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Spatial Summation in the Receptive Fields of MT Neurons
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Receptive fields (RFs) of cells in the middle temporal area (MT
or V5) of monkeys will often encompass multiple objects under
normal image viewing. We therefore have studied how multiple
moving stimuli interact when presented within and near the RF
of single MT cells. We used moving Gabor function stimuli, <1°
in spatial extent and ~100 msec in duration, presented on a
grid of possible locations over the RF of the cell. Responses to
these stimuli were typically robust, and their small spatial and
temporal extent allowed detailed mapping of RFs and of inter-
actions between stimuli. The responses to pairs of such stimuli
were compared against the responses to the same stimuli
presented singly. The responses were substantially less than
the sum of the responses to the component stimuli and were
well described by a power-law summation model with divisive

inhibition. Such divisive inhibition is a key component of re-
cently proposed “normalization” models of cortical physiology
and is presumed to arise from lateral interconnections within a
region. One open question is whether the normalization occurs
only once in primary visual cortex or multiple times in different
cortical areas. We addressed this question by exploring the
spatial extent over which one stimulus would divide the re-
sponse to another and found effective normalization from stim-
uli quite far removed from the RF center. This supports models
under which normalization occurs both in MT and in earlier
stages.
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Extrastriate cortex of monkeys contains a series of linked areas,
often termed the “motion system,” which are highly specialized
for the analysis of visual motion. The middle temporal area (MT,
or V5) appears to take an intermediate position in this hierarchi-
cally organized series of areas. One correlate of the hierarchy in
this pathway is progressively increasing receptive field (RF) size.
Thus, the RFs of MT cells are larger than those of their inputs by
as much as a factor of 10 and smaller than those of its targets by
a similar ratio (Maunsell and Van Essen, 1983b; Tanaka et al.,
1986; Raiguel et al., 1995, 1997; Movshon and Newsome, 1996).
Spatial summation is therefore prevalent in extrastriate cortex
and is probably important in the function of the motion system.
Despite this, few quantitative measurements of summation have
been made outside of striate cortex. In this paper, we used small,
transient motion stimuli to densely map spatial interactions in
MT cell RFs. These were presented individually or pair-wise over
the RFs of MT cells. The rapid stimulus sequence allowed us to
explore a very large number of combinations of different locations
and thus to obtain new and detailed information on the spatial
structure of MT cell spatial interactions. This stimulation method
might be generally useful for other studies that require the
exploration of many stimulus conditions. In our default condi-
tions, we used 300 distinct stimulus conditions for each cell and
could gather adequate data in a practical span of time.
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Two classes of experiment have described summation in MT,
but neither has explored the current question of interactions
within and near the RF center. Several experiments have ad-
dressed the interaction between the classical RF center and the
antagonistic surround (Allman et al., 1985; Born and Tootell,
1992; Raiguel et al., 1995). The surround may overlap with the RF
center, but to evaluate this question, we need to know how stimuli
interact in the RF center and its immediate neighborhood.

Other studies have measured responses to multiple stimuli
moving through the RF of MT cells. The stimuli have either been
pairs of dots traversing the RF (Ferrera and Lisberger, 1997,
Recanzone et al., 1997) or moving dot fields (Britten and New-
some, 1990; Snowden et al., 1991). The general result from these
studies is that MT cells average multiple inputs. In other words,
the evoked response when presented with two stimuli together
will be intermediate between the responses to each presented
alone. This result indicates that linear summation is an inade-
quate explanation; an additional step is required. A candidate for
this extra step is provided by a recent model (Simoncelli and
Heeger, 1998) of MT that employs recursive, divisive inhibition
to scale the responses of MT cells by an amount proportional to
total activity in some region. However, no experiment has ad-
dressed the spatial extent of the mutually inhibitory interactions
in MT. Our experiment provides the first direct test of the spatial
extent of such inhibitory interactions.

These results have previously appeared in abstract form (Brit-
ten, 1995).

MATERIALS AND METHODS

Preparation. Two adult female rhesus macaques (Macaca mulatta) were
used in this study. Before recording, each had been trained to fixate
stationary targets in the presence of visual stimuli. Each was implanted
with a scleral search coil (Judge et al., 1980) and was equipped with a
stainless steel head restraint post and recording cylinder located over
occipital cortex. A plastic grid secured inside this cylinder provided a
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coordinate system of guide tube support holes at 1 mm intervals (Crist et
al., 1988). Animal procedures complied with the Institute for Laboratory
Animal Research Guide for the Care and Use of Laboratory Animals
and were approved by the University of California Davis Animal Care
and Use Committee. On recording days, guide tubes were inserted
transdurally through these holes, and Parylene-insulated tungsten micro-
electrodes were inserted through the guide tubes. To localize area MT,
we used both anatomical and physiological landmarks. Anatomical land-
marks included recording depth and the transitions between active gray
matter and “silent” areas marking white matter or sulci. Physiological
landmarks included brisk, directional responses, retinotopy, receptive
field size, and columnar organization for preferred direction.

Once MT was localized, we would record and isolate activity using
standard extracellular methods. Electrode signals were amplified and
filtered, and single spikes were converted to digital pulses, whose time of
arrival would be recorded with 1 msec resolution using the public domain
software package REX (Hays et al., 1982). Search stimuli were chosen to
match local multiunit preferences and could be moving bars, dot fields, or
Gabor motion impulse stimuli. Once a cell was isolated, its RF location
was crudely mapped using hand-held moving bar stimuli, and quantita-
tive testing commenced.

Stimuli. All stimuli were presented on the face of a cathode ray
terminal monitor, subtending 60° horizontally by 48° vertically (1280 X
1024 pixels), operating at a vertical refresh rate of 72 Hz. Stimuli were
generated by custom software running on a dedicated display computer.
For early experiments, we used an SGI (Mountain View, CA) Indigo2,
and in later experiments, we used a Pentium personal computer hosting
an ATI Technologies (Thornhill, Ontario, Canada) Mach 64 video card,
running in 8 bit mode. Screen luminance was measured as a function of
gray scale value using a Tektronix (Wilsonville, OR) photometer, fit with
a cubic polynomial, and this was inverted to establish a linearized gray
scale lookup table. Average screen luminance was set to 30 cd/M?, and
maximum achievable contrast was effectively 100% (background lumi-
nance was 0.1 cd/M?).

The stimuli for these experiments were moving, two-dimensional
oriented “motion impulses,” whose spatial luminance function was a
Gabor function, or the product of a sine wave and a Gaussian function.
These are members of the family that Watson refers to as “generalized
Gabors” (Watson and Turano, 1995), which have the property that both
carrier (the sine wave) and the Gaussian contrast envelope are free to
move. In our case, carrier and envelope moved together in the preferred
direction of the cell under study. One such stimulus is illustrated in
Figure 1A4. The space-time luminance was described by the function:

(x - I“‘x)z 2 .
L(x,y,t)=C(t) X exp[ —T] X exp[ —T] X sin(wx),

X

where (p,,p,) is the instantaneous location of the center of the impulse,
and (o,,0,) describe its dimensions. The coordinate system is rotated so
that the positive x-axis is in the preferred direction of the cell under
study. The constant w establishes the spatial frequency of the carrier. The
x coordinate of the center of the impulse moved linearly in time, and the
spatial offset per frame was usually set to one-fourth of the cycle of the
carrier. The contrast function C(f) was a trapezoid spanning seven
frames (98 msec) illustrated in Figure 1B. The default values for these
parameters were 1.07 cycles/deg carrier spatial frequency, 18 Hz tempo-
ral frequency, o, = 0.56°, and o, = 1.12. It is worth noting that the small
dimensions of the contrast envelope relative to the underlying carrier
frequency made these stimuli spatially rather broad-band, compared with
“typical” Gabor stimuli; this was a necessary consequence of their small
spatial dimensions. These were adjusted only if the cell responded poorly
or if the stimulus grid was so small that adjacent stimulus locations would
overlap. We did not attempt to exhaustively search for optimal parame-
ters but inspected on-line raster displays for responses clearly above
baseline and listened for stimulus-related modulation on the audio
monitor.

These stimuli were presented in a rapid sequence, with only two
frames intervening between sequentially presented impulses (Fig. 1B),
and the location of the next impulse(s) was selected pseudorandomly.
Single trials consisted of periods ~3 sec in duration during which the
monkey was required to hold fixation during stimulus presentation, and
the monkey was rewarded for correctly maintaining fixation. The final
individual stimulus period in trials in which fixation was broken was
discarded from subsequent analysis.
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Figure 1. Single Gabor motion impulse depicted as a function of space
and time. 4, Two-dimensional representation of typical stimulus. This
portrays the default values for spatial parameters used in these experi-
ments, which were only varied if these proved ineffective in driving the
cell. Aspect ratio was always 2:1, but the ratio of carrier period to
Gaussian envelope was more variable. The numbered points indicate the
successive locations of an arbitrary spatial reference point in seven suc-
cessive frames of the stimulus; the white numbers are only for graphic
clarity. B, Contrast as a function of time. Each point represents a single
frame, corresponding to the locations indicated in A. In a sequence of
continuously presented stimuli, the next stimulus frame 0 would immedi-
ately follow frame 8, producing an overall interval of 125 msec between
successive stimuli.

Locations of the Gabors were chosen from a 5 X 5 grid of possible
locations, covering the RF of the cell, illustrated in Figure 2. The circle
schematically illustrates the RF of the neuron under study, showing that
the intended configuration placed the corners of the grid off the RF, in
largely unresponsive locations. However, there was substantial random
variation in the exact relationship between RF size and grid dimensions,
because the hand-mapping stimulus often provided a different estimate
of the RF boundary than did the Gabors.

Two different types of blocks of trials were presented, in which the
stimuli were presented singly or in pairs. Each individual stimulus and
pair-wise combination (in the paired-stimulus blocks) was presented an
equal number of times. Typically, the single-stimulus block was pre-
sented first, and inspection of on-line peristimulus time histogram
(PSTH) displays would reveal if adjustment of the grid size or location
was required. Usually, 50 presentations of each stimulus location were
given in the single-stimulus blocks, and for the double-stimulus block,
trials were run for as long as the cell could be held. For the data
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stimulus

RF boundary

Figure 2. Spatial arrangement of Gabor impulses, schematically illus-
trated over an MT cell RF (circle). Stimuli could either be presented
individually or else in pairs (illustrated). The direction of the stimuli
(arrows) was adjusted to match the preference of the cell, and the
dimensions were adjusted so the corner stimuli gave approximately equal,
very small responses.

presented in this paper, the number of presentations of each combination
of locations ranged from 4 to 151, with a median of 21.

Data analysis. Spike times were extracted from the raw data files,
corrected for the vertical location of the stimulus on the screen (the raster
was measured to take 12 msec to traverse the vertical extent of the
screen), and compiled into standard PSTHs. For calculating spike rates,
identical windows of 25-150 msec after stimulus were used for both the
single-stimulus and paired-stimulus trials.

For collapsing data across cells, individual cell RF profiles were fit with
two-dimensional, oriented Gaussian functions, allowing standardization
of different RF profiles to a single “standard” RF. The Gaussian func-
tions to which the single-stimulus data were fit were of the form:

R(x’,y")
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where (x'y") are rotated from screen coordinates by an angle 0, 4 is an
amplitude parameter, and C is the maintained activity.

Histology. One of the monkeys used in this study has been killed, and
histological confirmation of the recordings was obtained. Before killing,
two fluorescent tracer injections were made through the guide tube
support grid in known locations. The monkey was killed with an overdose
of barbiturates and perfused transcardially with 0.9% saline followed by
fixative (4% paraformaldehyde in 0.1 M phosphate buffer), followed by
fixative with 10% sucrose. The brain was removed, allowed to sink in
30% sucrose solution, and then blocked and parasagitally sectioned at 50
wm thickness on a freezing microtome. Alternate series were stained for
myelin (Gallyas, 1979) and for Nissl substance and mounted for fluores-
cence imaging. The location of the injection sites was charted on the
superior temporal sulcus and used to confirm that the recording sites
were in the heavily myelinated region corresponding to area MT. The
other monkey is alive and being used in other experiments.

RESULTS

We recorded from 89 cells in two hemispheres of two adult
female macaques. In 72 of these, we held the cells long enough to
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Figure 3. Grand average temporal envelope of MT response to single
motion impulses. The responses of each cell were individually normalized
and then averaged to produce the histogram shown. The vertical dashed
lines indicate the boundaries of the temporal window used to calculate the
rates used as the principal response metric in this paper. The bold
horizontal line above the histogram denotes the stimulus period. The
histogram peaks to which these responses were normalized averaged 102
impulses/sec across our sample of cells, and the average integrated re-
sponse above baseline, in the center of each RF, was 61 impulses/sec.

measure responses to stimuli presented in pairs. In this section,
we first document the responsiveness of the neurons to these
stimuli presented singly and then turn to the interactions between
pairs.

Single-stimulus responses

These responses came from the blocks of trials in which stimuli
were presented singly. Before we consider how these responses
vary across the RF, we need to look at the temporal dynamics of
the responses. This will allow us to establish appropriate time
windows for measuring responses. Figure 3 shows the “grand
average” PSTH for all cells and all stimulus conditions. Each
individual response (cell and location) was independently nor-
malized, so this shows the average temporal dynamics of the
sample as a whole, independent of response amplitude. The figure
shows a clear response transient starting ~30 msec after stimulus
onset, rising to peak at 50 msec, and then falling without reaching
a clear plateau, as one would expect for longer-duration stimuli.
We chose to select one time window for all spike rate analysis, to
avoid problems with selection of individual cell response win-
dows, which can be unreliable or subjective. In this figure, the
vertical lines show the boundaries of the time window chosen for
subsequent analysis.

We next sought to estimate the dependence of response on
location for each cell. Results from two example cells are illus-
trated in Figure 4. For each cell, PSTHs from each of the 25
stimulus locations are shown. These examples are chosen to
represent both the range of grid dimensions used, relative to the
size of the RF, and the range of cell response magnitudes to these
stimuli. Most importantly, in nearly all cases, the range of stim-
ulus locations used in the grid provoked wide response differences
from location to location; we thus have sampled the spatial
dynamic range of each cell. Although we did not reach the edge
of the RF for every cell in the sample, in all we covered enough
of the RF to well estimate its shape.

Average spike rates were calculated for each of the locations
over the time window illustrated by the dashed lines in Figure 3.
A two-dimensional, oriented Gaussian surface was fit to the
responses using maximum likelihood fitting. Because this is a
novel mapping method, it is important to test whether the RF
dimensions estimated in this way correspond to those estimated
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Figure 4. Responses of two representative MT cells, shown as PSTHs.
Each small axis shows the response to the stimuli presented in the
corresponding spatial location. Each is only 150 msec in duration; the
responses of each cell were individually normalized, and the vertical
calibration is indicated in the bottom left PSTH. The locations of each
stimulus grid are indicated in degrees relative to the center of gaze. The
vertical calibration bars express firing rate in impulses/sec. The ratios of
the size of the sampling grid to the derived RF size (see Fig. 5) were 1.84
for the cell in4 and 0.84 for the cell in B. The geometric mean of this ratio
was 1.33 for our sample of cells.

using other methods. To test this, we plotted the relationship
between RF size and eccentricity, which is shown in Figure 5.
The diagonal line is the line fit using linear regression, assuming
equal experimental error on both axes (Press et al., 1988). This fit
yields an intercept of —5.12 and a slope of 1.35. This relationship
appears similar to previous work (Maunsell and Van Essen,
1983b; Raiguel et al., 1995), although the slope is a bit higher. The
negative intercept is not realistic and probably indicates that the
slope is also modestly overestimated. However, if we apply simple
linear regression, which assumes no error in the independent
variable (eccentricity), the estimated slope drops to 0.85. This
value, like previous estimates from the literature, is probably a
modest underestimate, because experimental error on the inde-
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Figure 5. REF size to eccentricity relationship estimated from the single
motion impulses. Eccentricity was the center point of the best-fit two-
dimensional Gaussian function fit to the spike rate data. Size was the sum
of the o, and o, parameters, or average diameter.

pendent variable causes slope underestimates in simple regres-
sion (Sokal and Rohlf, 1969). However, this method is directly
comparable to other estimates (which all lie near 0.7-0.8) and is
only slightly larger. Thus, our mapping method appears quite
comparable to other means of quantifying RF dimensions, al-
though our diameters are slightly larger than other estimates.
Whether this modest difference lies in the stimuli or in the
analysis remains to be determined.

Paired-stimulus responses

The primary goal of these experiments was to compare the results
of stimuli presented in pairs with the responses to the same
stimuli presented individually. In separate blocks of trials, the
same stimuli were presented simultaneously at two locations on
the grid shown in Figure 2. Pair-wise combinations were chosen
pseudorandomly from a table of all possible pairs (300 pairs for
the default 5 X 5 grid; the combination of a location with itself
was physically impossible at 100% contrast). This list was com-
pleted, scrambled, and repeated for as long as isolation could be
maintained. Two cells, representative of the range of observa-
tions, are shown in Figure 6. In each panel, we plot the observed
responses to simultaneously presented pairs against the sepa-
rately observed responses to the individual components of each
pair (responses 1 and 2, the x- and y-axes). The mesh surface and
contours are derived from the best-fitting summation model (see
below). These cells display two main features characteristic of our
data. First, the observed response is less than the expected re-
sponse given by unscaled, linear summation (note the z-axis scale
is approximately the same as the x- and y-axis scales; it would
have to be twice as large to accommodate linear summation).
Second, the observed responses rise approximately in a plane
from the origin to the far corner containing maximal response.
This suggests that summation is linear to a first approximation,
but the sum is scaled by an approximately constant amount,
reducing the slope of the plane below the expectation of simple
linear summation.

The cell in Figure 6B also reveals another characteristic that
was frequently observed in our data. In this cell, the summation
surface is clearly curved away from the plane of linear summa-
tion, such that the response to pairs tends to follow the response
to the more effective stimulus of the pair and is less influenced by
the less effective stimulus. This particular example is chosen to
illustrate this characteristic clearly; most cells in the sample
showed far less curvature than this cell.
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Figure 6. Responses of 2 MT cells to pairs of Gabor motion stimuli. The
x- and y-axes show the responses to each component stimulus presented
individually (arbitrarily assigned to x or y), and the vertical axis shows the
observed response to the pair presented simultaneously. Dots connected
to the x—y plane show observed data points, whereas the surfaces and
associated contour lines show the best-fit model (Eq. 3). A4, Cell for which
linear summation provided good account of the data. B, Different cell,
which shows summation closer to winner take all.

However, the population as a whole does show the same trend
toward slightly “concave” summation, as can be seen in Figure 7.
This shows the average, normalized response as a function of the
effectiveness of the component stimuli. We normalized the re-
sponses according to the height of the best-fit Gaussian derived
from the single-stimulus data. Responses to pairs of stimuli were
binned, and the geometric mean was taken in each bin. Thus,
each cell contributes equally to this portrayal, no matter its level
of overall responsiveness. From the clearly concave nature of this
surface, one can see that the population uses a slightly nonlinear
summation mechanism.

To describe these data, we have considered a family of related
models, some of which are illustrated in Figure 8. In Figure 84,
we show the predictions of scaled linear summation. Under this
rule, the summation surface rises as an inclined plane, whose
slope is given by a scale factor (0.5 in this case, corresponding to
averaging). In Figure 8B, we show the prediction of a winner-
take-all model, in which the more effective stimulus controls the
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response completely. These models are in fact parametrically
distinct versions of a generalized nonlinear summation model:

R =a[(r)" + (r)"]" + b. 3)

In this expression, r, and r, represent the responses to the
single Gabors in a pair, corrected for maintained activity, pre-
sented individually. R is the response to the pair, similarly cor-
rected. The intercept, b, is included to correct for errors in the
estimate of maintained activity, which are indirect and not com-
pletely reliable. The two parameters of greatest interest in this
model are the scale factor, a, and the exponent, n. These control
the slope and the curvature of the summation surface, respec-
tively. For the hypothetical example model in Figure 84, the scale
parameter is 0.5, and the exponent is 1. For the winner-take-all
summation shown in Figure 8B, the scale factor assumes a value
of 1, and the exponent is large (125).

The model illustrated in Figure 8C is a reduced version of the
model developed by Simoncelli and Heeger (1998), which is also
a member of this family of models. In their model, MT cells sum
their inputs linearly and then use a “half-squaring” (quadratic)
nonlinearity after summation. This corresponds to an exponent
of 0.5 in Equation 3. (The square root operation applied to each
term in the sum recovers the “underlying linear response,” and
the summed quantity is then squared.) The divisive normaliza-
tion factor in their model depends on total contrast, which is
constant in our experiment. Thus the scale constant, a, is equiv-
alent in our model and will be less than unity for divisive
normalization.

We have fit various versions of this model to the data resulting
from our experiments, and Table 1 summarizes the quality of
their account of out data. All models performed acceptably,
because all generally agreed with the dominant trend in the data,
rising from the left front corner in a portrayal like those in Figure
6, up toward the back right corner. However, some models clearly
performed better than others. Both winner-take-all (deep concav-
ity in the surface) and the model of Simoncelli and Heeger (1998)
(modest convexity) provided poor accounts of the data. Simple
linear averaging fit somewhat better, but allowing the slope to
vary noticeably improved the fit, accounting for an additional 4%
of response variance on average. This improvement was signifi-
cant in 61 of 70 cells (nested log-likelihood test, p < 0.05). By
comparison, if the exponent is allowed to vary, but the slope is
forced to unity, the fits are on average somewhat worse than
simple averaging. Unsurprisingly, the best account of the data is
provided by the model that allows both scale factor and exponent
to vary, and this captures 75% of the observed variance in
response, on average. This is an additional 7% of the variance
over the scaled linear model on average, and this improvement
was significant for 63 of 70 cells.

Figure 9 shows a more detailed comparison among three of
these models: scaled linear, Simoncelli and Heeger (1998), and
scaled power-law summation. In Figure 94, we see that the fits for
the Simoncelli-Heeger model are systematically worse than the
linear model, although both incorporate a free scale factor (“nor-
malization constant”). In Figure 9B, we see that allowing the
exponent to vary consistently improves the fits, as one would
expect from the performance comparisons described above.
Thus, the individual cells in the sample are quite consistent with
regard to which summation model best describes these data.

Finally, we examined the sample distributions for the best-fit
parameters to the model that provided the best account of the
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data: the scaled power-law summation model. The sample distri-
butions of the scale factor and exponent terms (¢ and n in
Equation 3) are shown in Figure 10. This shows that on average,
the responses to pairs of stimuli are less than expected from
unscaled, linear summation by a substantial amount. In our ex-
periment, this scale factor was almost exactly halfway between
averaging (0.5) and summation (1.0). Second, Figure 10B shows
that the summation is on average modestly nonlinear, character-
ized by an exponent of 2.72. There is, however, substantial diver-
sity of summation behavior. Cells near the left end of the distri-
bution in Figure 10B are essentially linear, whereas the group
that goes off scale to the right can be considered to use a winner-
take-all rule. This diversity of summation behavior was not
correlated across the sample of 70 cells with any independent
measure, including responsiveness, maintained activity, RF
size, or location. Furthermore, there was no significant rela-
tionship between the scale parameter, a, and the exponent, n
(all r values < 0.23).

Spatial effects

All the preceding analysis was based on the assumption that the
summation rule was invariant across space, and the response to
two stimuli could be predicted from only the response amplitudes
to each component stimulus. We have investigated the spatial
dependence of summation in two ways. First, we will describe the
average sample summation as a function of the spatial location of
each stimulus, which is model-free and descriptive. Then we will
explore the residuals to the model fits as a function of stimulus
location. The latter analysis investigates whether spatial depen-
dence is also necessary, in addition to the amplitude terms in-
cluded in our summation model.

For both of these analyses, we expressed the location of each
component stimulus in terms of o, derived from the two-
dimensional Gaussian fits to the single-stimulus data. The Gauss-
ian fits (derived from Eq. 2) provided two different o values if the
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RF was elliptical, and in such cases, a single o was derived for
each stimulus location from its position with respect to the prin-
cipal axes of the ellipse. Thus, each stimulus location is expressed
in terms of its radial location in a standard RF. Figure 114 shows
the average normalized response (analogous to the portrayal in
Fig. 7) as a function of the stimulus locations. On this response
surface, the contour lines depict lines of constant average re-
sponse. One can see that these contours remain parallel to the
axes for most of their lengths. In these areas, moving one stimulus
has relatively little effect on the response. This is especially true
once one or the other stimulus is beyond ~1 ¢ in radial position.
Thus, moving the second stimulus away from the RF does not
allow the response to rise very much. In other words, the scaling
influence of a stimulus on MT cell responses is still very much in
effect with one or the other stimulus well away from the RF (note
the height of the highest contours near each axis).

We have also analyzed the residuals to our best-fitting power-
law summation model as a function of stimulus location, and the
results of this analysis are shown in Figure 11B. The surface
clearly systematically deflects upward along the x- and y-axes,
indicating that the nonlinear summation model systematically
underestimated the responses when one or the other (but not
both) stimuli departed the RF. However, this underestimation
was modest in magnitude: only ~5% at a distance of 2-3 RF radii
from the RF center. This is at a location where the first-order
response of the cell to the stimulus is effectively zero. Thus,
stimuli that are largely ineffective at driving the cell because they
lie outside the classical excitatory RF center are still effective at
normalizing the responses to stimuli within the RF, and summa-
tion and normalization are effectively constant across a region
substantially larger than the RF of the cell. The distance over
which normalization operates is large: the average RF diameter
in our data set was ~9°. Therefore, it appears that stimuli divi-
sively interact in MT over distances of at least 20°.
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A. Scaled linear summation
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Figure 8. Comparison of predictions of three models for this experi-
ment. A, Linear model: a = 0.5; n = 1. B, Winner-take-all model: a = 1;
n = 100. C, Summation followed by squaring: a = 0.0025; n = 0.5. For
comparison, the fit values for the two cells portrayed in Figure 6 were
Figure 6A4: a = 0.72; n = 1.36; Figure 6B: a = 0.93; n = 6.68.
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Temporal effects

We know that the responses to many different kinds of stimuli
adapt rapidly to repeated or continuous presentation, owing to
synaptic depression (Abbott et al., 1997) or spike rate adaptation
(Connors and Gutnick, 1990). Interaction between such adapta-
tion and the divisive interactions would be of considerable inter-
est, because this would suggest the two processes share biophys-
ical mechanisms. Our rapid, high-contrast stimuli provoked
substantial adaptation during the 3 sec trials, which declined
during the 2 sec intertrial interval. We may thus relate the time
course of neuronal adaptation to the time course of the interac-
tion between stimuli. To do this, we measured the responses of
our neurons as a function of order within a trial for both the
single and paired stimuli. Figure 12 shows the results of this
analysis. Figure 124 shows the decline in response during a trial
for stimuli presented individually. To derive the average Z scores,
two steps were needed. First, cumulative means and SDs were
calculated for each stimulus location in the grid. Then, for each
stimulus within a trial, the Z score was calculated by reference to
the statistics for that spatial location. These Z scores standardize
all stimuli so that they can be averaged. One can see that the
average response drops substantially across the first three stimuli
in a trial (375 msec) and somewhat more slowly for the next
several hundred msec. Thus, the expected response is clearly
dependent on time.

Knowing that the predicted response should vary within a trial,
we can now ask whether the summation behavior also varies. To
do this, we again looked at the residuals from the power-law
summation model, but now as a function of time within a trial.
For each stimulus pair, we first select the single-stimulus presen-
tations for the same point in time to make the model prediction
and then calculate the residual from those predictions. In Figure
12B, we show the average residuals to the model fits. We know
from Figure 114 that response falls with time; this asks whether
normalization is additionally affected by time. Figure 12B shows
that there is a modest effect of time: the residuals are positive for
the first 625 msec before declining to near zero values. Although
it is possible that this dependence is simply an amplitude—sum-
mation nonlinearity not captured by our model, rather than a true
effect of time, we think this is unlikely, because in that case the
residuals would be expected to fall with the rate change seen in
Figure 12A4. At the very least, one would expect the first stimulus
presentation, which has the largest rate, to show the greatest
effect, and it does not. Thus, there appears to be a true time
dependence of the divisive interactions in MT, which evolves over
a few hundred msec, but which is modest in amplitude, because
the residuals were never large. Most of the inhibitory interactions
are clearly in effect in the first stimulus period (125 msec), so the
process appears quite rapid.

DISCUSSION

In this paper we have explored the manner in which brief, local-
ized stimuli interact within the RFs of MT cells. We found that
the response to pairs of local motion impulses fell well short of the
response expected from summation of the individual component
responses. Although responses were well predicted by scaled,
linear summation of the inputs, the prediction was markedly
improved by using power-law summation. The divisive scaling is
not highly dependent on the exact spatial location of the stimuli,
but is consistent across a wide region, extending well beyond the
classical RF center. We have also studied the interaction as a
function of time within a trial, because our stimuli were presented
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Table 1. Model performance comparison

Model Scale (a) Exponent (n) Variance (%) SD
Winner-take-all 1 100 58 29
Average 0.5 1 64 18
Scaled linear summation Free 1 68 17
Unscaled power-law summation 1 Free 62 28
Scaled power-law summation Free Free 75 18
Simoncelli and Heeger (1998) Free 0.5 62 16

For each model, we calculated the average percentage of variance accounted for according to the method of Carandini et
al. (1997), and the mean value is shown. For this analysis, two cells with limited dynamic range, which were not well fit by

any model, were discarded. n = 70.
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Figure 9. Comparison of variance accounted for by three models. Vari-
ance accounted for was calculated as 100 * (1 — var(obs — pred)/
var(obs)). 4, Linear model compared against the model of Simoncelli and
Heeger (1998). B, Linear model compared against the generalized power-
law summation model. Note that all three models provided fair accounts
of the data but also that the generalized model provided the consistently
lowest errors.

in a rapid sequence, allowing fairly fine sampling of the temporal
dimension. The responses dropped rapidly at the onset of the
trial, in the first 500 msec, but the interaction between stimuli
changed little in this same period. This suggests that divisive
normalization is at least partially a separate process from re-
sponse adaptation.

Technical issues

The single- and double-stimulus pairs were presented in separate
blocks lasting at least 10—15 min. If the normalization process
were very slow and took seconds or minutes to change states, then
both main results of this paper would be called into question. We
have considered this issue, and there are two principal arguments
against such slow mechanisms. First, the normalization is nearly
identical if the single- and double-stimulus conditions are inter-
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Figure 10. Sample histograms for the two key parameters of the gener-
alized power-law summation model. See Results for details.

leaved, as is shown in related work from our laboratory. For the
comparable cases as presented in this paper, the median slope
relating observed and predicted responses is 0.745, a value nearly
identical to the value of 0.745 reported in this paper (H. W. Heuer
and K. H. Britten, unpublished observations).

These results, which are beyond the scope of the present paper,
also help resolve a potential ambiguity in the present work.
Because firing rate is monotonically related to both spatial loca-
tion in the RF and to the temporal order of stimuli, it is in
principle difficult to distinguish amplitude summation effects
from spatial or temporal effects. In our more recent experiments
(Heuer and Britten, unpublished observations), contrast was var-
ied as well as spatial location, allowing the disambiguation of
firing rate and location. In preliminary analysis of these results,
the spatial pattern of residuals appears very similar to that seen in
Figure 11. Therefore, we are confident in our estimates of the
spatial extent of the divisive normalization.

Relationship to previous work

Several studies have addressed the responses of MT cells to
multiple moving stimuli in their RFs. Studies using plaid grating
stimuli have tended to focus on directional tuning, rather than
amplitude of the responses (Movshon et al., 1985; Rodman and
Albright, 1989; Stoner and Albright, 1992). Because we do not
vary direction, we cannot compare our results with these. Several
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Figure 11. Responses and model residuals as a 0.5
function of spatial location of the component
stimuli. A, Average responses normalized as in
Figure 7. B, Residuals from the best-fit general-

ized power-law summation model, also normal- 0 0.5

ized to the same value, the amplitude of the
Gaussian function fit to the single stimulus data.

studies have, however, quantitatively analyzed the amplitude of
responses to multiple stimuli, but none have yet addressed the
spatial location of the stimuli. Snowden et al. (1991) measured
responses to transparently presented dot fields, whereas Recan-
zone et al. (1997) and Ferrera and Lisberger (1997) have used
pairs of dots traversing the RFs of MT cells. The consensus
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finding from these studies is that M T cells average multiple inputs
using some form of divisive operation. The present work extends
these observations by exploring their dependence on spatial lo-
cation, and we find that the normalization extends well beyond
the classical RF center. In the present data, we find somewhat less
normalization than previous studies in which the effects of space
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Figure 12.  Effects of time on responses to paired stimuli. 4, Responses to
single-motion impulses, shown as a function of time within a trial. Z
scores were calculated relative to the entire distribution of responses to
each stimulus location, independent of time, and then averaged for each
time position, across stimulus location. Responses clearly decline rapidly
in the first 500 msec of each trial (four stimuli). B, Responses to pairs of
stimuli, compared against the expected response for that location and
time position. Because the stimulus sequence was random, many stimulus
location—time position combinations were not represented in any given
experiment, but all that were presented contribute to this average. For
both A and B, the error bars denote the SEM across cells.

were not explored. The divisive scale factor we found was 0.75,
whereas Recanzone et al. (1997) reported that averaging (0.5)
slightly overestimates the response. Snowden et al. (1991) used a
slightly different metric and reported an average value indicating
near perfect averaging. On the other hand, Ferrera and Lisberger
(1997) explored the influence of a second moving stimulus near
but outside the RF of MT cells. Although it is difficult to know
how far their “distractor” stimuli were from the RF, from what
they present, they consistently observe no effect of the second
stimulus on the response of the MT cells to a preferred stimulus
(a = 1.0 in our notation). Although it is possible that differences
in the stimuli or the fact that they recorded from cells with more
central RFs might explain the difference in results, a more par-
simonious explanation is that their distractor stimuli were farther
from the RF, and that the divisive inhibition had declined by this
distance.

The comparison with the results of Ferrera and Lisberger
(1997) also helps with respect to any potential involvement of
antagonistic surround mechanisms (Allman et al., 1985; Born and
Tootell, 1992; Raiguel et al., 1995). The smallest stimuli that have
been used to measure surround effects are dot fields subtending a
substantial fraction of the RF width (Raiguel et al., 1995). The
much smaller stimuli of Ferrera and Lisberger (1997) probably do
not trigger surround modulation. Although we cannot rule out
activation of surround mechanisms in the present experiments,
we suspect that our small, transient stimuli more resemble the
moving dots of the experiments of Ferrera and Lisberger and
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probably do not much influence the surround. Detailed examina-
tion of the relationship between divisive interactions in the center
and surround mechanisms (which are often considered subtrac-
tive) is clearly an important direction for future work.

One feature of the present work, not previously reported, is the
nonlinear summation captured by the value of the exponent in
our power-law summation model. Because space and response
strength covary in our measurements, this term must be viewed
with some caution. We have argued in Results against such an
interpretation, but it remains open. No other work on MT has
explicitly considered nonlinear summation, but in work on simple
cells in V1 by Carandini et al. (1997), a related nonlinearity helps
describe the summation of pairs of superimposed grating stimuli
varying in contrast. Interestingly, although their biophysically
motivated model differs from ours in many ways, the average
value of their exponent is very close to ours (2.34-2.61 vs 2.72). It
is also very interesting that in the “selection model” of Nowlan
and Sejnowski (1995), normalized, nonlinear summation is used.

Mechanism

The measurements in the present work allow further constraint
on possible mechanisms of divisive normalization. Specifically,
these interactions can be seen to occur across wide regions of
space. In many of our experiments, stimuli were 10-20° apart.
Normalization was still effective at these distances, probably
beyond the extent of lateral connections in V1. Although these
observations do not exclude normalization in V1 as one compo-
nent, they suggest that an additional step at MT is also necessary.
Because normalization is effective even for stimuli well outside
the RF, which evoke little response by themselves, it also seems
necessary to invoke lateral connections from neurons that are
activated by these stimuli. Otherwise, if some homosynaptic or
recurrent gain control were operating, its effectiveness would be
expected to fall with the main excitatory effect of the stimulus.
This is clearly not supported by the data.

Two types of mechanism appear to satisfy the constraints
imposed by the present data. One is lateral inhibitory networks
within MT. These would presumably connect in a mutually in-
hibitory manner cells with largely, partially, or barely overlapping
RFs. Decline in the density of such connections would then
explain the declining effectiveness of normalization at distances
of 2-3 RF radii. Another possibility involves feedback from
higher areas, such as MST. Recent observations suggest that
feedback from MT is important in center—surround interactions
in V1 (Hupe et al., 1998); an analogous operation might allow
MST feedback to modulate divisive interactions in MT. Two
observations argue against this possibility, in our view. First, the
rapid kinetics of the divisive interactions we observe seem to
render it less likely: the inhibition appears to be in effect in the
first 125 msec. Second, the connections between MT and MST are
topographically imprecise (Maunsell and Van Essen, 1983a;
Boussaoud et al., 1990). Thus, feedback-dependent inhibition
might be expected to be even less dependent on spatial location
than what we observe in the present study. However, either
mechanism remains possible at present.

We have termed the divisive interactions normalization, con-
sistent with one recent model of MT cell responses. The main
function of this mechanism is to keep the representation of
direction (or anything else that is represented) approximately
invariant in the face of changing stimulus contrast. This is be-
cause animals rarely care about the contrast of an object; it is
more important to determine object attributes such as direction
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of motion. To fully test the relationship between the phenomenon
we have described and contrast normalization, we will need to
measure the contrast dependence of these divisive interactions.
Work addressing this question is presently under way in our
laboratory.
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