Subunit Composition and Quantitative Importance of Heterooligomeric Receptors: GABA_A Receptors Containing α₆ Subunits

Martin Jechlinger, Robert Pelz, Verena Tretter, Thomas Klausberger, and Werner Sieghart

Section of Biochemical Psychiatry, University Clinic for Psychiatry, A-1090 Vienna, Austria

In cerebellum, GABA_A receptors containing α₆ subunits are expressed exclusively in granule cells. The number of α₆ receptor subtypes formed in these cells and their subunit composition presently are not known. Immunoaffinity chromatography on α₆ subunit-specific antibodies indicated that 45% of GABA_A receptors in cerebellar extracts contained α₆ subunits. Western blot analysis demonstrated that α₁, β₁, β₂, β₃, γ₂, and δ subunits co-purified with α₆ subunits, suggesting the existence of multiple α₆ receptor subtypes. These subtypes were identified using a new method based on the one-by-one immunochromatographic elimination of receptors containing the co-purifying subunits in parallel or subsequent experiments. By quantification and Western blot analysis of α₆ receptors remaining in the extract, the proportion of α₆ receptors containing the eliminated subunit could be calculated and the subunit composition of the remaining receptors could be determined. Results obtained indicated that α₆ receptors in cerebellum are composed predominantly of α₆β₂γ₂ (32%), α₁α₆β₂γ₂ (37%), α₆β₃δ (14%), or α₆α₆β₃δ (15%) subunits. Other experiments indicated that 10%, 51%, or 21% of α₆ receptors contained homogeneous β₁, β₂, or β₃ subunits, respectively, whereas two different β subunits were present in 18% of all α₆ receptors. The method presented can be used to resolve the total number, subunit composition, and abundance of GABA_A receptor subtypes in the brain and can also be applied to the investigation of other heterooligomeric receptors.

Key words: GABA_A receptor; composition, α₆ subunit; granule cell; cerebellum; antibodies; immunoaffinity chromatography; immunoprecipitation; [3H]muscimol; [3H]Ro 15-4513; binding studies

GABA_A receptors are ligand-gated chloride ion channels and the site of action of various pharmacologically and clinically important drugs, such as benzodiazepines, barbiturates, steroids, anesthetics, and convulsants (Sieghart, 1995). So far six α, four β, three γ, one δ, one ε, and three ρ subunits have been cloned and sequenced from mammalian brain (Sieghart, 1995; Ogurusu and Shingai, 1996; Davies et al., 1997), and it is assumed that five subunits assemble to form functional GABA_A receptors (Nayeem et al., 1994; Tretter et al., 1997). Expression studies have indicated that α, β, and γ subunits have to combine to form receptors closely resembling native receptors. Depending on the type of α, β, and γ subunits used for transfection of cells, however, recombinant receptors with different pharmacological properties do arise (Sieghart, 1995). The distinct but overlapping regional and cellular expression of the individual subunits (Persohn et al., 1992; Wisden et al., 1992) raises the possibility of the existence of an extremely large variety of GABA_A receptor subtypes in the brain. So far the actual extent of GABA_A receptor heterogeneity is not known.

GABA_A receptors containing α₆ subunits are expressed in cerebellar granule cells and in the embryologically related granule cells of the cochlear nucleus only (Laurie et al., 1992; Persohn et al., 1992; Wisden et al., 1992; Varecka et al., 1994; Jones et al., 1997). Thus, all α₆ receptors from cerebellum are expressed in the same cell type. In addition, receptors consisting of α₆β₂γ₂ subunits have special properties because they exhibit a high affinity for the inverse benzodiazepine agonist Ro 15-4513 but no affinity for the benzodiazepine agonist diazepam (Sieghart, 1995).

Several studies have investigated the subunit composition of GABA_A receptors containing α₆ subunits. The results obtained, however, were partially conflicting. Whereas in one study (Quirk et al., 1994) α₆ subunits were not observed to occur in combination with other α subunits, other studies demonstrated a partial coexistence of α₆ and α₁ subunits in the same receptor (Pollard et al., 1993, 1995; Khan et al., 1994, 1996). Similarly, estimates of the abundance of individual receptor subtypes differed between authors. Finally, because of the lack of suitable antibodies, not all α₆ subunit-containing receptors could be investigated.

The present study was performed to resolve these discrepancies. Using 13 highly specific antibodies directed against different GABA_A receptor subunits, we demonstrated that only α₁, β₁, β₂, β₃, γ₂, and δ subunits significantly co-purified with α₆ subunits. To determine the identity and quantitative importance of receptors formed from these subunits, a generally applicable method was developed that is based on a one-by-one elimination by immunoaffinity chromatography of receptors containing the co-purifying subunits. Quantification of the remaining α₆ receptors allowed us to estimate the proportion of α₆ receptors containing the eliminated subunit. Repeating this subtractive purification by eliminating another co-purifying subunit in a parallel or a subsequent experiment finally allowed us to identify the subunit composition of α₆ receptors and to determine their quantitative importance.

MATERIALS AND METHODS

Generation and purification of antibodies. The antibodies anti-peptide α₁(1–9), anti-peptide α₂(416–424), and anti-peptide α₃(459–467)
described previously. Polyclonal anti-peptide antibodies were custom-synthesized with an additional C- or N-terminal cysteine, and were coupled to keyhole limpet hemocyanin. These adducts were then used for the immunization of rabbits by affinity chromatography on thiopropyl-Sepharose 6B coupled to the cysteine residue of the respective peptide according to the recommendations of Pharmacia LKB Biotechnology.

Cloning of α1, β1, β2, or γ2 subunits of GABA A receptors. A rat brain cDNA library was constructed in λZAP (Strategen, La Jolla, CA) from poly A+ mRNA isolated from the brains of 8- to 10-old rats as described in the protocol from Strategen. α1, β1, β2, and γ2 subunits of GABA A receptors were cloned from this cDNA library (Fuchs et al., 1995; Slany et al., 1995), and their sequence proved to be identical to that of the respective sequence published previously.

Culture of human embryonic kidney (HEK) 293 cells and cDNA transfection. Transformed HEK 293 cells (CRL 1573; American Type Culture Collection, Rockville, MD) were grown in DMEM (Life Technologies, Grand Island, NY) supplemented with 10% fetal calf serum (JRH Biosciences, Lenexa, KS), 2 mM glutamine, 50 μg/ml streptomycin, 50 μg/ml gentamicin, 2 ml of 10% dry milk powder were added, and incubated reduced by 30% in the supernatant was found in the precipitate. Thus, whether 15–20% of these sites were diazepam sensitive, whereas 77 ± 2% were diazepam resistant (Zezula and Sieghart, 1991). For this, 100 μl of the deoxycholate extract (or of the supernatant from the immunoprecipitation with anti-α2 antibodies) was incubated for 90 min at 4°C in a total volume of 1 ml with a buffer containing 50 mM Tris-citrate, pH 7.1, 150 mM NaCl, 50 μg γ-globulin, 15% (wt/vol) PEG, and 10 or 20 nM [3H]Ro 15-4513 in the absence or presence of 100 μM Ro 15-1788. The suspension was then filtered through Whatman GF/B filters, and the filters were washed twice with 5 ml of 1% Triton X-100, 50 mM Tris-citrate buffer, pH 7.1. When the percentage of α2 receptors retained by an immunoaffinity column had to be determined, immunoprecipitation with the anti-α2 (1–15) antibody and the subsequent [3H]muscimol binding assays were performed in the same experiment with the original extract and the immunoaffinity column efflux.

Total [3H]Ro 15-4513 binding in the extract before or after immunoprecipitation of α2 subunit-containing GABA A receptors was measured using a polyethylene glycol precipitation kit (Pierce, Rockford, IL), and the validity of this approach was demonstrated by the observation that [3H]Ro 15-4513 binding data were identical whether receptors were precipitated with PEG or with this antibody mixture.

RESULTS

Anti-α6 antibodies

The N- or C-terminal amino acid sequences α6(1–15) or α6(429–434) are unique for the α6 subunit of GABA A receptors (Lüddens et al., 1990). Antibodies generated against these sequences were able to immunoprecipitate native GABA A receptor subunits from rat cerebellar membranes in a dose-dependent manner (Fig. 1). Whereas anti-peptide α6(1–15) antibodies precipitated up to 15 ± 4% (mean ± SD; n = 4) of all [3H]Ro 15-4513 binding sites present in the extract, anti-peptide α6(429–434) antibodies precipitated only 5 ± 1% (mean ± SD; n = 4) of these sites. Of the [3H]Ro 15-4513 binding sites precipitated by these antibodies, 23 ± 2% were diazepam sensitive, whereas 77 ± 2% of these sites were diazepam insensitive.

Interestingly, however, it was demonstrated that in the same experiment the percentage of total [3H]Ro 15-4513 binding sites eliminated from the supernatant was higher than that actually found in the precipitate. Thus, whether 15–20 μg of α6(1–15) or α6(429–434) antibodies was used for immunoprecipitation, the amount of [3H]Ro 15-4513 binding sites in the supernatant was reduced by 30 ± 3% (mean ± SD; n = 4) (Fig. 1). These results

Immunoprecipitation and receptor binding assay. Whereas the precipitated receptors were suspended in 1 ml of a solution containing 0.1% Triton X-100, 50 mM Tris-citrate buffer, pH 7.1, 150 mM NaCl, and 10 or 20 nM [3H]Ro 15-4513 (20.9 Ci/mmol; Du Pont NEN, Dreieich, Germany) in the absence or presence of 100 μM Ro 15-1788 or various concentrations of diazepam, and were incubated for 90 min at 4°C. For [3H]muscimol binding assays the precipitated receptors were suspended in 1 ml of a solution containing 0.1% Triton X-100, 50 mM Tris-citrate buffer, and 20 nM [3H]muscimol (17.1 Ci/mmol; Du Pont NEN) in the absence or presence of 10 μM GABA, and were incubated for 60 min at 4°C (Zezula and Sieghart, 1991). The suspensions were then filtered through Whatman GF/B filters, and the filters were washed twice with 5 ml of 1% Triton X-100, 50 mM Tris-citrate buffer, pH 7.1. When the percentage of α6 receptors retained by an immunoaffinity column had to be determined, immunoprecipitation with the anti-α6 (1–15) antibody and the subsequent [3H]muscimol binding assays were performed in the same experiment with the original extract and the immunoaffinity column efflux.

Immunoprecipitation and receptor binding assay. For immunoprecipitation, 30 μl of the clear deoxycholate membrane extract were mixed with 30 μl of antibody solution (0–20 μg of antibody), and the mixture was incubated under gentle shaking at 4°C overnight. Then 50 μl of immunoprecipitin (Life Technologies, Gaithersburg, MD) plus 150 μl of an IP-low buffer containing 5% dry milk powder were added, and incubation was continued for 2 hr at 4°C. The precipitate was centrifuged for 10 min at 10,000 g, and the pellet was washed twice with 500 μl IP-high and once with 500 μl IP-low buffer.

For [3H]Ro 15-4513 binding assays the precipitated receptors were suspended in 1 ml of a solution containing 0.1% Triton X-100, 50 mM Tris-citrate buffer, pH 7.1, 150 mM NaCl, and 10 or 20 nM [3H]Ro 15-4513 (20.9 Ci/mmol; Du Pont NEN, Dreieich, Germany) in the absence or presence of 100 μM Ro 15-1788 or various concentrations of diazepam, and were incubated for 90 min at 4°C. For [3H]muscimol binding assays the precipitated receptors were suspended in 1 ml of a solution containing 0.1% Triton X-100, 50 mM Tris-citrate buffer, and 20 nM [3H]muscimol (17.1 Ci/mmol; Du Pont NEN) in the absence or presence of 10 μM GABA, and were incubated for 60 min at 4°C (Zezula and Sieghart, 1991). The suspensions were then filtered through Whatman GF/B filters, and the filters were washed twice with 5 ml of 1% Triton X-100, 50 mM Tris-citrate buffer, pH 7.1. When the percentage of α6 receptors retained by an immunoaffinity column had to be determined, immunoprecipitation with the anti-α6 (1–15) antibody and the subsequent [3H]muscimol binding assays were performed in the same experiment with the original extract and the immunoaffinity column efflux.

Total [3H]Ro 15-4513 binding in the extract before or after immunoprecipitation of α2 subunit-containing GABA A receptors was measured using a polyethylene glycol precipitation kit (Pierce, Rockford, IL), and the validity of this approach was demonstrated by the observation that [3H]Ro 15-4513 binding data were identical whether receptors were precipitated with PEG or with this antibody mixture.

Immunoprecipitation and receptor binding assay. For immunoprecipitation, 30 μl of the clear deoxycholate membrane extract were mixed with 30 μl of antibody solution (0–20 μg of antibody), and the mixture was incubated under gentle shaking at 4°C overnight. Then 50 μl of immunoprecipitin (Life Technologies, Gaithersburg, MD) plus 150 μl of an IP-low buffer containing 5% dry milk powder were added, and incubation was continued for 2 hr at 4°C. The precipitate was centrifuged for 10 min at 10,000 g, and the pellet was washed twice with 500 μl IP-high and once with 500 μl IP-low buffer.
Immunoprecipitation of GABA_A receptors solubilized from rat cerebellum. Solubilized receptors (470 fmol of [3H]Ro 15-4513 binding sites) were incubated with increasing amounts of α₆(1–15) or α₆(429–434) antibodies in a final volume of 350 μl. Receptors present in the pellets (solid symbols) or the supernatant (open symbols) were determined by specific [3H]Ro 15-4513 binding. Identical results were obtained when the supernatant from the α₆(1–15) or α₆(429–434) immunoprecipitation was investigated. The values are mean ± SD of four separate experiments performed in triplicates. SD bars that were smaller than the diameter of the symbols are not shown.

Figure 1.

Isolation, subunit composition, and quantitative importance of GABA_A receptors containing α₆ subunits

After solubilization of GABA_A receptors from cerebellar membranes, 67.8% of the [3H]Ro 15-4513 or [3H]muscimol binding sites present in the membranes could be recovered in the extract. This corresponded to 92.5% of the binding sites identified in the extract and in the 100,000 × g pellet after extraction. Because there was no significant difference in the efficiency of solubilization by detergent between [3H]muscimol binding sites or diazepam-sensitive or -insensitive [3H]Ro 15-4513 binding sites, it can be concluded that the extracted receptors were representative of the entire functional α₆ subunit-containing GABA_A receptor population.

To quantitatively isolate GABA_A receptors containing α₆ subunits, cerebellar extracts were cycled three times through an immunoaffinity column containing anti-peptide α₆(429–434) antibodies. In the final eluX of this column, anti-peptide α₆(1–15) antibodies no longer were able to precipitate GABA_A receptors, and α₆ subunits no longer could be demonstrated in Western blots, indicating that this procedure eliminated most if not all α₆ receptors from the extract. In the same eluX, [3H]Ro 15-4513 binding was reduced by 31 ± 1% (mean ± SD; n = 3), and [3H]muscimol binding was reduced by 45 ± 1% (mean ± SD; n = 3). These percentages correspond closely to the 30 ± 3% reduction of [3H]Ro 15-4513 and 42 ± 3% reduction of [3H]muscimol binding sites observed in cerebellar extracts after immunoprecipitation with α₆(1–15) antibodies (see above).

To identify GABA_A receptor subunits co-purifying with α₆ subunits, receptors bound to the α₆(429–434) immunoaffinity column were eluted by a change in the pH value of the buffer and were probed with 13 different antibodies, each of which specifically recognized a distinct GABA_A receptor subunit. As shown in Figure 3A (or Fig. 4A), in addition to the α₆ subunit, β₂, β₃, γ₂, and δ subunits were present in the α₆(429–434) column eluate. Thus, α₆(1–9), β₁(350–404), β₂(351–405), β₃(345–408), γ₂(319–366), and δ(1–44) antibodies identified proteins with apparent molecular mass of 51 kDa, 51–54 kDa, 50–53 kDa, 51–56 kDa, 41–44 kDa, and 53 kDa, respectively. Proteins with identical apparent molecular mass could be identified by these antibodies in parallel control experiments investigating recombinant GABA_A receptors containing the respective subunits (experiments not shown). The β₃(345–408) antibody, in addition to the 51–56 kDa protein, identified a second protein with an apparent molecular mass of 42–47 kDa. The protein with lower molecular mass seemed to be a partially degraded β₃ subunit, because staining of this protein was variable in different experiments.
together with 1992). These data therefore indicate that any one of the GABA A receptor subtypes with different subunit composition can be identified in cerebellar extracts by the respective antibodies (experiments not shown). This indicates that unspecific adsorption of receptors or an exchange of subunits during extraction was not a problem in this study.

Isolation, subunit composition, and quantitative importance of GABA A receptors containing α6 and γ2 subunits

Because GABA A receptors are composed of five subunits, the co-purification of a total of seven different subunits by the α6(429–434) immunoaffinity chromatography indicated that a mixture of GABA A receptor subtypes with different subunit composition was purified. To isolate GABA A receptors containing α6, βx, and γ2 subunits, GABA A receptors containing any one of the other co-purifying subunits were quantitatively removed by immunoaffinity chromatography. In the first step, receptors containing δ subunits were eliminated from cerebellar membrane extracts us-
ing a δ(1–44) column (Fig. 3). The δ(1–44) antibody specifically recognized the δ but no other subunits of the GABA_A receptor (Jones et al., 1997). Interestingly, in the pH 2.45 eluate of the δ(1–44) eluate, α₁, α₆, β₁, β₂, β₃, δ, and other subunits, but no γ₂ subunits, could be identified (R. Pelz, M. Jechlinger, and W. Sieghart, unpublished data).

To determine the composition of the remaining α₆ receptors, the efflux of the δ(1–44) column subsequently was chromatographed on the α₆(429–434) column. As shown in Figure 3B, δ subunits could no longer be identified in the eluate of this column, indicating that these subunits had been completely eliminated by the δ(1–44) column. The presence of six different subunits (α₁, α₆, β₁, β₂, β₃, γ₂) in the eluate of the α₆(429–434) column indicates that GABA_A receptors retained by this column were still heterogeneous.

In the elux of the δ(1–44) column, α₆(1–15) antibodies were able to precipitate 70% of the [3H]muscimol binding sites that could be precipitated by these antibodies in the original extract (Fig. 3B). This indicates that 30% of the α₆ subunit-containing GABA_A receptors were retained by the δ(1–44) column and contained the δ subunit.

In the next step, the efflux of the δ(1–44) column was chromatographed on an α₁(1–9) immunoaffinity column. The α₁(1–9) antibody has been demonstrated to selectively identify only α₁ but no other GABA_A receptor subunits (Nusser et al., 1996; Zezula et al., 1991). The α₆ subunit-containing receptors remaining in the efflux of the α₁(1–9) column were then collected by the α₆(429–434) column. In the pH 2.45 eluate of this column, only α₆, β₁, β₂, β₃, and γ₂ subunits, but no α₁ subunits, could be detected (Fig. 3C). The five subunits present in this eluate still could have been combined in a variety of different ways, resulting in a multiplicity of pentameric αβ or αβγ receptors with different subunit composition and stoichiometry. At this point, therefore, no conclusion on the identity and composition of the receptors isolated by this procedure could be made.

As expected, the intensity of the individual signals for α₆, β₁, β₂, β₃, and γ₂ subunits was lower in Figure 3C than in 3A or B. In the efflux of the α₁(1–9) column, 32 ± 3% (mean ± SD; n = 3) of the α₆ subunit-containing receptors present in the original extract could be precipitated by α₆(1–15) antibodies (Fig. 3C). Thus, 32% of α₆ receptors were collected as α₆, β₁, β₂, β₃, and γ₂ subunits. The observation that 70% of the α₆ receptors could be precipitated before and only 32% after the α₁(1–9) column additionally indicates that 38% of α₆ receptors were removed by the α₁(1–9) column and thus contained α₁ as well as α₆ subunits.

All of these percentages were obtained by investigating binding of [3H]muscimol to the precipitated receptors. Because [3H]muscimol binding sites can be demonstrated only on receptors containing α and β, or α and γ subunits (Zezula et al., 1996), these experiments indicate that the 32% of α₆ and 38% of α₆ receptors so far discussed must also have contained β subunits. Whether all or only some of these receptors additionally contained γ₂ subunits cannot be answered at this time.

Isolation, subunit composition, and quantitative importance of GABA_A receptors containing α₆ and δ subunits

In another experiment (Fig. 4), GABA_A receptors containing γ₂ subunits were eliminated from cerebellar membrane extracts using a γ₂(319–366) column. The high specificity of this immunoaffinity column has been demonstrated previously (Mossier et al., 1994). In the pH 2.45 eluate of the γ₂(319–366) column, α₁, α₆, β₁, β₂, β₃, γ₂, and other subunits, but no δ subunits, could be identified (experiments not shown). This again supports the conclusion that γ₂ and δ subunits, at least in the cerebellum, seem not to be present in the same GABA_A receptors.

Receptors remaining in the elux of the γ₂(319–366) column were then chromatographed on the α₆(429–434) column. In the eluate of this column, α₁, α₆, β₁, β₂, β₃, and δ subunits, but no γ₂ subunits, could be detected (Fig. 4B). Immunoprecipitation with α₆(1–15) antibodies in the elux of the γ₂(319–366) column indicated that receptors composed of these subunits represented 30% of the α₆ receptors present in the original extract (Fig. 4B). All of these receptors contained the δ subunit, because 30% of all α₆-containing GABA_A receptors could also be bound to the δ(1–44) immunoaffinity column, as discussed above (Fig. 3B).

The identification of only 30% of the α₆ receptors in the elux of the γ₂(319–366) column indicates that 70% of these receptors were retained by this column and thus contained γ₂ subunits. Combined with the above observation (Fig. 3B) that 70% of all α₆ receptors could be precipitated in the elux of the δ(1–44) column and were composed of α₁, α₆, β₁, β₂, β₃, and γ₂ subunits, these data suggest that α₆ receptors contain either γ₂ or δ subunits.

In the next step, the elux of the γ₂(319–366) column was chromatographed on the α₁(1–9) column, and α₆ receptors remaining in the elux of this column were then either collected by a subsequent α₆(429–434) immunoaffinity chromatography or precipitated by α₆(1–15) antibodies (Fig. 4C). In the eluate of the α₆(429–434) column, α₁, α₆, β₁, β₂, β₃, and δ subunits, but no α₁ subunits, could be identified. Immunoprecipitation experiments indicated that 15% of all α₆ subunit-containing GABA_A receptors could still be precipitated in the elux of the α₁(1–9) immunoaffinity column (Fig. 4C) and thus were composed of α₆βδ subunits.

Because 30% of all α₆ (and δ) subunit-containing receptors could be precipitated before and only about 15% after chromatography on the α₁(1–9) column, these results additionally indicate that 15% of all α₆ subunit-containing receptors are composed of α₁α₆βδ subunits. Thus, the α₆ and δ subunit-containing receptors α₁α₆βδ and α₆βδ obviously are present in cerebellum at a 1:1 ratio. As expected, the signal strength of the individual protein bands was reduced according to the receptors removed by the various immunoaffinity columns (compare Fig. 4A–C). In this experiment the staining of the βδ subunit was quite prominent. Because staining intensity depends on the individual properties of the digoxigenated antibody batch used, different staining intensities obtained with different antibodies do not necessarily reflect differences in the amount of protein present in the extract.

Results so far presented indicate the existence of at least four α₆ subunit-containing GABA_A receptor subtypes in cerebellum that are composed of α₁α₆βγ₂, α₁α₆βγ₂δ, α₁α₆βδ, and α₁α₆βδγ₂ subunits. The same four α₆ receptor subtypes were also identified when the sequence of columns was changed, and an α₁(1–9) column was used before the γ₂(319–366) column to eliminate receptors containing the respective subunits from cerebellar extracts. In addition, the quantitative data obtained were consistent with each other and not dependent on the sequence of columns used (experiments not shown). These results strongly suggest that none of the antibodies used for immunochromatography exhibited a significant cross-reactivity and that the α₆(1–15) or α₆(429–434) antibodies were able to recognize or precipitate these four α₆ subunit-containing GABA_A receptor subtypes with comparable efficiency. The experiments described were repeated several times.
times, and the average proportion of the four GABA_A receptor subtypes calculated from the individual experiments is given in Table 1. In addition, taking into account that only 45 ± 1% of all GABA_A receptors in cerebellum contain the α_6 subunit, the absolute contribution of the various α_6 receptors to total GABA_A receptors present in cerebellum was calculated (Table 1).

Isolation, subunit composition, and quantitative importance of GABA_A receptors containing α_6 and distinct β subunits

The low number of α_6 receptors remaining in the extract after complete removal of γ_2 and α_1 (α_6β_1δ, 15% of all α_6 receptors) or of δ and α_1 subunits (α_6β_2γ_2, 32% of all α_6 receptors) prevented a direct investigation of the β subunit composition of these receptors, even more so because each immunoaffinity chromatography step is time consuming and enhances degradation and inactivation of receptors. Therefore, the β subunit-composition of α_6 receptors was investigated in the original extract from cerebellum only.

For this, cerebellum extracts were first chromatographed on a β_1(350–404) immunoaffinity column (Fig. 5A). In the efflux of this column, β_1 subunits no longer could be demonstrated (experiments not shown), indicating that receptors containing this subunit had been removed completely. Precipitation with α_6(1–15) antibodies indicated that 85 ± 1% (mean ± SD; n = 4) of the original α_6 receptors were still present after removal of the β_1 subunit-containing receptors and suggested that 15% of all α_6 receptors contained β_1 subunits (Fig. 5A).

The efflux of the β_1(350–404) column was then chromatographed on a β_2(351–405) immunoaffinity column (Fig. 5B). On this second column all receptors containing β_2 subunits were adsorbed, as indicated by the absence of β_2 subunits in the column efflux (experiments not shown). In the same efflux, however, 21 ± 7% (mean ± SD; n = 3) of the original α_6 receptors could be precipitated using α_6(1–15) antibodies. Because GABA_A receptors containing β_2, as well as those containing β_2 subunits now had been completely removed from the extract, the remaining 21% of the α_6 receptors thus contained only β_1 subunits.

In other experiments, all receptors containing β_2 subunits were first removed from the cerebellum extract using a β_2(351–405) immunoaffinity column (Fig. 5C). In the efflux of this column, only 34 ± 2% (mean ± SD; n = 4) of the original α_6 receptors were present. From this it can be concluded that 66% of all α_6 receptors contained a β_2 subunit. A subsequent chromatography on a β_3(345–408) column (Fig. 5D) eliminated an additional 24% of the α_6 receptors. The remaining 10 ± 1% (mean ± SD; n = 3) of receptors thus contained only β_3 subunits.

Finally, the cerebellum extract was chromatographed first on a β_3(345–408) column. In the efflux of this column, 63 ± 2% (mean ± SD; n = 4) of the α_6 receptors were still present (Fig. 5E), indicating that ~37% of all α_6 receptors contained a β_3 subunit. A subsequent chromatography on a β_2(350–404) column removed an additional 12% of α_6 receptors. The remaining 51 ± 8% (mean ± SD; n = 3) of α_6 receptors thus contained only β_2 subunits.

Interestingly, a comparison of the proportion of α_6 receptors retained by the β subunit-specific columns from the original extract with that remaining in the extract after removal of the other two β subunits revealed striking and statistically significant

Table 1. Relative and absolute abundancy of α_6 receptor subtypes in rat cerebellum

<table>
<thead>
<tr>
<th>Subunit composition</th>
<th>Percentage of α_6 receptors</th>
<th>Percentage of GABA_A receptors</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_6α_6β_1γ_2</td>
<td>37 ± 3</td>
<td>16.7</td>
</tr>
<tr>
<td>α_6α_6β_1δ</td>
<td>32 ± 3</td>
<td>14.4</td>
</tr>
<tr>
<td>α_6α_6β_2γ_2</td>
<td>15 ± 3</td>
<td>6.8</td>
</tr>
<tr>
<td>α_6α_6β_3δ</td>
<td>14 ± 2</td>
<td>6.3</td>
</tr>
</tbody>
</table>

Data presented are calculated from three experiments performed as shown in Fig. 3 and from three experiments performed as shown in Fig. 4 and are means ± SD. Percentage of GABA_A receptors was calculated from these data by taking into account that only 45 ± 1% of all GABA_A receptors in cerebellum contain the α_6 subunit.

Figure 5. Quantification of α_6 receptors containing different β subunits. [3H]muscimol binding to GABA_A receptors immunoprecipitated with α_6(1–15) antibodies was determined in cerebellar membrane extracts before or after chromatography on a β_1(350–404), β_2(351–405), or β_3(345–408) immunoaffinity column as indicated. Data are presented as percentage of [3H]muscimol binding sites precipitated by α_6(1–15) antibodies in the original extract and in the sum of the [3H]muscimol binding sites in the efflux of the other two β subunits retained in the initial anti-β immunoaffinity columns (A, C, E) was significantly different (Student’s t test) from that remaining in the extract after the other two β subunits had been removed (efflux, B, D, F): A, efflux D (p = 0.007); C, efflux F (p = 0.002); E, efflux B (p = 0.001).

[3H]Muscimol binding sites present in the original extract were significantly different (p = 0.001) from the sum of the [3H]muscimol binding sites retained on the initial anti-β immunoaffinity columns (A + C + E) and were also significantly different (p = 0.007) from the sum of the [3H]muscimol binding sites found in the efflux of B, D, and F.
differences (see legend to Fig. 5). Although 15% of all α_x receptors were removed by the β_3 column from the original extract (Fig. 5A), only 10% of α_x receptors were left after elimination of all β_2 and β_3 subunits (Fig. 5D). Although 66% of all α_x receptors were removed by the β_2 column from the original extract (Fig. 5C), only 51% of these receptors were left after removal of β_1 and β_2 receptors (Fig. 5F). Finally, although 37% of all α_x receptors were removed by the β_3 column from the original extract (Fig. 5E), only 21% of these receptors were left after removal of β_1 and β_2 subunits (Fig. 5B).

In addition, the sum of α_x receptors retained by the β_1, β_2, and β_3 columns from the original extract was 118% (Fig. 5A,C,E), whereas the sum of the receptors remaining in the extract after two of the three β subunits had been removed was 82% (Fig. 5B,D,F). These differences could not be explained by a cross-reactivity of the antibodies, because β_1, β_2, or β_3 antibodies were unable to precipitate recombinant $\alpha_x\beta_x\gamma_x$ receptors containing the wrong β subunit (experiments not shown). These data therefore suggest that 18% of the α_x receptors in cerebellum contain more than one type of β subunit. Because of the variability of binding data, however, a further calculation of the proportion of receptors containing $\beta_1\beta_2$, $\beta_1\beta_3$, or $\beta_2\beta_3$ subunit combinations does not provide reliable results.

DISCUSSION

Composition and quantitative importance of GABAA receptors containing α_x subunits

In the present investigation, 13 antibodies, each one highly specific for a different GABAA receptor subunit, were used to investigate the subunit composition and quantitative importance of GABAA receptors containing α_x subunits. Chromatography on an $\alpha_x(429–434)$ immunoaffinity column quantitatively removed α_x subunits and 45 ± 1% of all GABAA receptors from cerebellar extracts, supporting previous conclusions (Khan et al., 1996; Jones et al., 1997) that 45% of all GABAA receptors in the cerebellum contain the α_x subunit. In the eluate of this column, in addition to the α_x subunit, only α_x, β_1, β_2, β_3, γ_x, and δ subunits of GABAA receptors could be demonstrated, suggesting that any one of these subunits can be colocalized with α_x subunits in native GABAA receptors.

In contrast, α_x, α_4, α_5, γ_1, or γ_3 subunits did not co-purify with α_x subunits. This is to be expected for α_2, α_3, α_5, or γ_1 subunits, which are not expressed in the granule cells of cerebellum (Persohn et al., 1992; Wisden et al., 1992). The existence of minor amounts of receptors containing γ_1 and α_x subunits has been demonstrated previously after purification of GABAA receptors by a γ_1 subunit-specific immunoaffinity column (Tögel et al., 1994). The observation that α_x subunits did not co-purify with α_x subunits, although these subunits are expressed in cerebellar granule cells and could be identified in cerebellar extracts (E. Bencsits, V. Ebert, and W. Sieghart, unpublished data), indicates that receptors containing α_x as well as α_x subunits, if they exist at all, are quantitatively not important. Thus, the great majority of α_x subunit-containing GABAA receptors is composed of α_x and α_1, β_1, β_2, β_3, γ_x, or δ subunits.

A new strategy for the determination of the subunit composition and quantitative importance of hetero-oligomeric receptors

A random assembly of α_x subunits with six other subunits into pentameric receptors (Nayem et al., 1994; Tretter et al., 1997) would result in a total of 210 GABAA receptor subtypes with distinct subunit composition. It is impossible to isolate a single receptor subtype from an even much less heterogeneous mixture by immunoenrichment. In the present study, therefore, immunodepletion was used to purify and characterize GABAA receptors. Receptors containing one of the co-purifying subunits were eliminated from extracts by chromatography on subunit-specific antibodies. Quantification and Western blot analysis of α_x receptors remaining in the extract then allowed us to estimate the proportion of α_x receptors containing the eliminated subunit and to determine the composition of the remaining receptors. Repeating this procedure by eliminating all co-purifying subunits in parallel or subsequent experiments finally allowed us to identify the subunit composition of α_x receptor subtypes and to determine their quantitative importance.

α_1, γ_2, or δ subunit-containing α_x receptors

In agreement with previous studies (Khan et al., 1994, 1996; Pollard et al., 1995), 52% of the $[^3\text{H}]$muscimol binding sites precipitated by $\alpha_x(1–15)$ antibodies could be eliminated from cerebellar extracts by an α_1 subunit-specific column, indicating that $\alpha_x\alpha_1$ receptors are as abundant as receptors containing homogeneous α_x subunits (Table 1). Other experiments indicated that 70% of α_x receptors could be eliminated from cerebellar membrane extracts by a γ_x subunit-specific (Fig. 4) and 30% by a δ subunit-specific column (Fig. 3). In addition, it was demonstrated that γ_x and δ subunits did not co-purify with each other, supporting the conclusion that these subunits do not co-exist in the same GABAA receptor (Quirk et al., 1995).

Furthermore, the number of $[^3\text{H}]$Ro 15-4513 binding sites removed from cerebellar extracts by $\alpha_x(429–434)$ or $\alpha_x(1–15)$ antibodies was 69% or 71% of the $[^3\text{H}]$muscimol binding sites eliminated by these antibodies, respectively. Because $[^3\text{H}]$Ro 15-4513 binding sites are present on GABAA receptors containing $\alpha_1\gamma_2$ or $\alpha_2\gamma_2$ subunits and $[^3\text{H}]$muscimol binding sites are present on receptors composed of $\alpha_2\beta_x\gamma_x$ and $\alpha_3\delta$ subunits (Quirk et al., 1995; Sieghart, 1995; Zecula et al., 1996), these data agree with the conclusion that 70% of the α_x receptors contained a γ_x subunit. The observation that the $[^3\text{H}]$muscimol binding sites of γ_x or δ subunit-containing α_x receptors add up to 100% additionally indicates that all α_x receptors contain either a γ_x or a δ subunit. From this it can be concluded that receptors composed of $\alpha_x\beta_x$ subunits, and consequently also those composed of $\alpha_x\gamma_x$ subunits, which would contribute to $[^3\text{H}]$Ro 15-4513 but not to $[^3\text{H}]$muscimol binding sites, are not significantly expressed in cerebellum.

Further fractionation of the 70% α_x receptors containing γ_x subunits using an α_1 subunit-specific column indicated that 37 ± 3% of α_x receptors were composed of $\alpha_x\beta_x\gamma_x$ and 32 ± 3% of $\alpha_x\beta_x\gamma_x$ subunits. $\alpha_x\beta_x\gamma_x$ receptors have been identified previously (Khan et al., 1994, 1996; Pollard et al., 1995), and quantification of these receptors led to comparable results (Khan et al., 1994).

Recombinant receptor studies have indicated that $\alpha_x\beta_x\gamma_x$ receptors, in contrast to $\alpha_x\beta_x\gamma_x$ receptors, exhibit a high affinity $[^3\text{H}]$Ro 15-4513 binding that could not be inhibited by diazepam (Lüddens et al., 1990; Sieghart, 1995). Other studies have indicated that in GABAA receptors containing α_x and α_1 (Khan et al., 1996) or α_1 and α_3 subunits (Araujo et al., 1996), each one of the subunits expressed its characteristic benzodiazepine pharmacology. Because 32% of α_x receptors are composed of $\alpha_x\beta_x\gamma_x$, whereas 37% are composed of $\alpha_x\beta_x\gamma_x$ subunits, these two receptor subtypes are responsible for 46.4% and 53.6% of all.
[3H]Ro 15-4513 binding sites precipitated by α6(1-15) antibodies, respectively. Assuming that αβγδ receptors contain two α6 subunits (Im et al., 1995), these two receptor subtypes contain a total of 75% α6 and 27% α1 subunits. The present observation that 23 ± 2% of [3H]Ro 15-4513 binding precipitated by α6(1-15) antibodies could be inhibited by diazepam is supported by a recent study (Khan et al., 1996) and is in agreement with the conclusion that each one of the subunits expresses its characteristic benzodiazepine pharmacology.

Further fractionation of the 30% α6 receptors containing δ subunits using an α subunit-specific column indicated that 15 ± 3% of all α6 receptors were composed of α1αβδδ and 14 ± 2% of α6ββδ receptors. Although the existence of α1αβδδ receptors in cerebellum has been implicated previously (Pollard et al., 1995), their abundance was not determined.

β Subunit composition of α6 receptors

When β1-, β2-, and β3-specific immunoaffinity columns were used to eliminate GABAA receptors from cerebellar extracts in parallel experiments, it was demonstrated that the total percentage of α6 receptors removed was 118%. In the absence of a significant cross-reactivity of the β1, β2, or β3 subunit-specific antibodies, these data suggested the colocalization of different β subunits in 18% of the α6 receptors. This conclusion is supported by recent evidence indicating the colocalization of two different β subunits in native receptors (Li and De Blas, 1997). The proportion of α6 receptors containing homogeneous β subunits was then determined by measuring α6 receptors remaining in the extract after the removal of the other two β subunits. The results obtained indicated that 10, 51, or 21% of all α6 receptors contained homogeneous β1, β2, or β3 subunits, respectively. Because of the variability of binding data, a reliable estimation of the β subunit composition of the remaining 18% of α6 receptors was not possible. The observation that β1 and β2 as well as β3 subunits are co-purifying with α6 and γ2 (Fig. 3C) or α6 and δ subunits (Fig. 4C), however, indicates that the αβγδ or αβδδ receptor subtypes might exist in up to six isoforms containing different β subunit combinations (homogeneous β1, β2, or β3 subunits, β1β2, β1β3, or β2β3). The same might be true for receptors consisting of α1αβδδ or α1αβδδ subunits. Whether all of the resulting 24 α6 receptors with different subunit composition actually exist cannot be answered by this study.

Subunit stoichiometry of native α6 receptors

The present results, in agreement with studies investigating other receptors, indicate that native α6 receptors can contain two different α (Sieghart, 1995) or two different β subunits (Li and De Blas, 1997), and in addition contain either a γ or a δ subunit. Overall, these results suggest a subunit stoichiometry of two α, two β, and one γ (or one δ) subunit for native α6 receptors. This is in agreement with studies investigating the subunit stoichiometry of αβγδ (Im et al., 1995) or of other recombinant receptors (Chang et al., 1996; Tretter et al., 1997). The method of subtractive purification of GABA_A receptors developed in the present study can be used to investigate whether all native α6 receptors exhibit this stoichiometry or whether other stoichiometries also exist (Backus et al., 1993). In addition, this method can also be applied to the investigation of other hetero-oligomeric receptors.

REFERENCES

Quirk K, Gillard NP, Ragan CI, Whiting PJ, McKernan RM (1994) Model of subunit composition of γ-aminobutyric acid A receptor sub-
types expressed in rat cerebellum with respect to their α and γ/δ subunits. J Biol Chem 269:16020–16028.