C). Internal pipette solutions contained (in mM): 144 KCl, 1 CaCl2, 3.45 BAPTA, 10 HEPES, and 5 Mg2ATP, at pH 7.2 and 315 mOsm. The standard external solution contained (in mM): 140 NaCl, 2.8 KCl, 1 MgCl2, 1.5 CaCl2, 10 HEPES, 10 D-glucose, 0.01 zincium bromide (SR-95531) were obtained from Research Biochemicals (Vitro Dynamics, Rockaway, NJ) mounted on a piezoelectrical bimorph (Vernitron, Bed ford, OH). Two computer-controlled voltage sources in series with the bimorph were used to control solution exchanges. Whole-cell solution exchange required ~100 msec, whereas the 10–90% rise and fall times of liquid junction currents at the open pipette tip after each patch experiment were <1 msec. Currents were filtered at 1–5 kHz using a four-pole Bessel filter and were acquired at greater than or equal to twice the filter frequency (Axon BASIC; Axon Instruments, Foster City, CA). Muscimol, THIP, and 2-(3-carboxypropyl)-5,6,7-tetrahydroisoxazolo[4,5-d]pyridine-3-ol HCl (THIP; 50 mM) were used, the NaCl concentration was adjusted to 110 or 60 mM (plus sucrose) to maintain a constant osmolarity. GABA A receptor agonists and antagonists were added to the external solution and applied to whole cells or patches using multibarreled flow pipes (Vitro Dynamics, Sigma (St. Louis, MO).

Estimation of unbinding rates. We used a modification of a previously established Markov model of GABA A receptor kinetics (Jones and Westbrook, 1995, 1997) to estimate agonist unbinding rates. Responses from several experiments were averaged together before performing least-squares fitting of the data. Fitting and calculation of confidence limits were performed using SCOP (Simulation Resources, Berrien Springs, MI). The addition of transitions between desensitized states that entail a net counterclockwise movement at steady state allows more accurate fitting of slow components (Jones and Westbrook, 1995) and does not qualitatively alter our conclusions. Data are reported as mean ± SEM unless otherwise noted. Kinetic differences were determined by two-tailed t tests or by one-way ANOVA followed by post hoc tests when several groups were compared.

A general model of binding and unbinding kinetics. Because rate constants derived from predefined Markov models may depend strongly on the structure of the model chosen, we also used a more general format for describing ligand–receptor interactions. This approach is based on the assumptions common to mass action treatments of binding and enzyme kinetics and requires no a priori knowledge of rate constants or the number and cooperativity of ligand binding sites. We assume that channels are independent and that each channel contains N binding sites. By analogy with Hodgkin–Huxley formalism (Hille, 1992), binding to each site (n) can be described by the reaction:

Unbound Æ Bound

so that \(\omega_n \) = \([A]k_{on} \) and \(v_n = k_{off} \), where \(P_s \) is the probability of being bound (occupancy), \([A] \) is the ligand concentration, and \(k_{on} \) and \(k_{off} \) are the rate constants for binding and unbinding. When the ligand concentration is changed, the occupancy will relax over time to a new value according to:

\[
P_s(t) = P_s(0) + (P_s(0) - P_s(\infty))e^{-v_n t}
\]

where the occupancy \(P_s(0) \) initially (at \(t = 0 \)) and \(P_s(\infty) \) at steady state (as \(t \to \infty \));

\[
P_s(\infty) = \frac{\omega_n}{\omega_n + v_n}
\]

The microscopic affinity constant \(K_n \) can be defined by solving Equation 3 for the concentration at half-occupancy, yielding:

\[
K_n = \frac{k_{off}}{k_{on}}.
\]

The probability of receptor saturation \(P_{sat} \) is the product of the individual occupancies:

\[
P_{sat} = \prod_{n=1}^{N} P_s = P_1P_2 \ldots P_N,
\]

and if all sites are equal and independent (i.e., \(\omega_1 = \omega_2 \ldots \omega_n \) and \(v_1 = v_2 \ldots v_n \), then:

\[
P_{sat} = P_n^N.
\]

As with Equation 4, solving Equation 6 for the concentration of half-saturation defines the macroscopic affinity constant \(K_N \), which is a function of both the microscopic affinity and the number of sites \(N \):

\[
K_N = \frac{K_n}{(2^N - 1)}.
\]

Finally, the equilibration time constant \(\tau_n \) at each site is given by:

\[
\tau_n = \frac{1}{\omega_n + v_n} \text{ or } \frac{1}{\tau_n} = [A]k_{on} + k_{off}.
\]

whereas the macroscopic equilibration will have \(N \) components. The version of Equation 8 on the right is particularly useful because \(1/\tau_n \) is a linear function of concentration, the slope and intercept of which are the microscopic rate constants.

Additional allowances are required to model agonist-activated currents. For example, agonist efficacy could be described using proportionality constants relating occupancy to open probability, and desensitization could be described by Hodgkin–Huxley-style inactivation parameters. Here, however, we will use the relations as given above and focus our attention on the binding and unbinding of the competitive antagonist SR-95531 that is not expected to cause channel gating or desensitization (Hamann et al., 1988; Jones and Westbrook, 1997; but see Ueno et al., 1997). We first consider a mechanism in which antagonist binding to any one of the binding sites is sufficient to prevent channel opening. For equal and independent sites, the probability that a channel will be available for activation (i.e., all sites remain free of antagonist) is thus:

\[
P_{avail} = (1 - P_n)^N.
\]

For unequal sites, Equation 9 would be expanded to include the individual parameters (compare Eq. 5). This treatment can easily be extended to the case in which all sites must be occupied by antagonist to block the channel, but such a model did not accurately describe our data.

Measuring agonist binding rates. When an agonist and competitive antagonist are rapidly and simultaneously applied to a patch, the resulting peak current is smaller than that produced by agonist alone because some channels initially bind antagonist and become blocked. We refer to such instantaneous competition as a “race” experiment (e.g., Clements et al., 1992; Diamond and Jahr, 1997). For a single site per receptor at which the two ligands compete (see Results):

\[
\frac{R_{ag}}{R_{ant}} = \frac{\omega_{ag}}{\omega_{ant}} \text{ or } R_{ag} = R_{ant} \frac{\omega_{ag}}{\omega_{ant}}.
\]

and:

\[
I_{race} = \frac{R_{ag}}{R_{ag} + R_{ant}},
\]

where \(R \) is the fraction of receptors bound with either agonist or antagonist, \(\omega \) is the binding rate (i.e., the concentration times a rate constant), and \(I_{race} \) is the ratio of peak current produced during the race to that produced by agonist alone. Dividing both the numerator and denominator of Equation 11 by \(R_{ag} \), substituting from Equation 10, and rearranging yield:

\[
\frac{R_{ag}}{R_{ant}} = \frac{[ant]k_{off(ant)}}{[ag]k_{off(ant)}}.
\]

where \(k_{off(ant)} \) and \(k_{off(ant)} \) are the binding rate constants and \([ag] \) and \([ant] \) are the concentrations of agonist and antagonist. Therefore, if the antagonist binding rate is known and unbinding is slow relative to the
current rise time, then Equation 12 can be used to measure the agonist binding rate by performing a race experiment.

Diffusion and energetics. If every encounter between diffusing ligand molecules and the binding site results in ligand attachment, the binding reaction is said to be diffusion-limited. We estimated the theoretical rate constant for such a process by assuming (1) that the radius of the encounter \(r \) is approximately the same as the size of a GABA molecule \((-4 \text{ Å})\), (2) that the binding site can be approached from any direction, and (3) that the ligand diffusion coefficient \(D \) is \(3 \times 10^{-6} \text{ cm}^2 \text{ sec}^{-1} \) (Busch and Sakmann, 1990). The rate constant \(k_{\text{diff}} \) for a diffusion-limited binding reaction would then be (Freifelder, 1982; Hille, 1992):

\[
k_{\text{diff}} = 4\pi DN_c = 9.1 \times 10^{9} \text{ M}^{-1} \text{ sec}^{-1},
\]

where \(N_c \) is Avogadro’s number. Other equally plausible assumptions could give values for \(k_{\text{diff}} \) greater or smaller than that of Equation 13. However, we will show in the Results that such variation is negligible in comparison with the measured differences in agonist binding rates.

When ligand binding is not diffusion-limited, only encounters possessing sufficient energy result in productive binding. The Arrhenius equation (Freifelder, 1982) relates this activation energy \((E_a) \) to the ratio of observed and diffusion-limited binding rates:

\[
E_a = -RT \ln \left(\frac{k_{\text{on}}}{k_{\text{diff}}} \right),
\]

where \(R \) is the gas constant and \(T \) is the absolute temperature.

Physical modeling of the agonist binding reaction. We used rudimentary molecular modeling to simulate the experimentally determined energetics of the binding/unbinding reaction. Both the agonists and the binding site were assumed to consist of “particles” that undergo purely van der Waals-like interactions with each other. Each agonist was modeled as two particles representing the agonist endpoints, separated by a fixed length [estimated from minimum energy conformations *in vacuo* using ChemOffice (CambridgeSoft, Cambridge, MA)]. The binding site was modeled either as being rigid (i.e., two particles a fixed distance apart) or as being flexible (two rigid anchor particles separated by a distance \(L_{\text{site}} \), associated with two movable arm particles). For the rigid model, unbound agonists were assumed to be associated with additional movable particles representing waters of hydration. The changing energy of the system as ligand binding progressed stepwise was calculated using the Lennard–Jones potential equation (Freifelder, 1982; Morris et al., 1996):

\[
\text{Energy} = \frac{C_{12}}{r^{12}} - \frac{C_s}{r^6},
\]

where \(r \) is the distance between any two particle centers (in angstroms). The empirical coefficients \(C_{12} \) and \(C_s \) are related to the repulsive and attractive intermolecular forces, respectively, and are defined in terms of the equilibrium distance between particle centers \((r_{\text{eqm}}) \) and the depth of the energy well \((\epsilon) \) occurring at that distance (Morris et al., 1996):

\[
C_s = 2\epsilon r_{\text{eqm}}^6 \quad \text{and} \quad C_{12} = \epsilon r_{\text{eqm}}^{12}.
\]

The total energy of the system at each step was the sum of all pairwise particle interaction energies. For simplicity, all particles and movements were coplanar for a rigid site and collinear for a flexible site. Model parameters were optimized for all agonists simultaneously using a simplex algorithm (Nelder and Mead, 1965) to minimize the sum of squared errors in energy. Simulation programs were written in MATLAB (The Math Works, Natick, MA) and run on Macintosh computers.

RESULTS

Deactivation depends on agonist affinity whereas gating does not.

The decay of the IPSC represents the relaxation of GABA_\text{A} receptors from ligand-bound to unbound states. Although oscillations between open and desensitized states are important in shaping this deactivation, the rate of ligand unbinding must also contribute (Jones and Westbrook, 1995, 1996, 1997). To assess this contribution, we examined currents activated by saturating pulses of a series of GABA_\text{A} receptor agonists (GABA, muscimol, THIP, and \(\beta \)-alanine) to outside-out patches from rat hippocampal neurons. Figure 1A shows that the duration of deacti-
deactivation, current amplitudes and kinetics were indistinguishable during long (505 msec) pulses that maintained the receptor in the fully bound state (Fig. 1B). Desensitization was fitted with two exponential components for all agonists [e.g., for GABA, 20 ± 4 msec, 786 ± 40 msec, and 40 ± 3% (n = 18)]. Deactivation at the end of long agonist pulses was agonist-dependent and followed the same rank order as that for brief pulses (Fig. 1B).

Because the agonists produced indistinguishable currents under saturating conditions (i.e., they appear to have identical efficacy), any kinetic differences were presumably caused by binding or unbinding. Thus, agonist-dependent deactivation results from agonist-specific unbinding.

The role of unbinding kinetics in deactivation and receptor affinity

Affinity describes the probability of finding a ligand molecule bound to the receptor for a given ligand concentration, whereas selectivity refers to differences in affinity between ligands. Both measures depend on the time that each ligand spends in the binding site but also on the likelihood that the ligand becomes bound in the first place. To understand the factors governing the entry and exit of ligands at the binding site, we began by measuring the apparent affinities of muscimol, GABA, and β-alanine from peak whole-cell concentration–response plots using the Hill equation (Fig. 2A,B). For muscimol, K_{d} was 10.9 μM, and N was 0.96; for GABA, K_{d} was 15.4 μM, and N was 0.93; and for β-alanine, K_{d} was 5.9 μM, and N was 1.0. Caution is necessary in interpreting such data because the overlapping time courses of desensitization and whole-cell solution exchange may distort the peak current. We therefore estimated the EC50 values of muscimol, GABA, THIP, and β-alanine in outside-out patches in which solution exchange is much faster. Figure 2C shows ensemble average currents activated by maximal and half-maximal (i.e., peak current between 45 and 55%) agonist concentrations. The patch EC50 values spanned several orders of magnitude with the rank order being muscimol, GABA, THIP, β-alanine, identical to the rank order for the rate of patch current deactivation.

We estimated the microscopic unbinding rate (k_{off}) by fitting currents activated by pulses of the four agonists to a kinetic model of the GABA_{A} receptor (Jones and Westbrook, 1995, 1996, 1997). The model (Fig. 3A) was first optimized to fit the responses to 5 and 505 msec pulses of GABA (10 mM). Thereafter, only k_{off} was allowed to vary as a free parameter in fitting currents activated by the other agonists. The optimum values of k_{off} were (in sec^{-1}) 40

Figure 2. Agonists span a wide range of affinities. A, Whole-cell currents were evoked by submaximal and maximal applications of agonists, at the concentrations shown above the traces. The horizontal lines show the duration of agonist application. B, Concentration-response data from experiments like those shown in A were fit to the normalized form of the Hill equation: $I/I_{max} = 1/(K_{d}[A]^N + 1)$ (Segel, 1976). I/I_{max} is the fraction of the maximal current, N is the number of agonist binding sites per receptor, and K_{d} is a constant reflecting both the concentration at the half-maximal response and the degree of cooperativity between sites. Note that K_{d} must be expressed as a concentration raised to the power of N for units to balance. The fitted parameters are given in the text. C, A more precise estimate of EC50 was obtained by alternating approximately half-maximal (giving between 45 and 55% of the maximal peak current) and maximal concentrations at outside-out patches. The differences in desensitization kinetics reflect patch-to-patch variability and were not statistically significant (see Fig. 1B). The upper traces are the liquid junction currents.
for muscimol, 131 for GABA, 1125 for THIP, and 4500 for \(b\)-alanine (Fig. 3B). Both the overall patch current deactivation rates [i.e., \(1/(\text{the weighted average of fast and slow components})\); Fig. 3C] and the \(EC_{50}\) values (Fig. 3D) were strongly correlated with \(k_{\text{off}}\), suggesting that agonist unbinding kinetics are important in shaping the current as well as in determining the agonist selectivity. However, if diffusion-limited binding is assumed (Eq. 13), the expected microscopic affinity constants (Eq. 4) obtained using these unbinding rates were 4.3 nM for muscimol, 14 nM for GABA, 124 nM for THIP, and 490 nM for \(b\)-alanine, values more than a thousand times lower than the \(EC_{50}\) values observed experimentally (Fig. 2). These results imply that large differences in binding rate (\(k_{\text{on}}\)) between agonists contribute to agonist selectivity.

Comparison of GABA and \(b\)-alanine binding

As a direct test for differences in agonist binding rates, we set up a race for the binding site between agonists and a competitive antagonist. When an agonist and a competitive antagonist are rapidly and simultaneously applied to a patch, some channels will bind agonist and open, whereas others will bind antagonist and become blocked. The resulting current (\(I_{\text{race}} = \text{current with both ligands/current with agonist alone}\)) depends on which ligand binds faster on average. We first used the antagonist SR-95531 (Hammann et al., 1988; Jones and Westbrook, 1997; Ueno et al., 1997) to determine whether or not GABA and \(b\)-alanine have similar binding rates. SR-95531 \([K_{\text{D}} = 160 \text{ nM}\) (Hammann et al., 1988)] meets the classical criteria for competitive antagonism in that it causes parallel right-shifts in the GABA concentration–response curve but evokes no response on its own. Its action is also modified by mutations in the putative GABA binding site (Ueno et al., 1997), suggesting that it interacts with the same regions occupied by GABA and other agonists. Coapplication of 1 mM SR-95531 and 1 mM GABA blocked 89 ± 2% \((n = 11)\) of the peak current evoked by 1 mM GABA alone (Fig. 4A). Because no
current evoked by 100 mM GABA with 1 mM SR-95531. Figure 5 shows the method used to study equilibration of binding sites (Eqs. 4 –7). These same factors determine the time course of the blocking relaxation (see Fig. 5C) and can therefore be extracted from it using Equation 8. A microscopic equilibration time constant τ_{on} was first derived by fitting the data of Figure 5C to an exponential relaxation equation (see Eqs. 2, 9). Plotting $1/\tau_{on}$ versus the concentration of SR-95531 yields a different straight line for each value of N, the slopes of which are k_{on} and which cross the y-axis at K_{N} (Fig. 6B). To determine further which combination of N, k_{on}, and k_{off} is most accurate, we directly and independently measured the SR-95531 unbinding time course (Fig. 7) (Jones and Westbrook, 1997). Patches were pretreated with a saturating concentration (10 μM) of SR-95531, and the fraction of available channels was tested with a saturating GABA pulse at increasing intervals after removal of the antagonist. As the unbinding interval was increased, larger currents could be evoked by the GABA pulse (Fig. 7A). This unbinding time course was fit to an exponential relaxation equation (see Eqs. 2, 9), yielding microscopic unbinding time constants (k_{off}) of 110, 61, and 47 msec for $N = 1, 2, \text{ and } 3$. If there is more than one antagonist binding site and occupancy of any one site is sufficient to block the receptor, then the unbinding time course should be sigmoidal as shown by the fits for $N = 2 \text{ and } 3$. However, the best fit to the data was obtained with $N = 1$, yielding a microscopic unbinding rate ($k_{off} = 1/\tau_{off}$) of 9.1 sec$^{-1}$. The calculated microscopic affinity constant ($K_{N} = k_{on}/k_{off}$, where $k_{off} = 4.28 \times 10^{7} \text{ M}^{-1} \text{ sec}^{-1}$ for $N = 1$ from Fig. 6B) was thus 213 nM, indistinguishable from the value obtained in Figure 6A. These results demonstrate that our estimates of kinetic parameters and the number of binding sites derived from separate analyses of the onset, steady-state, and offset kinetics of SR-95531 are in excellent agreement.

Binding rates are agonist-specific and are not limited by diffusion

Having established the antagonist binding rate, we used race experiments to measure the agonist binding rates (Eq. 12). Race experiments between SR-95531 and muscimol, GABA, THIP, and β-alanine are illustrated in Figure 8A. Coapplication of the antagonist always produced smaller currents than did the agonist alone. For muscimol and GABA, equal concentrations (1 mM) of agonist and antagonist were used. For the other two agonists, the ligand concentration ratios (agonist/SR-95531) were adjusted to favor the agonist (THIP, 30 mM/200 μM; β-alanine, 100 mM/100
mM) because currents were difficult to detect when concentrations were equal. The agonist binding rates calculated from the measured values of I_{corr}, the known ligand concentrations, and the binding rate of SR-95531 measured in the previous section are shown in Figure 8B. The response to the test pulse from A, on an expanded time scale, shows that channel availability declined with increasing durations of SR-95531 exposure. C. Plots of channel availability versus the duration of SR-95531 exposure reveal that the rate and extent of block increase with antagonist concentration. The data for each concentration were fit to the equation: Availability = 1 - $P_{n-1} - (P_{n-1} - P_{n-0})e^{-kt}$ (see Eqs. 2, 9), with P_{n-0} constrained to 1 and N constrained to be an integer. The parameters P_{n-0} and τ contain information about the microscopic binding and unbinding rates (see Fig. 6). In this and all subsequent figures, the pooled data have been corrected for any unbinding of SR-95531 that occurs during the agonist pulse according to the equation: $I_{\text{corr}} = (F_{\text{err}} - I_{\text{obs}})/(F_{\text{err}} - 1)$. I_{corr} is the corrected current, I_{obs} is the observed current, and F_{err} is the fractional unbinding that would occur over the length of the agonist pulse if all channels were initially bound with antagonist (see Fig. 7).

![Figure 5](image_url)

Figure 5. The concentration and time dependence of block by SR-95531. A, The equilibration time course of SR-95531 in the absence of GABA was measured in outside-out patches. The top traces are the liquid junction currents measured at the open pipette tip after the experiment. After a brief pulse of saturating GABA to assay the channel availability, the patch was exposed to SR-95531 for a variable interval after which channel availability was assayed with a second GABA test pulse. B, The response to the test pulse from A, on an expanded time scale, shows that channel availability declined with increasing durations of SR-95531 exposure. C, Plots of channel availability versus the duration of SR-95531 exposure reveal that the rate and extent of block increase with antagonist concentration. The data for each concentration were fit to the equation: Availability = 1 - $P_{n-1} - (P_{n-1} - P_{n-0})e^{-kt}$ (see Eqs. 2, 9), with P_{n-0} constrained to 1 and N constrained to be an integer. The parameters P_{n-0} and τ contain information about the microscopic binding and unbinding rates (see Fig. 6). In this and all subsequent figures, the pooled data have been corrected for any unbinding of SR-95531 that occurs during the agonist pulse according to the equation: $I_{\text{corr}} = (F_{\text{err}} - I_{\text{obs}})/(F_{\text{err}} - 1)$. I_{corr} is the corrected current, I_{obs} is the observed current, and F_{err} is the fractional unbinding that would occur over the length of the agonist pulse if all channels were initially bound with antagonist (see Fig. 7).

THIP against 1 mM SR-95531 and 10 mM β-alanine against 100 μM SR-95531. In these experiments, the calculated binding rates were (in m⁻¹ sec⁻¹) 9.55 ± 0.6 (× 10⁷) for THIP ($n = 2$) and 3.22 ± 0.9 (× 10⁷) for β-alanine ($n = 3$), demonstrating that changing the (agonist/antagonist) concentration ratio by a factor of 150 altered the binding rate estimate only by a factor of two, a negligible difference in comparison with the wide range of binding rates.

Binding energetics critically determine the affinity of the GABA_α receptor

The two major theories of chemical reaction kinetics, collision theory and Eyring’s transition state theory, both use the concept of activation energy (E_a) to account for the rate constant of a
binding, and the rate will be limited by the rate of diffusion of ligand into the binding site. We therefore used the deviation from diffusion-limited binding to calculate the activation energy of ligand binding from the Arrhenius equation (Fig. 8C; Eq. 14). The activation energies were (in kcal m$^{-1}$) 3.2 ± 0.6 for SR-95531, 4.4 ± 0.6 for GABA, 4.5 ± 0.6 for muscimol, 5.8 ± 0.3 for THIPI, and 7.6 ± 0.7 for β-alanine.

Figure 9A illustrates the correlation between the microscopic rates k_{off}, k_{on}, and k_{diff} and the macroscopic EC$_{50}$ values for the ligands tested. The unbinding rate increased with increasing EC$_{50}$ as shown in Figure 3D, whereas the binding rate decreased with increasing EC$_{50}$ and departed entirely from the rate expected for diffusion. The correlation between k_{on} and EC$_{50}$ was steeper than that for k_{diff}, demonstrating that binding kinetics contribute more than unbinding to determining selectivity.

The close correspondence between binding kinetics and affinity can be attributed primarily to the height of the activation energy barrier. Figure 9B shows that two separately derived estimates of affinity, the directly measured macroscopic EC$_{50}$ values (triangles) and the ratio of microscopic rate constants $k_{\text{off}}/k_{\text{on}}$ (circles) estimated kinetically, were correlated with activation energy and were similar to each other. As expected, the macroscopic measurements deviate somewhat from the microscopic values for low-affinity agonists because, as the unbinding rates increase, the gating steps become rate limiting in determining the apparent affinity. Neither the microscopic nor macroscopic affinities were compatible with those predicted for diffusion-limited binding (squares on y-axis). These results have two important implications. First, the similarity between macroscopic measurements and microscopic estimates shown in Figure 9B suggests that the simplifying assumptions we made (see Materials and Methods) were reasonable approximations. Second, the fitted line through the microscopic affinities in Figure 9B intersects the y-axis at 15 pm, which would therefore be the microscopic affinity constant for a hypothetical ligand with diffusion-limited binding (i.e., requiring zero activation energy). This value is a theoretical maximum limit for any agonist at the GABAA receptor, assuming that binding occurs via the same reversible mechanism as that studied here. All known ligands have much lower affinities, suggesting that none bind in a diffusion-limited manner.

The energetics of binding, unbinding, and affinity are summarized in Figure 9C. Each thick dark line can be viewed as the energy barrier diagram for one ligand (cf. Wentworth and Ladner, 1972; Freifelder, 1982). The reaction coordinate axis is an as yet unspecified measure of progress from unbound to bound (see Discussion). The hypothetical diffusion-limited ligand faces no energy barrier as binding progresses (from I to II) and binds rapidly. However, this ligand must climb out of a deep energy well yet unspecified measure of progress from unbound to bound (see Discussion). The hypothetical diffusion-limited ligand faces no energy barrier as binding progresses (from I to II) and binds rapidly. However, this ligand must climb out of a deep energy well (from II to IV), and the energy depth of the bound state decreases, reducing the deactivation energy (E$_{\text{off}}$). This energy surface therefore accounts for the correlation between binding and unbinding rates and provides an empirical explanation for the ligand selectivity of the receptor. The deactivation energies were (in kcal m$^{-1}$) 13.8 for diffusion, 12.3 for SR-95531, 10.7 for GABA, 11.4 for muscimol, 9.4 for THIPI, and 8.6 for β-alanine. Finally, for each ligand the total energy difference between the unbound and bound states defines the equilibrium affinity constant by the relation: $E_{\text{off}} = E_{\text{on}} - E_{\text{diff}} = RT\ln(k_{\text{off}}/k_{\text{on}})$. The total energy differences were (in kcal m$^{-1}$)

Figure 6. SR-95531 appears to bind at a single site. A. The block at steady state (filled circles) from Figure 5 is plotted here versus SR-95531 concentration and suggests a single antagonist binding site. The data were fit to the normalized Hill equation: $H = 1 - \frac{[A][B]}{K + [B]} + 1$, in which N could be constrained to be an integer (solid line, N = 1; dashed lines, N = 2, 3, or unconstrained). The best fit occurred with N = 1, yielding $K_B = 216$ nm. The inset shows the increasing error of the fit (x^2) as the assumed number of binding sites departs from 1. The circles are with N constrained, whereas the triangle is with N as a free parameter and occurs near N = 1. B. To extract k_{on} and k_{off} from the onset time course of SR-95531 block (Fig. 5C), we plotted the reciprocal of the fitted time constant 1/τ versus the SR-95531 concentration, for fits in which N was constrained to be 1 (filled circles), 2 (open circles), or 3 (diamonds). These plots yield straight lines with slope equal to k_{on} and intercept equal to k_{off} (Eq. 8). The table of the best fit values (inset) shows that the estimates of k_{on} and k_{off} vary less than twofold between one and three assumed sites. Reaction (Wentworth and Ladner, 1972; Freifelder, 1982). The reactants (e.g., unbound ligand and receptor) and the products (e.g., the bound receptor) are viewed as being separated by an energy barrier. Only that fraction of encounters between ligand and receptor possessing sufficient energy will result in binding. If the height of the barrier is zero, then all encounters will lead to
13.8 for diffusion, 9.1 for SR-95531, 6.3 for GABA, 6.9 for muscimol, 3.6 for THIP, and 1.0 for β-alanine.

DISCUSSION

We examined the contributions of the microscopic binding and unbinding transitions to the affinity of ligands at the GABAA receptor. Unbinding is a major determinant of the deactivation time course after brief GABA pulses such as are likely to occur at the synapse. However, binding was much slower than expected for a diffusion-limited process, suggesting that a significant energy barrier limits the fraction of encounters between the ligand and receptor that result in channel activation. The height of this barrier is ligand-specific and can thus account for ligand selectivity.

Validity of the initial assumptions

Our findings contrast with the widespread view that ligand binding and unbinding transitions to the affinity of ligands at the GABAA receptor. Unbinding is a major determinant of the deactivation time course after brief GABA pulses such as are likely to occur at the synapse. However, binding was much slower than expected for a diffusion-limited process, suggesting that a significant energy barrier limits the fraction of encounters between the ligand and receptor that result in channel activation. The height of this barrier is ligand-specific and can thus account for ligand selectivity.

We interpreted the kinetics of SR-95531 blocking and unblocking in microscopic terms under the assumption that this antagonist prevents gating. However, SR-95531 and bicuculline noncompetitively inhibit currents activated by general anesthetics (Ueno et al., 1997), suggesting that channel gating occurs with antagonist bound under certain conditions. If the channel can desensitize with antagonist bound, then our estimates of SR-95531 kinetics actually reflect macroscopic processes. This scenario is unlikely, however, because some treatments that increase macroscopic desensitization [e.g., inhibition of calcineurin (Jones and Westbrook, 1997)] also speed the unblocking of SR-95531, opposite to what is expected if the unblocking time course involves desensitized states.

Our kinetic estimates also depend on the number and cooperativity of binding sites. Interestingly, the best fits occurred with only one SR-95531 site despite the presence of at least two agonist sites (Constanti, 1977a,b; Macdonald et al., 1989; Twyman et al., 1990), suggesting that only one of these sites can bind antagonist. This idea is consistent with Hill coefficients close to unity observed by others for SR-95531 and bicuculline (Ueno et al., 1997; Jonas et al., 1998) and with reports of nonequivalent agonist binding sites on many receptors (Dionne et al., 1978; Sine and Steinbach, 1986; Colquhoun and Ogden, 1988; Jackson, 1989; Raman and Trussell, 1995; Sine et al., 1995; Akk et al., 1996; Lavoie and Twyman, 1996; Lavoie et al., 1997; Clements et al., 1998). The possibility remains that we could not detect multiple antagonist sites because of limited time resolution or because the sites are so unequal that only one is rate limiting. However, the
estimated binding rate of SR-95531 changed less than twofold whether assuming one or three sites. Therefore, errors in SR-95531 measurements would cause proportional errors in agonist binding rate estimates but would not qualitatively alter our conclusions.

Physical properties governing selectivity

Despite remarkable biochemical and molecular advances in understanding receptor structure, there is still insufficient information for a detailed structural picture of binding or gating. A complementary approach is to generate highly simplified structural models of the binding site with dynamics that reproduce the kinetics of ligand selectivity. For the GABAA receptor, these kinetics can be summarized by the energy surface in Figure 9C, which is a function of two nonstructural parameters: affinity and a reaction coordinate. What structural correlates might be assigned to these parameters to yield a plausible binding-site model?

Ligand chemistry, conformational flexibility, and orientation may all affect interactions with the receptor. None of these, however, can account for the kinetics we observed. For example, GABA and β-alanine have similar chemistry and flexibility (Fig. 10A) but are near opposite ends of the kinetic spectrum. Furthermore, the speed of reorientation is inversely related to size (Lauffer, 1989), yet the smallest ligand, β-alanine, binds most slowly. In contrast, the excellent correlation between affinity and the “length” of the GABA-like region of each ligand (Fig. 10B) strongly suggests a length-based selectivity mechanism (Champon et al., 1985).

The reaction coordinate is a common, often qualitative, metric of the progress of a reaction. Formally, it is the steepest path along an energy hypersurface connecting the reactants and products that passes through the transition state (Eyring, 1935; Marcus, 1964). For length-based selection, an appropriate reaction coordinate is the physical distance between the ligand and the groups comprising the binding site.

Finally, an energy barrier implies an uncomfortable region between the unbound and bound states. Such a region might exist, for example, if the ligand must lose waters of hydration or the binding site must change shape before binding can occur. Similar hypotheses have been considered for the nACh receptor (Zhang et al., 1995). We simulated our observations using both scenarios.

Figure 8. Agonist binding rates are limited by an activation energy barrier. A, Agonist binding rates were measured by examining the instantaneous competition between agonists and SR-95531. Applications of agonist alone and agonist plus SR-95531 were alternated on the same patch, and responses for each condition were averaged. The top traces are the open tip currents. B, Agonist binding rates were calculated from the ratio of peak currents in the presence and absence of antagonist (Eq. 12). The rate for SR-95531 is from Figure 6B for \(N = 1 \), and the rate for a hypothetical agonist with diffusion-limited binding was calculated from Equation 13. All ligands tested had binding rates orders of magnitude slower than diffusion, and these rates were strongly agonist-specific. C, The ratio of ligand binding rates to the diffusion-limited rate was used to calculate the height of an activation energy barrier between the unbound and bound states using the Arrhenius equation (Eq. 14). As the height of this barrier increases, the binding rate decreases.
Here, we present only the latter because it provides a natural link between binding and channel gating.

A flexible binding-site model

We treated the agonist as a pair of particles separated by a fixed length and the binding site as another set of particles. The energy of interaction between any two particles varies nonlinearly with distance (see Materials and Methods). The energy profile for each agonist is thus the changing energy of the system as the agonist and the binding site are brought together. The binding site behaves as a pair of mobile “arms” attached to fixed “anchor” sites by spring-like tethers (Fig. 11A). The anchors are separated by a length \(L_{\text{site}} \), and the arms rest in the energy wells created by the anchors (Fig. 11B). Binding occurs when the agonist falls into the secondary energy wells created by the arms. Binding is diffusion-limited only if the agonist is long enough to span the distance between these wells. Shorter agonists bind more slowly because the arms must move to accommodate them, which requires activation energy. In addition, because the arms are displaced from rest, the
energy of the bound state is higher and unbinding is faster than for long agonists. The kinetics and selectivity resulting from this model closely match those observed experimentally (Fig. 11C).

We interpret the well depths and radii of the model as the average local environment experienced by the ligand and not as descriptions of specific amino acid residues, although the latter is also possible. The model predicts that both binding and unbinding depend on receptor structure rather than on diffusion, involving energies on the scale of a few van der Waals or hydrogen bonds (Morris et al., 1996). The model also explicitly requires the ligand to perform thermodynamic work (approximately the activation energy) on the receptor by moving the arms away from rest, and this movement could be coupled to gating. The receptor expends compensatory work (approximately the deactivation energy) to stabilize the ligand. Our data suggest that the binding of two GABA molecules can perform enough work (≈12 kcal m\(^{-1}\)) to drive a coupled gating reaction from 0.01 to 99.99% completion (Freifelder, 1982). We cannot yet say how much of this work is actually used to drive gating, whether it is conserved, or how it is distributed among enthalpic and entropic components (Maksay, 1994). Nonetheless, such a mechanism implies that only nondiffusion-limited ligands can be agonists because otherwise they cause no movement of the receptor.

Because ligand chemistry was ignored, it is unsurprising that the model fails to predict the fast binding and slow unbinding of the antagonist SR-95531. Many GABA\(_A\) receptor antagonists contain aromatic rings (Chambon et al., 1985; Hamann et al., 1988; Huang and Johnston, 1990) that may tether the ligand near the binding site. Such tethering could simultaneously enhance the probability of binding, slow unbinding, and interfere with movements involved in the coupling of binding to gating. Finally, muscimol is slightly shorter than GABA but unbinds more slowly. Perhaps GABA can twist and shorten while in the binding site, leading to premature unbinding, whereas muscimol cannot because of its conformational restriction.

Multiple protein domains affect the apparent affinity of many receptors (Stern-Bach et al., 1994; Smith and Olsen, 1995). For example, in GABA\(_A\), glycine, and nACh receptors, discontinuous segments including aromatic residues appear to come together to form a binding pocket (Dennis et al., 1988; Schmieden et al., 1992, 1993; Vandenberg et al., 1992; Amin and Weiss, 1993). Furthermore, mutations that alter these regions by as little as a single hydroxyl group dramatically alter the EC\(_{50}\) (Amin and Weiss, 1993; Schmieden et al., 1993). Our model is compatible with these findings in that (1) successful binding involves the coordinated motion of separate parts of the receptor and (2) variations of a fraction of an angstrom or a single hydrogen bond cause quite large changes in affinity. Such small structural effects

Figure 10. Affinity is correlated with ligand length. A, The chemical structures of the ligands used in our experiments are arranged in order of decreasing binding rate from left to right. For each ligand, the length of the GABA-like region is given below the structure (as measured from the nitrogen to the hydroxyl oxygen in the most energetically favorable conformation; see Materials and Methods). B, A plot of ligand affinity [i.e., log(K\(_a\)) versus the length of the GABA-like region reveals a strong linear correlation, suggesting a length-based selectivity mechanism for the GABA\(_A\) binding site. The upper equation (solid line) is the regression for the four agonists. The lower equation (dashed line) is the regression for all five ligands.
may arise physiologically via subunit differences or movements propagated through the protein because of interactions with the cytoskeleton or phosphorylation (e.g., Jones and Westbrook, 1997).

Implications for synaptic transmission

We studied responses evoked by different agonists at the same receptor. However, at GABAergic synapses the agonist is always the same, whereas the receptor subtypes may differ. Because deactivation is strongly influenced by the rate of agonist unbinding, some of the observed variation in IPSC duration probably results from differences in unbinding between receptor subtypes because of differing subunit compositions or regulation (Puia et al., 1994; Verdoorn, 1994; Tia et al., 1996; Auger and Marty, 1997; Jones and Westbrook, 1997). If binding rates depend on receptor structure, as in the flexible site model, then the correlations between binding, unbinding, and affinity suggest that receptors mediating rapidly decaying IPSCs may be less efficient at binding GABA than are those mediating long-lasting IPSCs. Binding efficiency is critical at low GABA concentrations, such as may occur during “spillover” (Isaacson et al., 1993; Nusser et al., 1997) or “cross talk” (Barbour and Häusser, 1997). Thus, neurons with fast IPSCs may be less sensitive to these modes of inhibition. Even in situations in which the concentration is high, different binding rates will result in different degrees of occupancy if the GABA transient is brief (Clements et al., 1992; Freking and Wilson, 1996; Auger and Marty, 1997; Diamond and Jahr, 1997; Galarreta and Hestrin, 1997; Perrais and Ropert, 1997). Receptors underlying fast IPSCs may thus have a lower occupancy than those underlying slow IPSCs.

Figure 11. A flexible binding-site model can account for agonist selectivity. A, A flexible binding site can be envisioned as a pair of binding arms anchored to the rest of the protein by spring-like tethers. At rest, the arms are widely spaced (top), whereas they must move closer together to secure an agonist within the binding site (bottom). This movement requires energy, symbolized by stretching the springs. B, A flexible-site model was implemented by calculating the profile of energy wells from the Lennard–Jones equation (see Materials and Methods) for interactions between three kinds of particle: the anchors (out of view to the left and right), the movable arms (filled circles), and the agonist endpoints (open circles). The y-axis measures the energy experienced by each particle. The x-axis measures the distance from the center of the binding site. Only the left half of the symmetrical system is shown here, and for clarity the repulsive energy components are not displayed. Simulations were initialized with the arm particle resting in the well generated by the anchor (at −4.4 Å). The arm itself generates a secondary well (the gray well at −3.65Å) that will bind the agonist. The agonist is centered in the binding site but is not secured at the bottom of a well in the unbound state (one endpoint is shown by the gray circles; the other is out of view to the right). As binding proceeds, the arm moves closer to the agonist (arrow at a), which requires energy because it involves climbing out of a well. The highest energy occurs partway through the movement, when neither the arm nor the agonist are in a well (i.e., the transition state, stippled lines and circles). Binding is complete when the agonist falls to the bottom of the well generated by the approaching arm (arrow at b, black lines and circles). The reaction energy can be divided approximately into activation energy expended by the agonist in lifting the arm from its rest level and deactivation energy gained by the agonist as it sinks into the binding well. The difference between these energies is exponentially related to the probability that the agonist will be found in the bound state and thus determines affinity, C. The graph shows the energy surface predicted by the model to account for the kinetics of agonist selectivity and is thus a reinterpretation of the kinetic data of Figure 9C in structural terms. The progress of the reaction is represented here by the fractional arm movement [multiply by (3.6 Å − 0.5 × agonist length) for the actual movement], and the agonist length has been substituted for the affinity constant. The model was optimized by iteratively varying the site length L_site, the well depths e, and the well radii r_qm to minimize the error between the experimental data (circles) and the model prediction (solid lines). The best-fitting parameters gave excellent agreement with the experimental data (root mean-squared error = 0.41 kcal m⁻¹) and were L_site = 14.2 Å, r_qm = 2.65 Å and e = 6.04 kcal mol⁻¹ for the anchors; and r_qm = 0.82 Å and e = 5.50 kcal mol⁻¹ for the arms (−7.2 Å between arm energy wells at rest). Note that unlike the empirical surface used in Figure 9C, the curvature and position of barrier peaks for this theoretical surface vary with agonist length.
REFERENCES

