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It is well established that multiple stimulus dimensions (e.g.,
orientation and spatial frequency) are mapped onto the surface
of striate cortex. However, the detailed organization of neurons
within a local region of striate cortex remains unclear. Within a
vertical column, do all neurons have the same response selec-
tivities? And if not, how do they most commonly differ and why?
To address these questions, we recorded from nearby pairs of
simple cells and made detailed spatiotemporal maps of their
receptive fields. From these maps, we extracted and analyzed
a variety of response metrics. Our results provide new insights
into the local organization of striate cortex. First, we show that
nearby neurons seldom have very similar receptive fields, when
these fields are characterized in space and time. Thus, there
may be less redundancy within a column than previously
thought. Moreover, we show that correlated discharge in-

creases with receptive field similarity; thus, the local dissimilar-
ity between neurons may allow for noise reduction by response
pooling. Second, we show that several response variables are
clustered within striate cortex, including some that have not
received much attention such as response latency and tempo-
ral frequency. We also demonstrate that other parameters are
not clustered, including the spatial phase (or symmetry) of the
receptive field. Third, we show that spatial phase is the single
parameter that accounts for most of the difference between
receptive fields of nearby neurons. We consider the implica-
tions of this local diversity of spatial phase for population
coding and construction of higher-order receptive fields.
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Columnar organization is a common feature of cortical architec-
ture (Mountcastle, 1997). Neurons along a path perpendicular to
the cortical surface often have similar functional properties, and
these properties often vary systematically across the surface of the
cortex. In primary visual (or striate) cortex, systems of columns
are well documented for orientation preference, ocular domi-
nance, and retinotopic location (Hubel and Wiesel, 1977). Pre-
ferred spatial frequency also has an orderly representation, al-
though the details of this organization remain controversial
(Maffei and Fiorentini, 1977; Tootell et al., 1981; Berardi et al.,
1982; Tolhurst and Thompson, 1982; Bonhoeffer et al., 1995;
Shoham et al., 1997). Directionality columns have also been
reported (Payne et al., 1980; Tolhurst et al., 1981; Berman et al.,
1987; but see Bonhoeffer et al., 1995; Shmuel and Grinvald, 1996;
Weliky et al., 1996). It remains unknown, however, whether there
are columns for other important response properties of striate
neurons, such as receptive field (RF) shape, response latency, and
temporal frequency selectivity. Although the extant literature
suggests that some response parameters are clustered (usually in
the form of columns) and others are not, a quantitative compar-
ison of the degree of clustering has not been done for a wide
range of parameters.

Columnar organization is most commonly studied using single-
unit recordings (e.g., Hubel and Wiesel, 1974), metabolic labeling
(e.g., Hubel et al., 1977), and optical imaging techniques (e.g.,
Ts’o et al., 1990). In most of these studies, the approach is to map
how a small number of response variables change across the
surface of the cortex. For example, some studies have examined
the joint layout of orientation and ocular dominance columns
(e.g., Payne and Berman, 1983; Bartfeld and Grinvald, 1992;
Obermayer and Blasdel, 1993) or orientation and direction do-
mains (Berman et al., 1987; Shmuel and Grinvald, 1996; Weliky et
al., 1996), and a recent study (Hübener et al., 1997) has examined
the relationships between three systems of columns (orientation,
ocular dominance, and spatial frequency). With these methodol-
ogies, however, it has not been possible to characterize more than
a few response properties simultaneously. Hence, little is known
about the inter-relationships between many different parameters
within a column.

Not all aspects of functional organization can be studied by all
methods. For example, it is currently not possible to study re-
sponse parameters such as visual latency and receptive field shape
(phase) using imaging techniques. Moreover, although metabolic
labeling and imaging techniques can visualize columns in vivo,
their resolution is too coarse to say anything about the functional
diversity of neurons within a column. In this study, we adopt an
approach that allows us to measure many response properties of
single neurons and enables us to ask detailed, quantitative ques-
tions about functional diversity within cortical columns.

Knowledge of the micro-organization of response properties
within a cortical column has important implications for popula-
tion coding of visual information. In an orientation column, for
example, there are thousands of neurons with similar orientation
preference and receptive field location. Therefore, nearby neu-
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rons may provide highly redundant signals concerning the visual
scene. Alternatively, neurons within an orientation column may
vary substantially along other response dimensions (e.g., recep-
tive field shape) that typically are not, or cannot be, measured in
studies of functional architecture. Thus, to evaluate the amount
of redundancy within the population code, it is necessary to
characterize the responses of neurons with a method that cap-
tures the full range of the sensitivity of a neuron in a multidi-
mensional parameter space (see also, Gawne and Richmond,
1993).

In this study, we have used an approach that is complementary
to that of previous investigations. Instead of describing how a
single response variable changes across a large patch of cortex, we
have measured a broad array of response properties for pairs of
nearby simple cells. This is achieved by measuring complete
spatiotemporal RF profiles with the use of a reverse correlation
technique (Jones and Palmer, 1987; DeAngelis et al., 1993a).
Because simple cells exhibit approximately linear spatiotemporal
summation (Movshon et al., 1978; DeAngelis et al., 1993b), these
measurements yield accurate estimates of many useful response
properties, including metrics such as RF size and shape, response
latency, spatial and temporal frequency tuning, and direction
selectivity. Note, however, that multi-input techniques are re-
quired to extract similar data from complex cells (Gaska et al.,
1994); thus, we focus exclusively on simple cells here. From our
measurements, we can determine which RF parameters are clus-
tered within a local region of striate cortex. A weakness of our
approach, however, is that we cannot distinguish columnar orga-
nization from other possible forms, such as laminar organization,
because we only record from nearby cells. Nevertheless, this
method can unambiguously identify those parameters that are not
clustered, and thus not organized in columns.

In this report, we address the following five questions. (1) How
similar are the spatiotemporal RFs of nearby neurons? Our re-
sults show that RFs of nearby simple cells are seldom very similar
when compared in the space–time domain, suggesting that there
may be less redundancy in the population code than previously
thought. (2) Which RF parameters are clustered within a cortical
column? The strength of clustering varies widely among the
different response parameters. Orientation and spatial frequency
show the strongest clustering, and there is modest clustering for
preferred temporal frequency, response latency, and response
duration. We find no evidence of clustering, however, for the
spatial phase of the RF. (3) When nearby RFs differ, which
parameters account for most of the difference? The single most
important factor distinguishing RFs of nearby cells is spatial
phase. Most other RF parameters account for little cell to cell
variation within a local region of striate cortex. (4) How do the
above aspects of functional organization change during postnatal
development? Our results show that the micro-organization of
striate cortex is quite mature at postnatal age 4 weeks. (5) What
are the functional implications of local diversity in spatial phase?
We suggest that this diversity may permit efficient construction of
complex cell RFs from simple cell inputs. In addition, our finding
that neurons with similar RFs tend to have correlated responses
suggests that pooling across nearby simple cells with different
spatial phases may yield an improvement in signal-to-noise ratio.

MATERIALS AND METHODS
Procedures for animal preparation and maintenance, surgery, single-unit
recording, and RF mapping have been described in detail elsewhere
(DeAngelis et al., 1993a, 1995a). Only a brief account is provided here,

with an emphasis on those aspects of the methodology most relevant to
the present study. All animal care and experimental guidelines con-
formed to those established by the National Institutes of Health.

Experiments were performed with adult cats and kittens at 4 postnatal
weeks. Under halothane (1.5–3% in O2 ) anesthesia, a tracheostomy was
performed, and a tracheal tube was inserted. The animal was then placed
in a stereotaxic frame and secured with ear bars and a mouth bar. For
adult cats, a 5 mm craniotomy was centered at Horsley–Clarke coordi-
nates P4 L2, and the dura was reflected. For 4-week-old kittens, the
craniotomy was centered 2–3 mm anterior and 1–2 mm lateral to the
branch point of the lambda suture. Paralysis was induced with a loading
dose of gallamine triethiodide (Flaxedil) and maintained with a contin-
uous infusion (10 mg z kg 21 z hr 21) of Flaxedil. Sodium thiamylal (Suri-
tal) was also infused at a rate of 1 mg z kg 21 z hr 21 to maintain an
adequate level of anesthesia. Artificial respiration was performed with a
gas mixture of 70% N2O, 29% O2 , and 1% CO2. Vital signs (ECG, EEG,
and expired CO2 level) were recorded continuously (at 5 min intervals)
by a PC-based physiological monitoring system (Ghose et al., 1995).

To record the activity of single units from striate cortex (area 17),
tungsten-in-glass electrodes were lowered into a region of cortex exposed
by craniotomy. Electrode penetrations were made at oblique angles to the
cortical surface and usually traversed 4–5 mm along the medial bank of
the postlateral gyrus. Agar at 38°C was applied around the electrodes to
prevent desiccation, and melted wax was layered over the agar to create
a sealed chamber and reduce cortical pulsation. In early experiments,
spike sorting was achieved using an amplitude-based window discrimi-
nator with two reference levels (allowing two single units with different
spike amplitudes to be discriminated), and spike occurrences were re-
corded with 1 msec resolution. In later experiments, spike times were
recorded with 40 msec resolution, and spikes were sorted using a custom-
made device (Ohzawa et al., 1996). This custom spike sorter allows the
experimenter to isolate as many as five single units from a single elec-
trode by defining a series of voltage–time constraint points. This latter
method allowed us to easily discriminate spike waveforms on the basis of
shape, as well as amplitude. All neuronal pairs discussed in this paper
were recorded from the same electrode.

Visual stimuli were generated by computer and displayed on a pair of
video monitors, one for each eye, that the cat viewed by means of beam
splitters. The video displays (Mitsubishi Electronics) had a resolution of
1024 3 804 pixels, subtending 28° 3 22° at a viewing distance of 57 cm,
and were refreshed at 76 Hz. The mean luminance of the displays, as
viewed through the partially reflecting beam splitters, was 12 cd/m 2.

Experiments typically lasted for 4 d. At the end of an experiment, the
animal was administered an overdose of pentobarbital sodium (Nembu-
tal), and cortical tissue was prepared for histological examination. Elec-
trode tracks were reconstructed, and cortical laminae were identified.
This analysis confirmed that all cells were recorded from area 17 and that
the majority of simple cells were recorded from layers 3, 4, and 6.

Experimental protocol. When we were able to simultaneously isolate
action potentials from two or more simple cells, we performed the
following battery of tests. First, the preferred orientation and spatial
frequency of each cell, as well as the size and location of its RF, were
estimated using a computerized “search” program. Next, quantitative
measurements of the orientation and spatial frequency tuning of each cell
were obtained by presenting randomized sequences of drifting sinusoidal
gratings in which one of these parameters was systematically varied. Each
grating was presented for a period of 4 sec, during which peristimulus
time histograms of the responses were accumulated. Stimuli of each
orientation or spatial frequency were presented 4–6 times, and responses
were averaged. For binocular cells, tuning curves were measured for each
eye by randomly interleaving left and right eye stimuli.

To measure spatiotemporal RF profiles for pairs of simultaneously
recorded simple cells, we used a reverse correlation technique (Jones and
Palmer, 1987). In this method, the visual stimulus is a sequence of small
bright and dark rectangular bars that are flashed in rapid succession at
randomly chosen locations on a two-dimensional stimulus grid. The
stimulus grid, which typically consisted of 20 3 20 spatial locations, was
centered over the RFs of the recorded neurons and was large enough to
cover the entire RFs. Both the stimulus grid and the small bar stimuli
were oriented to match the preferred orientation of the cells, as mea-
sured with drifting gratings. When the preferred orientations of a pair of
cells differed somewhat (see Fig. 11 A), we chose a stimulus orientation
that roughly split the difference. The bar stimuli were typically ;1.5° long
(range, 1.0–2.0°) and 0.5° wide (range, 0.3–1.2°) and were usually pre-
sented for a duration of 40 msec (range, 26–65 msec). However, these
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parameters were adjusted according to the spatial and temporal resolu-
tion of the responses of the cells, to elicit the largest responses possible
without causing any substantial blurring of the RF profiles (DeAngelis et
al., 1993a). When a pair of binocular simple cells was recorded, we
generally mapped RFs by stimulating through the eye that yielded the
largest responses. In a few cases, we also mapped RFs through the other
eye (see Fig. 17).

To construct spatiotemporal RF maps, such as those shown in Figure
1, we compute a cross-correlation between the stimulus sequence and the
recorded spike trains over a range of correlation delays between stimulus
and response (see DeAngelis et al., 1993a; McLean et al., 1994; Ohzawa
et al., 1996, for additional details). If there is coupling between the
stimulus and response at a particular correlation delay (T), then a spatial
pattern of bright- and dark-responsive subregions will emerge in the RF
profiles (Fig. 1, top); otherwise, the profiles will show no structure.
Details of the theory and assumptions behind this technique are dis-
cussed elsewhere (DeBoer and Kuyper, 1968; Jones and Palmer, 1987;
DeAngelis et al., 1993a). For the present purpose, we note that the RF
profile obtained from a simple cell using this method is roughly equiv-
alent to the spatiotemporal impulse response of the cell (DeAngelis et
al., 1995b; Ohzawa et al., 1996). Moreover, because simple cells behave
linearly under steady-state conditions, these RF profiles can be used to
predict, with reasonable accuracy, the responses of simple cells to a
variety of different stimuli (DeAngelis et al., 1993b; McLean et al., 1994).

In this study, we sometimes mapped RFs using a spatially one-
dimensional (1-D) variant of the reverse correlation stimulus. The visual

stimuli in these cases were long, thin bars (slightly longer than the RF in
length, 0.3–1.0° in width) that were presented at 20 different positions
along the axis perpendicular to the preferred orientation of the cells.
Thus, the RF profile obtained in these cases is a function of only one
dimension of space, instead of two (i.e., the raw data form an X–T plot,
instead of an X–Y–T plot; see Fig. 1). This 1-D version of the method was
often used to map RFs of neurons from 4-week-old kittens [for which
response rates are generally much lower than adults (Freeman and
Ohzawa, 1992)], because the long bar stimuli elicit a better response than
short bars. We also used the 1-D version of the stimulus to reduce the
overall recording time when it was difficult to maintain adequate isolation
of two action potentials for a prolonged period of time.

RESULTS
Altogether, we obtained complete data sets for 132 cells. A
complete data set consisted of an X–Y–T or X–T profile and, in all
but 19 cases, responses to sine-wave gratings of variable orienta-
tion and spatial frequency. This total population consisted of 39
pairs of simple cells and two triplets (for a total of 45 pairings)
from 21 adult cats, along with 21 pairs of simple cells recorded
from 10 kittens at 4 postnatal weeks. The number of cell pairs
recorded from each animal was small because many single neu-
rons from these animals were recorded for other studies. Repre-

Figure 1. Spatiotemporal RF profiles for a pair of simple cells recorded simultaneously from the same microelectrode. Each RF profile describes the
sensitivity of the cell to luminance increments and decrements as a function of space (X, Y) and time (T). For each neuron, four spatial (X–Y ) cross
sections, taken at equally spaced time increments, are shown (top). In addition, each RF profile is summarized as an X–T plot (bottom) by integrating
the X–Y–T data along the Y-axis, which is approximately parallel to the preferred orientation of each cell. Each X–Y or X–T profile is plotted as an
isoamplitude contour map, in which solid contours represent responses to luminance increments, and dashed contours denote responses to luminance
decrements. For additional details concerning the construction of RF profiles, see our previous papers (DeAngelis et al., 1993a, 1995a; Ohzawa et al.,
1996). For this pair of simple cells, the X–Y–T SI is 0.17 (see Results for details).
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sentative data are shown in Figure 1 for a pair of simple cells
whose spike trains were recorded simultaneously in response to a
pseudorandom reverse-correlation stimulus (see Materials and
Methods). The data are presented in an X–Y–T coordinate sys-
tem, depicting two dimensions of space and one of time. Note
that X and Y are always defined such that the Y-axis is parallel to
the preferred orientation of the neuron, and the X-axis is orthog-
onal. Spatial (X–Y ) RF profiles are shown for four different time
delays (top). Contour density depicts response strength, and it is
clear in this case that the strongest response was obtained for a
correlation delay of 60 msec. If we integrate along the axis
parallel to that of the preferred orientation of the cell (the Y-axis
of the cube), we are left with an X–T representation (bottom). For
further details about these spatiotemporal profiles, see DeAngelis
et al. (1993a) and Ohzawa et al. (1996).

The major question that we address in this study is: how similar
are the spatiotemporal RFs of nearby pairs of simple cells, and in
which respects do they differ? For the cell pair of Figure 1, it is
clear that the two RF profiles have a similar time course and that
both cells exhibit a moderate degree of space–time inseparability
in their X–T profiles [an X–T profile, R(X,T), that is space–time
inseparable cannot be described as the product of a spatial profile,
G(X ), and a temporal profile, H(T) [R(X,T) Þ G(X) 3 H(T)]. As
shown previously, most simple cells in striate cortex do not have
space–time separable RFs. Neurons with inseparable RFs tend to
be direction-selective, whereas those with separable RFs gener-
ally do not (McLean and Palmer, 1989; DeAngelis et al., 1993a;
McLean et al., 1994)]. This inseparability manifests itself in the
form of RF subregions that are tilted to the right in the X–T
domain (seen most clearly in Fig. 2A, which shows X–T data for
the same pair of cells). These two cells differ mainly in the spatial
structure (or symmetry) of their RFs. This difference can be
observed in each of the four spatial profiles shown at the top of
Figure 1. For example, at T 5 60 msec, cell 1 has a dark-excitatory
RF subregion (dashed contours) to the left of a bright-excitatory
region (solid contours), whereas cell 2 has a weak bright-excitatory
region to the left of a stronger dark-excitatory region.

Although differences in RF structure between the two neurons
of Figure 1 are clear by inspection, we want to quantify and
summarize these differences for a population of cell pairs. In what
follows, we describe two methods of analysis that provide com-
plementary information. The first method is model-free and pro-
vides an estimate of the degree of similarity between two RF
profiles. This method has the advantage of simplicity, but it
cannot tell us how two RFs are different. The second method
involves fitting a model to the space–time RF profiles of pairs of
neurons. Although more complicated, this analysis allows us to
make quantitative, parametric comparisons between pairs of
cells.

Model-free analysis of similarity
To quantify the degree of similarity between RFs of two neurons,
we compute a similarity index (SI) as follows:

SIS 5

O
S

~U~S!pV~S!!

ÎO
S

U~S!2 O
S

V~S!2
, (1)

where U(S) and V(S) are RF profiles for a pair of neurons, and
S is the N-dimensional space in which the receptive fields are
defined. The numerator of this quantity is simply the inner

product of the two RF profiles, and the denominator normalizes
the index to the range from 21.0 to 1.0. If the two RF profiles are
identical but one is the inverse of the other, then SIS 5 21.0. If
U(S) and V(S) are identical, SIS 5 1.0. If, for example, U(S) and
V(S) form a quadrature pair (i.e., they differ in phase by 90°), then
SIS 5 0. For the example of Figure 1, where the two RF profiles
clearly differ in spatial phase, SIX–Y–T 5 0.17.

By computing similarity indices for various cross sections
through the X–Y–T data, we can compare the degree to which two
RFs differ along various dimensions. Figure 2 shows five different
cross sections through the data of Figure 1. Panels A and B show
two-dimensional (2-D) cross sections (X–T and X–Y, respectively)
that are obtained by slicing through the X–Y–T data at the optimal
values of Y and T, respectively. Panels C–E show one-dimensional
cross sections through the overall peak in the X–Y–T data. The X
and T cross sections (Fig. 2C,E) are obtained by slicing through the
peak of the X–T data (horizontal and vertical lines, respectively,
through the profiles in Fig. 2A). Similarly, the Y cross section is

Figure 2. Receptive field cross sections and their corresponding SIs are
shown for the same pair of simple cells depicted in Figure 1. A, X–T
profiles. The similarity index computed in the X–T plane is SIX–T 5 0.26.
B, X–Y cross sections taken at T 5 60 msec. SIX–Y 5 0.23. C, One-
dimensional spatial cross sections taken parallel to the X-axis (i.e., per-
pendicular to the preferred orientation axis of the cells). Each X cross
section was taken at T 5 60 msec, as shown by the horizontal lines through
the X–T profiles in A. The SIX is 0.33, reflecting the fact that there is a
clear difference in spatial phase between X profiles for the two cells. D,
One-dimensional spatial cross sections taken parallel to the Y-axis. The
X-coordinate for each Y cross section is shown by the vertical lines through
the X–Y profiles in B; T 5 60 msec. SIY is 0.96, indicating that the Y cross
sections for the two cells are quite similar. E, Temporal cross sections are
shown. Vertical lines through the X–T data in A give the X values at which
these cross sections were obtained. Note that the two temporal profiles
have a similar shape, resulting in an SIT value of 0.97.
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obtained by slicing through the peak of the X–Y data (Fig. 2B,
vertical line).

Comparison of similarity indices for the five cross sections of
Figure 2 reveals that most of the difference between this pair of
RFs occurs along the X dimension. The Y and T cross sections for
the two cells are quite similar (SIY 5 0.96 and SIT 5 0.97),
whereas the X cross sections have markedly different shapes (SIX

5 0.33). Moreover, the 2-D cross sections have only moderately
lower similarity indices than the X cross section (SIX–T 5 0.26,
SIX–Y 5 0.23). This pattern of results is typical of most of the
pairs of simple cells that we recorded from both adult cats and
kittens.

Before examining population data, it is important to point out
that our 1-D and 2-D cross sections were not chosen to maximize
or minimize the similarity index. It is clear, for example, that the
shape of the X cross section will generally depend on the values of
T and Y at which the cross section is taken. To avoid subjective
bias, we always took cross sections through the location of the
absolute maximum in the X–Y–T data (or through the overall
maximum in the X–T data when the mapping stimuli were one-

dimensional; see Materials and Methods). Thus, by adopting a
consistent criterion, we are able to pool data across cell pairs.

Figure 3 shows distributions of similarity indices for all pairs of
neurons in our sample. Despite the fact that 1-D cross sections
were not chosen to maximize SI, the distributions of SIT and SIY

(Fig. 3A,B, respectively) are strongly bimodal, with most of the
values near 1.0 or 21.0. Thus, T and Y cross sections tend to be
nearly identical in shape for simultaneously recorded pairs of
simple cells (allowing for an inversion of sign, which occurs when
the strongest subregions of the two RFs have opposite polarities;
e.g., see Fig. 14A). In contrast, the distribution of SIX (Fig. 3C) is
roughly uniform, showing that many pairs of nearby simple cells
differ substantially along the X dimension. Distributions of SIX–Y

(Fig. 3D) and SIX–T (Fig. 3E) also include a broad range of values,
but are shifted somewhat more toward an SI of zero. Finally, the
distribution for the full X–Y–T data (Fig. 3F) is centered around
an SIX–Y–T of zero. Note, in particular, the lack of data points near
1.0 and 21.0 in the SIX–Y–T distribution, indicating that the RFs
of nearby simple cells are generally not very similar when one
considers the full X–Y–T profiles. Although the sample of cell

Figure 3. Distributions of similarity in-
dices for populations of simple-cell pairs
from kittens (open bars) and adult cats
( filled bars). All pairs of neurons were
recorded simultaneously from a single
microelectrode. Each histogram gives the
distribution of SI for a different cross
section through the spatiotemporal RF
profile, as illustrated in Figure 2. Panels
A, C, and E show data for pairs of neu-
rons (n 5 45 pairs for adults; n 5 21 for
kittens) for which RFs were mapped in
either one or two spatial dimensions (see
Materials and Methods). Panels B, D,
and F show data for a subpopulation of
pairs (n 5 29 pairs for adults; n 5 4 for
kittens) for which full X–Y–T profiles
were obtained. The Y, X–Y, and X–Y–T
cross sections are defined only for this
latter group of neurons.

4050 J. Neurosci., May 15, 1999, 19(9):4046–4064 DeAngelis et al. • Micro-Organization of Striate Cortex



pairs from 4-week-old kittens is substantially smaller than that for
adults, the data of Figure 3 show the same basic pattern for the
two age groups.

Figure 4 summarizes the SI data. In this graph, the median
absolute value of the SI is plotted for each different RF cross
section (sorted in decreasing order). Two-factor ANOVA reveals
a highly significant main effect of RF cross section (F 5 54.8; p ,,
0.001), with no significant difference between cats and kittens
(F 5 1.89; p 5 0.17). The median SIX is significantly smaller than
the median values of SIY and SIT (Mann–Whitney U test; p ,,
0.001 for both comparisons, cats and kittens pooled), and the
median SIX is significantly larger than the median values for SIX–Y

( p 5 0.012), SIX–T ( p , 0.001), and SIX–Y–T ( p , 0.001). For the
full X–Y–T data, the median SI values are 0.22 and 0.20 for cats
and kittens, respectively. The pooled median value of SIX–Y–T is
significantly smaller ( p , 0.01) than that for all other cross
sections, except the X–T cross section ( p 5 0.094).

Receptive field similarity and correlated discharge
Thus far, we have examined the RF of each simple cell separately
and have shown that nearby pairs of neurons are often dissimilar.
Here, we examine whether there is a relationship between RF
similarity and the joint firing of two nearby neurons. The spike
discharges of cell pairs with similar RFs might be correlated
because they share sources of common input. For example, if two
simple cells each have an ON (bright) subregion at a given
position in visual space, then both cells may be expected to
receive input from LGN neurons with an ON-center at that point
in space (Reid and Alonso, 1995). Alternatively, responses of a
pair might be correlated if one neuron provides direct input to the
other. In both of these cases, we would expect correlated dis-
charge to be strongest between pairs of neurons with similar RFs.

To examine the relationship between RF similarity and corre-

lated discharge, we constructed cross-correlograms from the re-
sponses of each pair of neurons to the same visual stimulus used
to map their RFs. Figure 5 shows RF profiles and cross-
correlograms for two pairs of simple cells. Figure 5A shows X–T
profiles for a pair of cells with fairly similar RFs (SIX–T 5 0.70).
The cross-correlogram for this pair (Fig. 5B) has a sharp peak
centered ;8 msec to the left of zero, suggesting polysynaptic
excitation from cell 1 to cell 2. In contrast, Figure 5D shows a
correlogram with a broad peak centered at zero, consistent with
the interpretation that these two neurons receive common input.
The RF profiles associated with this broad correlogram exhibit a
substantial degree of similarity (Fig. 5C; SIX–T 5 0.56).

Note that Figure 5, B and D, shows raw correlograms. For eight
pairs of neurons, our reverse correlation procedure included
repeat presentations of the same visual stimulus pattern, allowing
us to construct a shuffled correlogram (i.e., shift-predictor). All
but one of these shuffled correlograms was flat, suggesting that
peaks observed in the raw correlogram generally have a neural
origin. For many pairs, however, we could not construct shift
predictors. Thus, in general, we cannot rule out the possibility
that some of the correlation is caused by stimulus coordination.
Whether the correlation results from neural connectivity or stim-
ulus coordination, two neurons with highly correlated discharges
still carry redundant information. Thus, for our purposes (see
Discussion), this distinction is not crucial.

Approximately half of the pairs with synchronous discharges
exhibited sharp peaks with latencies and widths on the order of a
few milliseconds. Since we have never observed similar features
in shuffled correlograms, these sharp peaks appear to indicate
monosynaptic connections (Ghose et al., 1994a). Because sharp
peaks were only seen between cells with quite similar RFs (SIX .
0.5), these data suggest that excitatory local connections are
largely limited to cells with similar functional properties. Thus,
local connections, like long-range connections (Ts’o et al., 1986),
appear to be functionally specific.

To quantify the strength of correlated discharge for each pair
of neurons, we normalized each bin in the raw cross-correlogram
by the number of coincidences that one would expect if the two
spike trains were independent Poisson processes having the ob-
served firing rates (Melssen and Epping, 1987). We then com-
puted an average over a 5 or 10 msec window centered around the
peak in the correlogram. We refer to this quantity as the normal-
ized cross-correlation.

Figure 6 shows that normalized cross-correlation is correlated
with RF similarity. SI values for X, X--T, and X–Y–T profiles,
respectively, are plotted in Figure 6, A–C. The dependence of
normalized cross-correlation on SI is statistically significant (AN-
COVA, F 5 35.2; p , 0.0001), and there is no significant inter-
action between age and similarity index (F 5 1.2; p 5 0.27),
indicating that the slope of the relationship between normalized
cross-correlation and SI does not differ between cats ( filled cir-
cles) and kittens (open circles). Thus, our data show that neurons
with similar RFs tend to exhibit more correlated discharge. Of
course, one might not expect any correlated discharge between
pairs of neurons with opposite RFs (i.e., SI 5 21.0) because such
a pair would generally not have temporally overlapping patterns
of discharge to a single visual stimulus. However, many pairs of
neurons in our sample (including most of those with 20.5 , SIX

, 0.5 in Fig. 6A) do exhibit temporally overlapping responses to
the reverse correlation stimulus, and yet there is little correlation
between the discharges. Thus, the lack of strong correlations

Figure 4. Quantitative summary of RF similarity indices as a function of
the dimensionality of the RF cross section. The height of each bar gives
the median absolute value of SI for the populations of cell pairs in Figure
3 (i.e., each histogram in Fig. 3 is folded about the SI 5 0 axis, and the
median value of the resultant distribution is computed). Open and filled
bars denote population data obtained from kittens and adult cats,
respectively.
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between pairs of neurons with dissimilar RFs is not simply caused
by a lack of temporal overlap.

The result of Figure 6 is consistent with previous results from
our laboratory that showed that the “bicellular” RF, which is an
RF map of the correlated spikes between two neurons, can be
predicted by the overlap between the RFs of the individual
neurons (Ghose et al., 1994b). Given the small average overlap
between cells in our sample, correlated activity may potentially
provide higher resolution information than is available from the
discharge of single neurons. Further implications of these data for
population coding are considered in the Discussion.

Parametric (model-based) analysis
Returning to the SI data, Figures 3 and 4 show clearly that much
of the difference between RFs of nearby simple cells can be
attributed to variations in RF structure along the X dimension,
whereas nearby RFs tend to be quite similar along the Y and T
dimensions. Although this analysis provides a useful index of the
degree of similarity between two RFs, it does not reveal how two
RFs differ. To illustrate this point, Figure 7 shows X–T profiles for
two pairs of cells from adult cats; each pair has an SIX–T value
close to zero. It is clear from inspection of the profiles, however,
that the two pairs of neurons differ in distinct ways. For the cell
pair of Figure 7A (SIX–T 5 20.11), the two RFs differ in spatial
phase by ;90°, but are otherwise quite similar. In contrast, the
two cells in Figure 7B clearly prefer opposite directions of mo-
tion, as evidenced by the difference in the space–time orientation
of the RF subregions (McLean and Palmer, 1989; DeAngelis et
al., 1993b). Thus, although these two RFs are similar in other
respects, the similarity index is low (SIX–T 5 0.13). We now
consider a parametric analysis that allows us to determine how
two RFs differ.

We want to characterize the differences between a pair of RFs
in terms of physiologically relevant parameters, such as spatial
frequency, direction selectivity, latency, etc. Thus, we need to
extract a meaningful set of parameters from each spatiotemporal
RF profile. We have chosen to accomplish this by developing a
RF model that can be fit to the X–T data from simple cells. As
described below, this model has a relatively simple architecture,
provides excellent fits to the X--T profiles of simple cells, and
yields physiologically meaningful parameters.

Figure 8 illustrates the basic structure of the model. An insep-
arable RF, R(X,T) (bottom), is constructed as the weighted sum
of two space–time separable components (top), each of which is
modeled as the product of a spatial waveform, G(X), and a
temporal waveform, H(T):

R~X, T ! 5 K G1~X ! H1~T ! 1 aG2~X ! H2~T !]. (2)

In this formulation, K is an overall scaling factor, and a is a
variable weight on the second separable subunit (21 , a , 1).
When a 5 0, the model RF will be separable; as a approaches 1,
the RF becomes more strongly inseparable [in this formulation, a
can be thought of as the linear component of direction selectivity
(Albrecht and Geisler, 1991; Reid et al., 1991; DeAngelis et al.,
1993a; McLean et al., 1994). In fact, there is a very strong
correlation (r 5 0.88; slope 5 1.01; p , 0.001; n 5 132) between
a and the linear component of direction selectivity, as derived
from the spatiotemporal amplitude spectrum (DeAngelis et al.,
1993b) of the X–T data]. Negative and positive values of a
correspond to opposite preferred directions of motion; thus we
refer to a as a direction selectivity index.

The spatial profile, G(X), of each separable component is
modeled as a Gabor function:

Figure 5. Spatiotemporal RF profiles and cross-correlograms for two pairs of simple cells. A, X–T profiles for a pair of simple cells from a 4-week-old
kitten that have similar RFs. B, Raw cross-correlogram for the same pair of cells as in A. The correlogram was constructed from spike trains recorded
during the reverse-correlation mapping experiment. C, X–T profiles for a pair of simple cells recorded from an adult cat. D, Raw correlogram for the
pair of neurons in C. Note that the small notch just to the left of zero is an artifact caused by the fact that the two neurons were recorded simultaneously
from a single microelectrode.
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G~ x! 5 ExpS2S2~X 2 X0!

w D 2DCos~2p sf ~X 2 X0! 1 P!,

(3)

where X0 , w, sf, and P are free parameters. X0 and w represent the
center position and width, respectively, of the Gaussian RF en-
velope; sf and P correspond to the spatial frequency and phase of
the sinusoid. The Gabor function has been shown to provide
good fits to the spatial RF profiles of simple cells, and is attractive
because it has physiologically meaningful parameters (for exam-
ple, see Field and Tolhurst, 1986; Jones and Palmer, 1987; DeAn-
gelis et al., 1993a). The spatial profiles of the two separable
components of the model differ in phase by 90° (i.e., P1 5 P2 1
90°). Thus, the two subunits are said to be in spatial quadrature.

The temporal waveform, H(T), of each separable subunit is
also modeled as a Gabor function, but is temporally skewed. This
skewing is necessary to account for the observation that temporal
response profiles of simple cells typically have a fast rising phase,
a slower decaying phase, and unequally spaced zero crossings (see
DeAngelis et al., 1993a for details). Thus, the temporal wave-
forms cannot be modeled adequately with a simple periodic
function. In our formulation, the temporal profile is a Gabor
function in a skewed time frame:

H~t! 5 ExpS2S2~TS 2 T0!

c D2DCos~2p tf ~TS 2 T0! 1 Q!, (4)

where the skewed time coordinate, Ts , is given by Ts 5 2 arctan
(b T)/p. For simplicity, the time-skewing function is chosen to be
the arctan function, which is desirable because it has only one free
parameter, b. Note, however, that this choice is quite arbitrary;
other sigmoidal functions would also be suitable. The remaining

Figure 6. Relationship between correlated discharge and receptive field
similarity. Each graph plots normalized cross-correlation (see Results for
details) against the similarity index computed from a different RF cross
section: X (A), X–T (B), and X–Y–T (C). Filled circles show data from
adult cats; open circles show data from 4-week-old kittens. Note that the
magnitude of correlated discharge is larger in the SIX and SIX–T distribu-
tions. This is because these distributions include 1-D reverse correlation
runs in which elongated bars are used. These bars are a more effective
stimulus than the smaller bars used in 2-D runs, and therefore elicit both
stronger individual responses and stronger correlated responses.

Figure 7. Examples of simple cell pairs that have SI values near zero in
the X–T domain. A, The X–T profiles of this pair of simple cells are
similar, except for a spatial phase difference of ;90° (i.e., spatial quadra-
ture); SIX–T 5 0.11. B, The two members of this pair of cells prefer
opposite directions of motion, as evidenced by the difference in the
space–time orientation of their subregions. SIX–T for this pair is 20.13.
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parameters of the temporal Gabor function have definitions anal-
ogous to those of the spatial Gabor in Equation 3.

The RF model of Figure 8 is very similar in structure to models
proposed previously (Adelson and Bergen, 1985; Watson and
Ahumada, 1985), the main difference being the exact formulation
of the temporal response profile. A detailed discussion of the
design and biological plausibility of the model is beyond the scope
of the present paper and will be the subject of a future publica-
tion. For the present purpose, it is sufficient to note that the model
has meaningful parameters and provides good fits to the RF
profiles of simple cells.

Figure 9 shows the best fits of the model to the X–T profiles of
three pairs of simple cells. We have quantified the goodness of fit
by computing a fractional error metric, which is defined as the
sum squared error divided by the sum of squares of the data. The
examples shown in Figure 9 were chosen to illustrate the quality
of fits associated with fractional errors of different magnitudes.
For the pair of cells in Figure 9A, the fractional errors are 0.062
and 0.046 (top and bottom, respectively); these were among the
better fits that we obtained. The pair of cells in Figure 9B exhibit
average quality fits, with fractional error values of 0.144 and 0.126
(top and bottom, respectively). Last, Figure 9C shows a pair of fits
that have fractional errors (0.195 and 0.254, top and bottom,
respectively) among the largest in our sample. Nevertheless, the
error profiles are quite unstructured for these cells, as well as
those in panels A and B. Thus, although the measured RF profiles

are quite noisy in Figure 9C, the model captures the basic struc-
ture of the RFs quite effectively.

The distribution of the fractional error metric for all simple
cells studied is shown in Figure 10. The mean values are 0.16 for
adult cats and 0.21 for kittens. The average fractional error for
kittens cells is significantly larger (t 5 3.06; p 5 0.003) than that
for adults, which presumably reflects the fact that the data from
kittens are somewhat noisier (because of weaker responses).

It should be noted that we have only fit the X–T profiles of
simple cells and not the full X–Y–T profiles. This was done mainly
because X–Y–T data were only measured for 29 of 45 pairs of cells
from adults and 4 of 21 pairs from kittens. Given that the RFs of
nearby pairs of simple cells are very similar along the Y dimension
(Fig. 3), however, we do not sacrifice much by neglecting the Y
dimension in the following analyses.

Clustering of receptive field parameters
Which aspects of receptive field structure are clustered within
primary visual cortex? To address this question, we compared the
values of various receptive field parameters for each pair of
simple cells studied. Figure 11 shows the raw data that were used
in these comparisons. Each panel in Figure 11 is a scatter plot
showing the value of a particular RF parameter for one neuron
(cell 2, vertical axis) plotted against the corresponding value for
a simultaneously recorded, nearby neuron (cell 1, horizontal
axis). As expected from the orderly map of orientation found in
striate cortex (Hubel and Wiesel, 1974; Blasdel, 1992), preferred
orientation is strongly clustered, with most data points tightly
grouped around a diagonal line of unity slope (Fig. 11A). Clus-
tering is also readily apparent, although somewhat weaker, for RF
width (Fig. 11C) and preferred spatial frequency (Fig. 11E).
Temporal parameters of the receptive field, peak response la-
tency (Fig. 11B), response duration (Fig. 11D), and preferred
temporal frequency (Fig. 11F), also exhibit a modest, but signif-
icant (as described below), degree of clustering. In contrast,
spatial phase (Fig. 11G) is scattered within the dashed line bound-
aries. Because this variable is circular, the largest possible phase
difference between a pair of RFs is 180°; thus, all of the data
points in Figure 11G are constrained to fall between the dashed
lines. This restriction also applies to the temporal phase data (Fig.
11H), which are plotted on the same scale as spatial phase to
facilitate comparison. Whereas the spatial phases are spread
uniformly throughout the range of possible values, the temporal
phases are confined to a narrow range. These observations are
consistent with the similarity index data of Figures 3 and 4, which
show that there is much more cell-to-cell variation in RF shape
along the X dimension than along the T dimension. Last, Figure
11 I shows that there is no apparent clustering for the direction
index, a. There is, however, a clear tendency for nearby neurons
to have the same preferred direction of motion (41 of 66 pairs in
the top right and bottom left quadrants), rather than opposite
preferred directions (25 of 66 pairs in the other quadrants). This
tendency for nearby cells to have the same preferred direction is
consistent with previous single-unit studies in areas 17 and 18
(Payne et al., 1980; Tolhurst et al., 1981; Berman et al., 1987).

To quantify the degree of clustering for each parameter, as well
as its statistical significance, we performed a permutation test as
follows. First, a distribution of the absolute pairwise differences
was constructed for each RF parameter in Figure 11 (i.e., the data
were collapsed onto an axis perpendicular to the diagonal, and
the resulting distribution was then folded in half around zero).
The median value of this distribution will be referred to as the

Figure 8. Spatiotemporal RF model used to fit the X–T profiles of simple
cells in this study. In this model, a spatiotemporally inseparable RF
(bottom) is constructed as the weighted sum of two separable RFs. The
two separable subunits are identical except for a 90° difference in their
spatial and temporal phases (see Results for details). As the weight, a, on
the second subunit increases from 0.0 to 1.0, the resultant model RF
changes from space–time separable to strongly inseparable. G1(X ),
H1(T ), G2(X ), H2(T ), and R(X,T ) denote the quantities referred to in
Equation 2 (see Results).
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paired median. We then constructed an artificial distribution of
pairwise differences by drawing random pairings from the overall
sample of neurons, and we computed the median of this random
sample (the random sample was the same size as the original-
sample of pairs). This process was repeated 5000 times, and we
computed the median of the distribution of random medians,
which we refer to as the grand random median. A clustering index
is then defined as the ratio of the grand random median to the
paired median. The larger this ratio, the stronger the clustering.
Figure 12 shows values of the clustering index for each RF
parameter. Asterisks above some bars in Figure 12 indicate that

the clustering index for these parameters is significantly .1.0
(**p , 0.01; *p , 0.05). Statistical significance is determined by
the proportion of simulations in which the random sampling of
pairs had a median value less than that of the actual paired data
(e.g., p 5 0.01 indicates that the random median was less than the
paired median in 50 of 5000 simulations).

The data of Figure 12 indicate that the degree of clustering for
preferred orientation far exceeds that for any other RF parame-
ter. Nevertheless, both cats and kittens exhibit highly significant
clustering for RF width (w) and preferred spatial frequency (sf).
We also observe statistically significant, but weaker, clustering for

Figure 9. Representative fits of the spatiotemporal
RF model to X–T profiles for three pairs of simple
cells (A–C). For each neuron, the lef t panel shows the
measured RF profile, the center panel shows the best
fit of the model depicted in Figure 8, and the right
panel shows the error profile (i.e., the difference
between the data and the fit). Note that all three
contour maps for a given cell are plotted on the same
response scale. See Results for additional details.
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all three of the major temporal response parameters: latency (t0),
duration (D), and preferred temporal frequency (tf). Parameters
of RF shape, namely the spatial phase (P) and temporal phase
(Q), do not exhibit any significant clustering. Finally, there is no
significant clustering of the direction index (a). This finding
is consistent with recent optical imaging studies, which give
little indication of direction clustering in cat area 17 (Bonhoeffer
et al., 1995).

A note of caution should be added here regarding interpreta-
tion of clustering indices. A small clustering index could arise
either because there are random variations from cell to cell in a
particular parameter (e.g., spatial phase) or because there is little
variation in a given parameter from cell to cell (e.g., temporal
phase) in absolute terms. Thus, there is no discrepancy between
the observation that temporal RF parameters exhibit generally
weak clustering (Fig. 12) and the observation that temporal RF
profiles tend to be highly similar between pairs of neighboring
simple cells (Figs. 3, 4).

Before concluding that all of the correlations analyzed in
Figures 11 and 12 are genuine, we must consider the possibility
that some of these correlations result from intervening variables.
For example, the observed correlation between RF widths in
Figure 11C could be produced by a strong correlation between
RF width and eccentricity across the population of cells or by a
strong correlation between RF width and preferred spatial fre-
quency. To address this possibility, we performed a series of
multiple regression analyses. In one of these analyses, we chose
the RF width of cell 1 as the dependent variable, and as indepen-
dent variables, we chose the RF width of cell 2, the preferred
spatial frequency of cell 1, and the average eccentricity of the cell
pair (the two members of a pair were seldom separated by .1°;
Fig. 13A). This model allows us to examine the partial correlation
between pairwise RF widths in the presence of variations in
spatial frequency and eccentricity. The results show that the
pairwise correlation between RF widths is not driven by the other

variables (adults: partial r 5 0.54, p , 0.001; kittens: partial r 5
0.76, p , 0.001). Thus, we conclude that the observed correlation
between RF widths (Fig. 11C) is real. It is also worth noting that
there was a marginally significant partial correlation between RF
width and eccentricity for adults (partial r 5 0.29; p 5 0.056). We
were somewhat surprised that this correlation was so weak in light
of the general trend for RF size to increase with eccentricity in
various cortical areas, but this result is consistent with previous
findings for simple cells (Wilson and Sherman, 1976). It should
also be noted, however, that some of our eccentricity estimates
were unfortunately quite crude; thus, noise in our eccentricity
data may have masked a somewhat stronger correlation. Specifi-
cally, our eccentricities ranged from 3 to 15°, and we estimate that
most of our measurements were accurate to within 2 or 3°.

Using a similar analysis, we also tested whether the observed
pairwise correlation in preferred spatial frequency (Fig. 11E)
held up in the presence of variations in RF width and eccentricity.
Again, the pairwise correlation (cell 1 vs cell 2 for sf) remained
highly significant (adults: partial r 5 0.68, p , 0.0001; kittens:
partial r 5 0.83, p , 0.0001). Thus, the correlation evident in
Figure 11E also appears to be genuine.

Finally, we also performed similar analyses to test whether
pairwise correlations in response latency (Fig. 11B), response
duration (Fig. 11D), and preferred temporal frequency (Fig. 11F)
held up to inclusion of eccentricity and the other temporal pa-
rameters. Briefly, we found that, for adults, the partial correla-
tions for latency (t0) and temporal frequency (tf) were significant
( p , 0.05 and p , 0.001, respectively), whereas the partial
correlation for duration (D) was not ( p . 0.2). In contrast, for
kittens, we found that the partial correlation for duration was
significant ( p , 0.001), but the partial correlations for latency and
temporal frequency were not ( p . 0.1). Note that this pattern of
results is similar to that seen in Figure 12. For adults, clustering
indices for latency and temporal frequency were more significant
(**p , 0.01) than the index for duration (*p , 0.05). For kittens,
the clustering index for duration was more significant (**p ,
0.01) than those for latency and temporal frequency (*p , 0.05).
Thus, to summarize, all of the parameters that are indicated by
double asterisks in Figure 12 exhibited pairwise correlations that
held up in our multiple regression analyses.

Analysis of receptive field overlap
The clustering analyses of the previous section did not include the
RF position variable x0 because RF position in our model only
refers to the location of the center of the RF within the reverse-
correlation mapping grid; it does not refer to absolute retinotopic
position. Nevertheless, our model does provide a quantitative
measure of the positional offset (along the X-axis) between RFs
of nearby neurons. Thus, this information bears on the issue of
RF overlap.

Figure 13A shows the distribution of positional offsets between
RFs of all pairs of simple cells recorded in this study. Nearby
simple cells were rarely found to have RFs separated by .1°.
More related to the issue of RF overlap, Figure 13B shows the
distribution of positional offsets normalized by the average RF
width of each pair of neurons. For the vast majority of cell pairs,
the two RFs are offset by less than one-quarter of the width of the
receptive fields. Thus, RFs of nearby simple cells overlap exten-
sively. This is consistent with data reported recently for vertical
penetrations in area 17 (Das and Gilbert, 1997). Finally, Figure
13C shows positional offset expressed as a number of cycles at the
preferred spatial frequency of the cells. For most pairs, the RF

Figure 10. Distribution of the fractional error metric used to quantify
the quality of fits of the RF model to data. Fractional error of the fit is
defined as the sum of squares of the error profile (Fig. 9A, right) divided
by the sum of squares of the raw data (Fig. 9A, lef t). Filled and open bars
denote data from adult cats and kittens, respectively.
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offset is less than one-quarter cycle (or 90°) of phase. Note that
the measurement procedure we used for the majority of cells does
not provide sufficient data to allow analysis of the Y dimension.

Relative contribution of model parameters to pairwise
differences in RF organization
In the previous sections, we have shown that different attributes
of RF structure cluster to varying degrees within striate cortex.
Here, we describe a quantitative method for determining how
each parameter contributes to the overall difference in RF struc-
ture between two neurons. Because different parameters of the
RF model (Eqs. 2–4) have different units of measure, it is difficult
to assess the relative contributions of different parameters from
the data of Figure 11. It would be difficult to state, for example,
whether a difference in RF width of 0.5° is more or less substantial
than a difference in temporal phase of 45°. Thus, we need to
transform the pairwise differences in each RF parameter into a
common metric. We have chosen to do this as follows. First, we fit
the X–T data from a pair of simple cells simultaneously and
determine the total error of the joint fit. Because the formulation
of Equations 2–4 has 11 free parameters (for each cell), this
corresponds to a 22 parameter fit (note, however, that the optimal
solution to the 22 parameter fit is the same as the optimal
solutions to the two 11 parameter fits, done separately.). Next, we
choose one of the 11 different parameters of the model (e.g., x0),
and we force it to have a common value (which is free to vary) for
the two members of the pair (thus yielding a 21 parameter fit).
We repeat this fitting procedure with each different parameter of
the model held as the common parameter. We then compute, for
each different common parameter, a measure of the increase in
the total error of the fit:

% error elevation 5
E21 2 E22

E22
, (5)

where E21 is the error of the simultaneous fit when one parameter
value is held common to the pair, and E22 is the total error when
all 22 parameters are free to vary individually.

Figure 14 illustrates the results of this analysis for a pair of
simple cells that differ markedly in spatial phase. Figure 14A
shows the best fit of the model to both RF profiles when all 22
parameters are free to vary. The bar graph of Figure 14B shows
the percent error elevation when each different parameter of the
RF model is forced to have a common value for the pair. For all
parameters other than spatial phase, P, there is little increase in
the error of the joint fit. When P is the common parameter,
however, the error of the fit nearly doubles, as can be seen by
inspection of the fit and error profiles in Figure 14B (inset). Thus,

Figure 11. Summary of pairwise correlations in various RF parameters.
Each panel here is a scatter plot in which the parameter value for one cell
(cell 1) is plotted on the horizontal axis, and the value for a simulta-
neously recorded neuron (cell 2) is plotted on the vertical axis. Filled and
open circles represent data from adult cats (n 5 45 pairs) and kittens (n 5
21 pairs), respectively. A, Preferred orientation shows strong clustering,
with most data points distributed tightly around the diagonal line of unity
slope. Note that these data were obtained from responses to drifting
grating stimuli, whereas the remaining data in this figure were extracted
from fits to the X–T profiles. B, Peak response latency, t0 , shows modest
clustering. Note that t0 here is expressed in units of milliseconds, whereas
T0 in the model (Eq. 4) is defined in skewed time coordinates. C, Scatter
plot of RF width, w, as defined in Equation 3. D, Scatter plot of response
duration, D. D is defined as the width of the temporal response envelope
at a criterion amplitude of 1/e (or 0.37 of the peak amplitude), and is
expressed in units of milliseconds. Note that, although D is determined by
the parameter c in Equation 4, c is not used directly here because it is

4

defined in skewed time coordinates. E, Preferred spatial frequency, sf
(defined as in Eq. 3), shows pronounced clustering. F, Scatter plot of
preferred temporal frequency, tf. Note that tf here is expressed in units of
hertz. G, Scatter plot of the spatial phase of the receptive field, P. Because
P is a circular variable, the largest possible difference in phase between
two neurons is 180°. Thus, all of the data points shown here are con-
strained to fall within the pair of dashed lines. H, Distribution of temporal
phase, Q. These data are plotted on the same axes as those of panel G to
facilitate comparison. I, Scatter plot for the linear direction selectivity
index, a. Positive and negative values of a correspond to opposite direc-
tions of motion, and larger values of a correspond to stronger direction
selectivity. Thus, data points in the top right quadrant denote pairs of
neurons with the same direction preference, whereas points in the top lef t
or bottom right quadrants indicate pairs with opposite preferred directions
of motion.
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for this pair of simple cells, spatial phase accounts for nearly all
of the difference in RF structure.

Figure 15A summarizes the results of this analysis for all pairs
of simple cells recorded from adult cats and kittens. In this graph,
the mean percent error elevation (6 SE) across all pairs of cells
is plotted for each RF parameter held common to the pair.
Clearly, spatial phase (P) is the single largest contributor to RF
differences between pairs of adjacent neurons, producing an
average error elevation of 25.6% for adults and 14.3% for kittens.
The second largest contributor is RF position (x0), which in-
creased the error of the fits by an average of 14% in adults and
6.7% in kittens, when chosen as the common parameter. Other
than a modest contribution from the direction selectivity in-
dex, a, the remaining RF parameters contribute very little to
the overall difference between nearby RFs. Note that this
finding is consistent with the similarity index data of Figures 3
and 4, which indicate that most RF differences originate along
the x dimension.

The average error elevations for adult cell pairs are generally
larger than those for kittens; however, this could be caused by the
fact that the X–T data from kittens are generally noisier (Fig. 10).
To test this possibility, we performed an ANCOVA with the
following factors: age, common parameter, fractional error of the
joint (22 parameter) fit, and all second-order interaction terms.
There is a significant interaction ( p 5 0.02) between age and
fractional error. When taken into account, the main effect of age
becomes marginally significant ( p 5 0.04). Thus, differences in
percent error elevation between adults and kittens should be
interpreted with caution. Nevertheless, the pattern of results in
Figure 15A is quite similar for adults and kittens, as evidenced by

the lack of a significant interaction term between age and com-
mon parameter ( p 5 0.97).

The relative contributions of spatial phase and position are
compared on a pair-by-pair basis in Figure 15B. There is
no significant correlation (r 5 0.26, p 5 0.08 for adults; r 5
20.03, p 5 0.98 for kittens) between these two factors. Some
pairs of neurons differ almost exclusively in terms of either
phase (data near vertical axis) or position (data near horizon-

Figure 12. Quantitative analysis of clustering for the spatial and tempo-
ral response parameters of Figure 11. Filled and unfilled bars correspond
to data from adult cats and kittens, respectively. Each bar gives the
clustering index (see Results for details) for a particular response param-
eter. Asterisks above some bars indicate that the associated clustering
index is significantly .1.0 (**p , 0.01; *p , 0.05). OR, Preferred orien-
tation; w, RF width; sf, preferred spatial frequency; t0 , peak response
latency; D, response duration; tf, preferred temporal frequency; P, spatial
phase; Q, temporal phase; and a, direction selectivity index.

Figure 13. Analysis of receptive-field overlap. A, Distribution of posi-
tional offsets between RFs of simultaneously recorded pairs of simple
cells. Filled and unfilled bars show data from adult cats and kittens,
respectively. Positional offset is defined as the spatial displacement (along
the X-axis) between the centers of the spatial envelopes of two RFs [i.e.,
abs(x0A 2 x0B )]. B, Distribution of positional offsets normalized by the
average RF width of the two neurons [i.e., abs(x0A 2 x0B )/(0.5 (wA 1
wB )], where the subscripts A and B denote the two members of a pair of
neurons. C, Distribution of positional offsets expressed as a number of
cycles at the preferred spatial frequency of the cells. The offset in cycles
is computed as abs(x0A 2 x0B ) (0.5 (sfA 1 sfB ), where sfA and sfB are the
preferred spatial frequencies for the two neurons of each pair.
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tal axis), whereas other pairs of cells differ substantially in both
respects.

Spatial phase relationships: quadrature and antiphase
It has previously been reported (Pollen and Ronner, 1981; Liu et
al., 1992) that the RFs of nearby simple cells tend to differ in
spatial phase by either 90° (quadrature phase) or 180° (antiphase).
To be considered as a true quadrature or antiphase pair, however,
two neurons must differ only in spatial phase, without differing
substantially in other parameters such as size or spatial frequency.
One advantage of our simultaneous-fitting analysis is that it
allows us to establish rigorous criteria for selecting pairs of
neurons that differ only in spatial phase (or any other parameter).

Figure 16A plots the relative contribution of spatial phase to
the overall difference between pairs of RFs as a function of the
spatial phase difference between each pair. Relative contribution
is defined as the percent error elevation caused by spatial phase,
divided by the total percent error elevation caused by all param-
eters (e.g., the relative contribution of spatial phase is 0.90 for the
pair of cells in Fig. 14B). Not surprisingly, the relative contribu-
tion of spatial phase generally increases with the magnitude of the
spatial phase difference (r 5 0.58; p , 0.0001). Filled symbols in

Figure 16A denote pairs of simple cells that differ predominantly
in terms of spatial phase. Our criterion for selecting these neurons
is that the relative contribution of each parameter, other than
spatial phase, does not exceed 0.20. Note that this criterion does
include pairs of neurons that have spatial phase differences near
zero; such pairs of cells have X–T receptive field profiles that are
essentially identical in shape.

Figure 16B shows the distribution of spatial phase differences
for all pairs of simple cells that meet the criterion described above
(here and in Fig. 16C, filled and unfilled bars are for cats and
kittens, respectively). Clearly, the spatial phase relationships be-
tween nearby pairs of simple cells are not limited solely to
quadrature (90°) and antiphase (180°) conditions. Although such
pairs certainly do exist, there are also several pairs of neurons
with other phase differences, including ;0°. The distribution of
phase differences is not uniform (x2 5 10.8; df 5 4; p 5 0.028;
data pooled across cats and kittens, n 5 35), however, and there
are many more pairs of neurons with phase differences in the
range from 90 to 180° (n 5 26) than there are in the range from
0 to 90° (n 5 9). In contrast to Figure 16B, the distribution of
spatial phase differences is indistinguishable from uniform (x2 5

Figure 14. Simultaneous-fitting analy-
sis for quantifying the contribution of
various RF parameters to the overall
difference in structure between a pair of
RFs. A, Data, fit, and error profiles for a
pair of simple cells from an adult cat
that differ predominantly in terms of
spatial phase (i.e., an antiphase pair).
The X–T data for both neurons was fit
simultaneously with the RF model of
Equations 2–4 (22 parameter fit). B,
Summary of changes in the overall error
of the fit, expressed as percent error
elevation, when different parameters of
the RF model are forced to have a com-
mon value for the two neurons. Because
one parameter is common to the pair,
the resulting fit has 21 parameters. The
inset shows the best fit of the model,
along with the resulting error profiles,
when spatial phase is the common pa-
rameter. Note that the error profiles are
larger and substantially more structured
than those in panel A. Parameters of the
model are denoted as follows: x0 , RF
center position; w, RF width; sf, pre-
ferred spatial frequency; P, spatial
phase; t0 , peak response latency; c, tem-
poral envelope width; b, temporal skew-
ing factor; tf, preferred temporal fre-
quency; Q, temporal phase; and a,
direction selectivity index.
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1.3; df 5 4; p 5 0.86; pooled data, n 5 31) for pairs of simple cells
that differ in parameters other than spatial phase (Fig. 16C).

Binocular simple-cell pairs
Thus far, we have only made monocular comparisons between
RFs of neighboring simple cells. Although our X–T and X–Y–T
profiles provide a fairly complete description of the monocular
response properties of each neuron, we have neglected a stimulus
dimension, binocular disparity, that may also contribute substan-
tially to the similarity or dissimilarity between RFs of neighbor-
ing neurons. We have previously shown (DeAngelis et al., 1991,
1995a; Ohzawa et al., 1996) for individual simple cells, that there
can be large differences in shape (spatial phase) between RF
profiles measured separately through the left and right eyes. Such
differences are particularly prevalent among neurons tuned to
oblique or vertical orientations, but not among those tuned to
near-horizontal orientations (DeAngelis et al., 1991).

During the course of this study, we had occasion to map RFs
through both eyes for three pairs of nearby simple cells. Figure 17

Figure 15. Summary of the relative contributions of various model pa-
rameters to the overall difference in structure between pairs of RFs. A,
Mean error elevation (11 SE) is shown for each RF parameter. Filled and
open bars show data from adult cats and kittens, respectively. Parameter
notations are as described in Figure 14B. B, Phase error elevation is
plotted against position error elevation for all pairs of simple cells from
adults ( filled circles) and kittens (open circles).

Figure 16. Analysis of spatial phase differences between pairs of simple
cells. A, The relative contribution of spatial phase to the overall difference
in structure between pairs of RFs is plotted as a function of the spatial
phase difference between each pair of neurons. Relative contribution of
phase is defined as the percent error elevation caused by spatial phase
divided by the total percent error elevation caused by all parameters. If
the percent error elevation caused by spatial phase is large, and that
caused by all other parameters is small (Fig. 14B), then the relative
contribution of spatial phase will approach 1.0. Circles and diamonds
denote data from adult cats and kittens, respectively. Filled symbols
correspond to pairs of neurons for which the relative contribution of all
RF parameters, other than spatial phase, does not exceed 0.2. The
remaining pairs of neurons are denoted by open symbols. B, Histogram
showing the distribution of spatial phase differences for pairs of simple
cells that differ primarily in terms of spatial phase. Cell pairs included in
this distribution are those represented by filled symbols in panel A. C,
Distribution of spatial phase differences for pairs of simple cells that have
a substantial relative contribution from parameters other than spatial
phase (these data correspond to the open symbols in panel A).
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shows RF profiles for one such pair. Measured through the left
eye, this pair of neurons has a spatial phase difference of 120°
(Fig. 17, lef t panels). There is also a positional shift, however, such
that the two neurons have a central, overlapping bright-excitatory
subregion. This results in a positive similarity index, SIL

X–T 5
0.63. For the right eye, there is a spatial phase difference of 159°
(near antiphase) between the two neurons, which results in a
negative similarity index, SI R

X–T 5 20.59. By analogy to Equa-
tion 1, we compute a similarity index across both eyes as follows:

SIX–T
B

5

O
X–T

~UL~X, T!pVL~X, T!! 1 O
X–T

~UR~X, T!pVR~X, T!!

ÎO
X–T

UL~X, T!2 O
X–T

VL~X, T!2 1 ÎO
X–T

UR~X, T!2 O
X–T

VR~X, T!2

(6)

where UL(X,T) and VL(X,T) are RF profiles of the two cells as
measured through the left eye, and UR(X,T) and VR(X,T) are
RF profiles for the right eye. For the cell pair of Figure 17, we
obtain a binocular SI value close to zero, SIB

X–T 5 0.05. Thus, the
binocular RFs of these two neurons are essentially uncorrelated.

Table 1 summarizes the data for this pair of cells (KD655R39),
as well as two other binocular pairs. Interestingly, in all three
cases, SIL

X–T and SIR
X–T have opposite sign, resulting in a bin-

ocular index, SI B
X–T, which is much closer to zero than either of

the monocular indices. Although this is a small sample of neu-
rons, the data suggest that RFs of nearby simple cells may gen-
erally be quite different when one considers all relevant response
dimensions.

DISCUSSION
In this study, we examined the micro-organization of columns
within striate cortex by obtaining spatiotemporal RF profiles for
pairs of neighboring simple cells. Our results provide the follow-
ing new insights: (1) when their full X–Y–T profiles are consid-
ered, the RFs of nearby simple cells are rarely very similar. The
value of SIX–Y–T seldom exceeds 0.5 (Fig. 3). Moreover, if we
take into account a fourth response dimension, binocular dispar-
ity, then the similarity of nearby RFs will likely be reduced even
further (Table 1). Because the strength of correlated discharge
between neighboring cells increases with the degree of similarity
between the RFs (Fig. 6), cells with highly similar spatiotemporal
RFs tend to carry redundant information. Thus, the local diver-
sity of spatial phase and the general dissimilarity between RFs of
nearby neurons may allow for noise reduction through response
pooling (discussed below). (2) Several different response variables
are significantly clustered within striate cortex. However, the
strength of clustering varies markedly from one variable to the
next. As established previously, preferred orientation and spatial
frequency are strongly clustered. In addition, RF size, response
latency, response duration, and preferred temporal frequency
exhibit significant clustering. Thus, the functional architecture of
primary visual cortex is more complex than is commonly assumed
and modeled. (3) RF shape (spatial phase) is locally diverse and
exhibits no clustering. Within a local region of striate cortex,
where preferred orientation and spatial frequency are approxi-
mately constant, spatial phase varies widely from cell to cell. This
local diversity of phase may have important implications for the
construction of complex cell RFs (discussed below).

Clustering and topography
Neurons in striate cortex respond selectively to many different
parameters of a visual stimulus, and our results show that nearby
neurons have similar preferences for many of these parameters.
In addition, at least some of these parameters (e.g., receptive field
location and orientation preference) are mapped topographically,
meaning that they vary smoothly over portions of the cortical
surface. However, to organize neurons within the cortical sheet
according to multiple parameters, smoothness must be broken.
Thus, for example, there are discontinuities in the maps of ori-
entation preference (e.g., Bonhoeffer and Grinvald, 1991) and
receptive field position (e.g., Das and Gilbert, 1997).

In dimension-reducing models, each response parameter is an
axis in an N-dimensional space (Durbin and Mitchison, 1990;
Swindale, 1992, 1996). The cortex is then a two-dimensional sheet
that spans the N-dimensional space in as smooth a manner as
possible. Only if laminar variations are allowed, which have been
suggested for spatial frequency (Maffei and Fiorentini, 1977), can
the cortex be considered a three-dimensional volume. Our clus-
tering analysis highlights some of the limitations of these types of
models. First, we show that simple cells are clustered along
several stimulus dimensions. Although we cannot state whether
our clusters reflect columnar organization or laminar organiza-
tion, we can assert that as many as eight dimensions (the six
reported here, ocular dominance, and retinotopy) are clustered
within a three-dimensional piece of cortex. It remains to be seen
how the predictions of dimension-reducing models will change

Figure 17. Receptive field profiles for a pair of binocular simple cells
(KD655R39). Top row, X–T profiles and X cross sections, as measured
through both the left eye and the right eye. This cell has an interocular
phase difference of 45° (Table 1) and a preferred orientation that is 27°
from vertical. Bottom row, RF profiles measured through the left and right
eyes for a second simple cell, recorded simultaneously. This neuron has an
interocular phase difference of 126° and a preferred orientation that is 18°
from vertical.
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when these additional parameters of functional organization are
incorporated. Second, we show that all parameters in the
N-dimensional space are not equal in terms of the strength of
clustering (see Fig. 12). Perhaps this is a necessary consequence
of mapping several variables onto the cortical sheet. Thus, it
would be interesting to see, for example, whether the incorpora-
tion of these new constraints into dimension-reducing models
would lead to patterns of functional organization more consistent
with recent experimental data (Das and Gilbert, 1997) concern-
ing retinotopy and orientation.

Correlated discharge and RF similarity
The primary quantitative analyses that have been applied to pairs
of neurons are cross-correlation of spike trains and a covariance
measure of spike counts. Covariance measures examine how the
spike counts of two cells covary with repeated presentation of the
same stimulus and have been obtained from multiple visual areas,
including area 17 of the cat (van Kan et al., 1985), area MT of the
macaque (Zohary et al., 1994), and inferotemporal cortex of the
macaque (Gawne and Richmond, 1993). Interestingly, in all of
these areas, the covariance values are similar, ;0.15–0.2. Al-
though these values are also similar to our average three-
dimensional similarity value (SIX–Y–T), it is important to realize
that these are fundamentally different metrics. Covariance mea-
sures the shared noise in the responses of two cells; similarity
measures the overlap between receptive fields, which is more akin
to shared signal rather than shared noise. One can imagine two
cells that have zero similarity but a high covariance simply be-
cause they share a common noise source. Alternatively, one can
imagine a pair of cells with identical receptive fields that do not
share a common noise source and therefore display no covari-
ance. The quantitative agreement of our average SIX–Y–T and
average covariance measures may therefore be coincidental.
However, this does not necessarily mean that the two metrics are
independent. van Kan et al. (1985) reported that high covariance
was observed only between cells with similar receptive field
properties. Because similarity was not quantified in that study,
and covariance was not examined in our study, the exact nature of
the relationship remains an open question.

Spatial phase distribution and hierarchical
organization of striate cortex
A striking result of our study is that no clustering was found for
the spatial phase of nearby RFs (Fig. 11G, 12). This finding lies in
stark contrast to results from computational studies of cortical
development that predict the emergence of spatial phase columns
in striate cortex (Miller, 1992; Miyashita and Tanaka, 1992).
Although our results are unequivocal on this point, there may be
overriding reasons for the lack of clustering of spatial phase.

One likely possibility is that a variety of spatial phases is
needed to efficiently construct complex cell RFs from the outputs
of simple cells. Modeling studies indicate that a complex cell with

reasonable physiological properties can be constructed from a
group of four or more simple cells having different spatial phases
(Pollen et al., 1989; Ohzawa et al., 1990; Emerson et al., 1992;
Qian, 1994). If simple cells with different spatial phases are
located close to one another and to the target complex cell, then
this connectivity can be implemented with a minimum total
length of dendrites and axons. On the other hand, if simple cells
are organized in phase columns, then the connections to a target
complex cell would have to extend across several different col-
umns. Thus, a columnar organization for spatial phase may be too
costly in terms of connections. In addition, the local diversity of
simple cell phases may be beneficial from the standpoint of
response pooling (discussed below).

Our results loosely agree with previous work on the spatial
phase relationships between pairs of nearby simple cells. Pollen
and colleagues (Pollen and Ronner, 1981; Liu et al., 1992) re-
ported that nearby simple cells tend to occur in either quadrature
phase (90° difference) or antiphase (180° difference). Our data
from pairs of simple cells that differ only in phase also reveal a
preponderance of phase differences in the range from 90 to 180°.
However, our distribution of phase differences is not bimodal
(with peaks near 90 and 180°), suggesting that quadrature and
antiphase pairs are not discrete classes.

Development
We examined whether the functional micro-organization of stri-
ate cortex matures noticeably after 4 postnatal weeks. Four-week-
old animals were chosen for study because the cortex is highly
malleable at this age. Monocular deprivation, for example, is
known to cause reorganization of ocular dominance columns,
with a critical period of susceptibility that peaks at ;4 postnatal
weeks (Olson and Freeman, 1980). However, this susceptibility to
modification does not necessarily imply that normal animals at
this age have immature functional organization. Single-unit elec-
trophysiology suggests that the spatial properties of striate recep-
tive fields are quite mature by 4 postnatal weeks (Braastad and
Heggelund, 1985; DeAngelis et al., 1993a) (see also, Fig.
11A,C,E). In contrast, temporal RF properties are still quite
immature at 4 weeks of age (DeAngelis et al., 1993a) (see also,
Fig. 11B,D,F).

Our present results suggest that most aspects of the local
organization of striate cortex are mature by 4 postnatal weeks.
The overall pattern of similarity between RFs of nearby neurons
is indistinguishable between cats and kittens (Figs. 3, 4). More-
over, in both age groups, there is a clear increase in correlated
discharge between neighboring neurons as a function of RF
similarity (Fig. 6). The strength of local clustering for different
RF attributes is also quite similar between the two age groups
(Fig. 12). In addition, spatial phase is the largest source of
difference between nearby RFs for both cats and kittens (Fig.

Table 1. Summary of spatial phase and similarity index data for three pairs of binocular simple cells

Cell pair

Left Right

Binoc. SIBX–TP1 P2 SILX–T P1 P2 SIRT–T

KD655R39 280.6° 39.8° 0.63 235.5° 2193.8° 20.59 0.05
KD021R10 267.1° 2172.0° 20.54 261.7° 265.4° 0.70 0.12
BK318R25 297.5° 131.3° 20.85 249.9° 141.6° 0.23 20.03

P1, P2, Spatial phase of cell 1, cell 2; SILx–t, SIRx–t, monocular similarity indices for the left and right eyes; SIBx–t, similarity index for both eyes.
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15A). Thus, in many respects, the functional micro-organization
of cat striate cortex appears to be mature by 4 postnatal weeks.

Clustering and response pooling
Our analyses reveal that different receptive field parameters are
clustered to varying degrees within striate cortex. These differ-
ences raise interesting questions: why do some parameters form
bases for cortical organization, whereas others do not? Why is
clustering for orientation stronger than for spatial frequency, and
why is there no tendency for spatial phase to cluster?

One interesting possibility is that these patterns of clustering
reflect the need to pool responses across populations of nearby
neurons. The benefits of pooling are well documented: because
neuronal responses are noisy, combining the responses of several
similarly tuned neurons can lead to improved signal fidelity (for
review, see Parker and Newsome, 1998). Pooling can potentially
reduce noise that originates within the nervous system as well as
noise that originates from external influences. Pooling across
neurons also reduces the need for temporal integration, allowing
a reliable signal to be extracted from a brief epoch of neuronal
discharge.

Consider, for example, the problem of extracting a reliable
orientation signal from a group of simple cells. Because simple
cell responses depend on the exact position of image features
within the RF, positional jitter in the image (e.g., from microsac-
cades) contributes noise to the orientation signal produced by a
single unit. For a pair of nearby simple cells with RFs in quadra-
ture phase, however, responses to positional variations will be
uncorrelated. Thus, if we care about orientation and do not care
about luminance variations smaller than the RF, pooling across
this pair of neurons will improve the orientation signal substan-
tially. In reality, this improvement in signal-to-noise ratio is
limited because the majority of cell pairs do show some correla-
tion in their responses. Zohary et al. (1994) show that even small
amounts of correlation limit the benefits of pooling to pool sizes
of 50–100 neurons.

Our data suggest that pooling across simple cells with different
spatial phases may be a viable way to improve signal quality.
Because only neurons with similar RFs tend to have correlated
discharges (Fig. 6), there may be considerable advantage to pool-
ing across neurons with dissimilar spatial phases. Such pooling
may be substantially facilitated by having spatial phase be locally
diverse within striate cortex while other parameters (e.g., orien-
tation) are tightly clustered; pooling across phase would simply
involve combining the responses of several nearby simple cells
without a need for selective local connections. In this regard, the
clustering indices of Figure 6 may give us an indication of which
parameters are the most likely to be “improved” by pooling:
orientation and spatial frequency.

Fundamentally, the advantage of this form of pooling relies on
some response parameters being clustered within a given visual
area, whereas others are not. Given that neurons in most cortical
areas exhibit tuning along multiple stimulus dimensions, the idea
of using local variations in one parameter to maximize pooling
effects for other parameters might be a general strategy of infor-
mation processing in the cortex.
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