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A number of studies have provided evidence that neuronal cell
loss after stroke involves programmed cell death or apoptosis.
In particular, recent biochemical and immunohistochemical
studies have demonstrated the expression and activation of
intracellular proteases, notably caspase-3, which act as both
initiators and executors of the apoptotic process. To further
elucidate the involvement of caspases in neuronal cell death
induced by focal stroke we developed a panel of antibodies and
investigated the spatial and temporal pattern of both caspase-8
and caspase-3 expression. Our efforts focused on caspase-8
because its “apical” position within the enzymatic cascade of
caspases makes it a potentially important therapeutic target.
Constitutive expression of procaspase-8 was detectable in
most cortical neurons, and proteolytic processing yielding the
active form of caspase-8 was found as early as 6 hr after focal
stroke induced in rats by permanent middle cerebral artery

occlusion. This active form of caspase-8 was predominantly
seen in the large pyramidal neurons of lamina V. Active
caspase-3 was evident only in neurons located within lamina
II/III starting at 24 hr after injury and in microglia throughout the
core infarct at all times examined. Terminal deoxynucleotidyl
transferase-mediated biotinylated UTP nick end labeling, gel
electrophoresis of DNA, and neuronal cell quantitation indi-
cated that there was an early nonapoptotic loss of cortical
neurons followed by a progressive elimination of neurons with
features of apoptosis. These data indicate that the pattern of
caspase expression occurring during delayed neuronal cell
death after focal stroke will vary depending on the neuronal
phenotype.
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Ischemic insults affecting the CNS result in impaired cognitive
abilities as well as compromised sensorimotor function. These
deficits are generally attributed to a loss of neurons within the
region of the ischemic insult. Several previous studies suggest that
the loss of neurons via apoptosis might be important in this
context (Linnik et al., 1993; MacManus et al., 1994; Li et al., 1995;
Chen et al., 1998; Namura et al., 1998). Apoptosis is a form of
programmed cell death (PCD) originally recognized by ultra-
structural examination and characterized by degradation of nu-
clear chromatin, condensation of the cytoplasm and nucleus, and
ultimately the fragmentation of the cell into “apoptotic bodies”
(Kerr, 1969, 1971; Kerr et al., 1972). These distinct changes in
cellular structure differentiate apoptosis from necrosis, an alter-
native form of cell death. The two processes of cell death,
apoptosis and necrosis, are further distinguished by differing
patterns of DNA degradation; the morphological changes of

apoptosis have been shown to be associated with double-strand
cleavage of nuclear DNA at the linker regions between nucleo-
somes (Wyllie, 1980; Afanas’ev et al., 1986). Genetic and bio-
chemical studies have now demonstrated that a family of intra-
cellular proteases participates in this coordinated disassembly of
cellular structure.

Ellis and Horvitz (1986) reported the identification of two
genes required for the elimination of a subset of cells via PCD in
the nematode Caenorhabditis elegans during development. One of
these genes, ced-3, was found to share extensive homology with
human interleukin-1-converting enzyme (ICE) (Yuan et al.,
1993), a novel cysteine protease required for the proteolytic
activation of prointerleukin-1b into the active cytokine (Thorn-
berry et al., 1992). ICE is now known to belong to a family of
cysteine proteases, the caspases, which play a key role in both
inflammation and PCD in mammals.

All identified members of the caspase family contain the con-
served motif QAC(R/Q)G and typically reside within the cell as
inactive proenzymes that are activated by proteolytic cleavage in
response to a variety of cellular insults. Studies examining recom-
binant caspase activity (Faucheu et al., 1995; Fernandes-Alnemri
et al., 1995, 1996; Tewari et al., 1995; Srinivasula et al., 1996), the
sequential appearance of proteolytic activities cleaving fluores-
cent substrates (Enari et al., 1996), and affinity-labeling of active
caspases (Takahashi et al., 1996, 1997; Yamin et al., 1996) support
the hypothesis that multiple caspases are sequentially activated
during apoptosis with caspase-8 often being the first caspase in
the cascade.

Caspase-8 was identified via protein–protein interactions and
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has been shown to have protease activity toward most known
caspases (Boldin et al., 1996; Fernandes-Alnemri et al., 1996;
Muzio et al., 1996; Srinivasula et al., 1996). Unlike most other
caspase family members, caspase-8 contains two death effector
domain-like modules through which it interacts with FADD, an
adaptor protein involved in recruiting caspase-8 for activation at
either the CD95 death-inducing signaling complex (DISC) (Kis-
chkel et al., 1995; Boldin et al., 1996; Muzio et al., 1996; Medema
et al., 1997) or the tumor necrosis factor receptor-1 (Hsu et al.,
1996). Activation of caspase-8 may also occur “downstream” of
mitochondrial dysfunction and independent of signaling at the
DISC (Fulda et al., 1997).

To investigate the possibility that caspase-8 activation might be
involved in neuronal cell death after an ischemic insult we gen-
erated a panel of caspase antibodies and examined cellular ex-
pression and maturation of caspase-8 and caspase-3 after focal
stroke. Our studies suggest that the death of cortical neurons
involves multiple caspases and that the activation of caspase-3 in
microglia may contribute to cell death in this cell population.

MATERIALS AND METHODS
Middle cerebral artery occlusion and tissue preparation. Adult male spon-
taneously hypertensive rats (SHR) (weight 250–350 gm) were obtained
from Taconic Farms (Germantown, NY) and were maintained with food
and water ad libitum at 23°C and 50% relative humidity for at least 7 d
before surgery. Surgical procedures were as described previously (Bar-
one et al., 1995). Briefly, rats were anesthetized with sodium pentobar-
bital (60 mg/kg, i.p.; Steris Laboratories, Phoenix, AZ) and placed in a
stereotaxic head holder (David Kopf Instruments, Tujunga, CA), and
body temperature was maintained at 37°C. Occlusion of the middle
cerebral artery (MCA) was achieved at the level of the inferior cerebral
vein. An incision was made between the orbit and the external auditory
canal with dissection–retraction of the temporal muscle. The MCA was
exposed through a 2–3 mm 2 craniotomy made just rostral to the zygo-
matic–squamosal skull suture, directly over the artery. The dura over
the MCA was opened, and the artery was positioned on the tip of a
platinum–iridium wire (0.0045 inch diameter; Medwire, Mount Vernon,
NY) mounted on a micromanipulator. The artery was pulled slightly
away from the brain surface for simultaneous occlusion and transection
by electrocoagulation (Force 2 Electrosurgical Generator; Valley Lab
Inc.) without damaging the brain surface. In sham-operated rats, the
dura mater was opened over the MCA, but the artery was not occluded.
Blood pressure, blood gases, blood glucose concentrations, heart rate,
and body temperature were monitored before and after surgery, and all
parameters were within normal physiological range (Table 1). Rats were
killed at 6 hr (n 5 6), 24 hr (n 5 6), 48 hr (n 5 6), and 5 d (n 5 3) after
surgery; sham rats (n 5 2) were killed 48 hr after surgery. Naive control
rats (n 5 2) were also examined. Rats were killed with 1 ml/kg sodium
pentobarbital and perfused via the aorta with 50 mM Dulbecco’s PBS
containing 2% paraformaldehyde for 15 min. The brain was then re-
moved and post-fixed in PBS containing 2% paraformaldehyde for 4 d at
4°C. Brains were cryoprotected in 20% sucrose in PBS at 4°C, frozen in

OCT (Tissue-Tek, Miles Inc., Elkhart, IN), and stored at 270°C until
sectioned. Sections (12-mm-thick) were cut onto Fisher Scientific (Pitts-
burgh, PA) Superfrost Plus slides, dried on a warm plate at 37°C, and
stored at 270°C until use.

Terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick
end labeling. Terminal deoxynucleotidyl transferase-mediated biotinyl-
ated UTP nick end labeling (TUNEL) was performed according to the
method of Gavrieli et al. (1992) with modifications of Davis et al. (1996).
Slides were brought to room temperature and rehydrated in PBS. En-
dogenous peroxidase activity was quenched for 20 min in 3% H2O2 in
methanol. Nuclei of tissue sections were stripped of proteins by incuba-
tion with 10 mg/ml proteinase K (Sigma, St. Louis, MO), 0.1 M Tris, pH
8, and 0.05 M EDTA at 37°C for 15 min. Reaction was stopped with wash
in Tris for 5 min. A reaction mix of 400 pmol of biotinylated dATP (Life
Technologies, San Diego, CA), 0.1 ml of CoCl2 , and 25 U of terminal
deoxynucleotidyl transferase (Promega, Madison, WI) was added to the
sections, and slides were incubated at 37°C for 90 min. Slides were then
washed in Tris for 5 min, incubated in ABC reagent for 60 min at room
temperature, and washed in Tris three times for 5 min each. The sections
were colorized with 0.02% DAB in 0.1 M Tris, pH 7.6, containing 0.02%
H202 and then washed in Tris to end the reaction. Slides were washed in
water, allowed to dry overnight, counterstained with hematoxylin, and
coverslipped. Only dark-staining cells were counted as apoptotic
phenotype.

DNA laddering. DNA was harvested from the infarcted area and the
uninjured contralateral cortex of the rat brain 24 hr after permanent
middle cerebral artery occlusion (pMCAO). The tissue was minced and
then resuspended in digestion buffer (100 mM NaCl, 10 mM Tris, pH 8,
25 mM EDTA, 0.5% SDS, and 100 mg/ml proteinase K). Samples were
digested for 16 hr at 50°C. After digestion, samples were treated with
RNase (1 mg/ml) at 37°C for 1 hr, and then DNA was isolated by
phenol /chloroform extraction. After precipitation, DNA was resus-
pended in Tris-EDTA, and then 10 mg of DNA was run on a 1% agarose
gel containing ethidium bromide (FMC Bioproducts, Rockland, ME).

Antibody generation and Western blot analysis. The antibody used to
detect procaspase-8 (SK441) was raised against full-length recombinant
human caspase-8 purified from Escherichia coli. The antibody used to
detect active caspase-8 (SK440) was raised against the p20/p10 fusion
purified from E. coli. A neo-epitope peptide antibody (SK398) was
generated to the C terminus of the p20 subunit of caspase-3 (GIETD).
All antibodies are rabbit polyclonals. Western blot analysis was per-
formed on rat brain, mouse liver, and Jurkat cell lysates spiked with 50 ng
of recombinant purified human caspases to test for antibody specificity.
Samples were run on a 16.5% SDS-PAGE gel under reducing conditions
and electroblotted onto nitrocellulose. The blots were blocked with 5%
dry milk in PBS plus 0.1% Tween 20. Antibodies were incubated with the
blots in blocking buffer at 1:1000–1:10,000 for 1 hr and washed two times
with PBS plus 0.1% Tween 20. Donkey anti-rabbit-HRP (1:5000; Amer-
sham, Piscataway, NJ) was incubated in blocking buffer for 1 hr, washed,
and visualized with ECL (Amersham).

Immunohistochemistry. For immunohistochemistry, slides were
warmed to room temperature and placed under a vacuum for 7 min.
Tissue was rehydrated in PBS, and endogenous peroxidase activity was
quenched by immersion in 3% H2O2 in methanol for 10 min. A nonspe-
cific blocking procedure making use of 1% bovine serum albumin was
performed before application of primary antibodies. The antibody SK441
(procaspase-8) was used at a 1:4000 dilution. The antibody SK440 (active

Table 1. Systemic parameters

Occlusion (n 5 5) Sham (n 5 3)

pre post pre post

MABP, mmHg 136 6 20 140 6 15 137 6 31 141 6 27
pH 7.21 6 0.02 7.24 6 0.03 7.2 6 0.02 7.23 6 0.02
PCO2, mmHg 45 6 10 42 6 3.3 43 6 6 43 6 3
PO2, mmHg 54 6 5 80 6 9 58 6 10 64 6 9
Rectal temp, °C 37 6 0.4 37 6 .3 37.5 6 0.2 37 6 0.4
Heart rate 321 6 55 339 6 27 342 6 16 323 6 20
Glucose 89 6 20 103 6 12 91 6 7 80 6 2

Values are mean 6 SD; MABP, mean arterial blood pressure.
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caspase-8) was used at a dilution of 1:2000, and the antibody SK398
(active caspase-3) was used at a dilution of 1:12,000. Cell-specific mark-
ers, OX-42 (microglia; 1:1000; Chemicon, Temecula, CA), GFAP (astro-
cytes; 1:2000; Chemicon), and NeuN (neurons; 1 mg/ml; Chemicon) were
used to identify the phenotype of the caspase-expressing cells. All
primary incubations were overnight at 4°C. A Vectastain ABC kit (Vec-
tor Laboratories, Burlingame, CA) was used to localize the primary
antibody. A diaminobenzidine substrate was used for visualization of the
catalyzed peroxidase-reaction product. After multiple rinses in PBS and
a final rinse in distilled water, sections were counterstained with hematox-
ylin (Biomeda, Foster City, CA), dehydrated, cleared, and coverslipped.
For double-labeling studies, fluorescent conjugated secondary antibodies
(Molecular Probes, Eugene, OR) were used at a 1:400 dilution.

Adsorption studies. To test the specificity of the active caspase antibodies,
we adsorbed the antibodies at their working dilution with either recombi-
nant active human caspase-3 (p20/p10 fusion) or recombinant active human
caspase-8 (p20/p10 fusion) overnight at 4°C and then used the primary
antibody mixture to examine immunodetection of active caspase species in
24 hr brain tissue as per our usual immunohistochemical protocol.

Image analysis and quantitation. All images were collected and ana-
lyzed with an Olympus Optical (Tokyo, Japan) BX60 microscope
equipped with the Spot digital camera (Diagnostic Instruments, Sterling
Heights, MI) and Photoshop (Adobe Systems, San Jose, CA). For quan-
titative analysis of TUNEL and NeuN-positive cells, two fields from both
lamina II /III and lamina V of the ischemic region in a single 12 mm
section from each of three animals were randomly selected and quanti-
tated. For the number of active caspase-8-positive neurons, three fields
centered on lamina V and equally spaced along the dorsal to ventral
extent of the core infarct in a single 12 mm section from each of three
animals were quantitated. For the quantitation of active caspase-3-

positive cells, four fields within the ischemic region in a single 12 mm
section from each of three animals were randomly selected and quanti-
tated. The total number of cells per field was assessed by counting the
number of hematoxylin-counterstained nuclei in all of the above quan-
titated sections.

RESULTS
Time course of cortical apoptosis
We elected to use the terminal transferase enzyme and estab-
lished TUNEL methodology to assess the time course of apopto-
sis within the core infarct of the ischemic rat brain. At 6 hr after
pMCAO, there was no evidence of TUNEL-positive neurons in
any of the cortical lamina (Fig. 1A,B). By 24 hr after pMCAO, a
moderate number of strongly labeled cells were found in lamina
II/III (Fig. 1C) and lamina V (Fig. 1D). Examination of the core
infarct at 48 hr after pMCAO revealed robust positive staining of
most cells situated within either lamina II/III (Fig. 1E) or lamina
V (Fig. 1F). This temporal sequence of developing presumptive
apoptotic cell death was consistently observed in our experiments
and is similar to that reported by Asahi et al. (1997) in a similar
model of pMCAO.

Gel analysis of DNA
In addition to TUNEL analysis, we analyzed by gel electrophore-
sis the pattern of DNA cleavage. Using brain homogenates from

Figure 1. The time course of apoptosis within the
core infarct as indicated by TUNEL. At 6 hr after
injury there is no evidence of DNA damage within
the core infarct (A, B). At 24 hr there is strong
staining in a moderate number of cells distributed
throughout lamina II/III (arrows, C) and lamina V
(arrows, D). By 48 hr most of the cells within lamina
II/III show robust staining (E), as do the majority of
cells within lamina V (F). Scale bar: A–F, 250 mm.
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24 hr after injury, a time at which we could clearly identify
apoptotic bodies by basic histological analysis (Fig. 2A), we were
able to demonstrate a laddered pattern of DNA in samples taken
from the ipsilateral cortex (side of injury) but not from the
uninjured contralateral cortex (Fig. 2B).

Western blot analysis of caspases
Western blot analysis was performed to determine antibody spec-
ificity. Figure 3, lef t, shows that SK441, which recognizes an
epitope(s) in the prodomain of caspase-8, detects full-length
caspase-8, a 55 kDa band in all lanes (present in the Jurkat
extract), as well as the processed prodomain (25 and 14 kDa
bands) in the lane spiked with recombinant full-length caspase-8
(there is autoprocessing of the full-length recombinant caspase-8
resulting in a mixture of active and inactive enzyme). A single 55
kDa band is detected in normal rat brain. SK440 recognizes
epitope(s) in the cleaved p20 subunit of caspase-8 (Fig. 3, middle).
The epitope(s) appears to be unavailable for binding in the
full-length caspase-8 because there is no recognition of either the
endogenous caspase-8 in the Jurkat cell extracts or the recombi-
nant full-length caspase-8 added to the sample (Fig. 3, middle).
There is no cross reactivity of SK441 or SK440 to either recom-
binant human caspase-3 or caspase-4 (data not shown). The
neo-epitope antibody generated to caspase-3, SK398, does not
react with full-length caspase-3 but only recognizes the epitope
after cleavage of the p10 subunit from the p20 subunit. Because of
the sequence similarities between human caspase-3 and
caspase-8, some crossreactivity was detected by Western blot
using recombinant human caspase-3 and recombinant human
caspase-8. Figure 3 (right) shows SK398 reacts with the p20
subunit of human caspase-8 (18 kDa) and the prodomain plus p20
of human caspase-3 (21.5 kDa) and the p20 subunit of human
caspase-3 (17 kDa). A single band corresponding to active
caspase-3 is detected by SK398 in extracts of mouse liver after
intravenous administration of anti-Fas. Crossreactivity between
caspase-3 and caspase-8 when using SK398 is not a problem in the
rodent because of sequence differences between human and ro-
dent. The epitope for caspase-3 (CGIETD) is conserved in hu-

man, mouse, and rat (Mukasa et al., 1997; Ni et al., 1997), whereas
the epitope from human caspase-8 (GIPVETD) is very different
from rodent caspase-8 (FQGVPD) (GenBank accession number
AJ000641). This explains the specificity of SK398 for active
caspase-3 in the mouse liver extracts and rat brain.

Multiple attempts to identify by Western analysis active forms
of either caspase-8 or caspase-3 in rat brain samples taken from
injured animals were all negative. Similarly, attempts to detect
active caspases by enzymatic methods of analysis using suitable
substrates all yielded negative results. Quantitative analysis of our
in vivo findings suggests a plausible explanation for these negative
results and will be presented later.

Expression of procaspase-8 in neurons
Initial studies examining caspase expression in uninjured rats
were performed to assess procaspase-8 expression and to validate
the specificity of antibodies recognizing active caspase forms. In
both sham and normal rats, procaspase-8 was detected in neurons
throughout all cortical lamina (Fig. 4A). The pattern of intracel-
lular staining for procaspase-8 was distinctly punctate and pre-
dominantly somatic, with only a small amount of immunoreactiv-
ity extending into proximal dendritic segments. In these
uninjured animals, there was no observable positive immuno-
staining with either the active caspase-8 antibody (SK440) (Fig.
4B) or the active caspase-3 antibody (SK398) (data not shown).

Cellular expression of active caspase-8 and caspase-3
Cell-specific antibodies and the antibodies SK440 (active
caspase-8) and SK398 (active caspase-3) were used to assess (1)
the temporal pattern of active caspase expression, (2) the pheno-
type of cells expressing active caspases, and (3) the intracellular
localization of active caspase protein.

Positive immunoreactivity with SK440 (active caspase-8) was
found within the core infarct as early as 6 hr in neurons scattered
throughout the cortex but was most consistently observed in the
large pyramidal neurons of lamina V (Fig. 4C). Positive immu-
noreactivity was also evident at 24 hr after pMCAO and as late as
48 hr (Fig. 4D) after injury. Unlike the discrete punctate staining
seen for procaspase-8, the immunostaining for active caspase-8
was observed to be diffusely cytoplasmic. Neurons expressing
active caspase-8 (Fig. 4F) demonstrated DNA damage as indi-
cated by double labeling with TUNEL (Fig. 4E).

A very different pattern of immunostaining was obtained with
SK398, the active caspase-3 antibody. At 6 hr after pMCAO there
was no positive neuronal staining with SK398. However, by 24 hr
after pMCAO there was robust immunostaining of the small- to
medium-sized pyramidal neurons of lamina II/III (Fig. 5A,C); no
staining of neurons was evident in the deeper cortical lamina (Fig.
5B). The immunopositive neurons in lamina II/III often ap-
peared in clusters or as a radial column of cells, and the intracel-
lular localization of the detected active caspase was almost exclu-
sively nuclear. A mixed nuclear–cytoplasmic compartmenta-
lization was only rarely observed (Fig. 5D). In addition to the
positive immunostaining of neurons, there was also strong immu-
nostaining of what appeared to be microglia based on morpho-
logical criteria; in double-labeling studies, colocalization was ob-
served with the microglia marker OX42, confirming the presumed
phenotypic classification (Fig. 5H). This staining could be found
as early as 6 hr and in many instances revealed a cell with
apparently fragmenting cellular processes (Fig. 5E). Although
many of these cells had typical microglial morphologies (Fig. 5F),
others appeared atrophic with eccentrically located, pyknotic

Figure 2. Gel analysis of DNA. Brain homogenates from 24 hr after
injury were selected based on the TUNEL findings and basic histological
analysis, which indicated the presence of apoptotic bodies at this time ( A).
A laddered pattern of DNA was observed in samples taken from the
ipsilateral cortex (Ip; side of injury) but not from the uninjured contralat-
eral cortex (Co) (B). St, Molecular weight standards.
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nuclei (Fig. 5G). No colocalization of active caspase-3 and GFAP,
an astrocyte-specific marker, was observed.

Adsorption control studies
To further evaluate the specificity of SK440 and SK398 we incu-
bated samples of our working-dilution primary mixtures with
both specific and irrelevant caspase peptides. Adsorption of
SK440 with recombinant active human caspase-3 (irrelevant) did
not affect immunoreactivity (Fig. 6A), whereas adsorption with
recombinant active human caspase-8 (relevant) completely abol-
ished immunostaining (Fig. 6B). Adsorption of SK398 with re-
combinant active human caspase-8 (irrelevant) did not affect
immunoreactivity (Fig. 6C), whereas adsorption with recombi-
nant caspase-3 (relevant) abolished all immunostaining (Fig. 6D).

Quantitative analyses
Using the neuron-specific marker NeuN and TUNEL we exam-
ined the temporal kinetics of neuronal cell loss and of cellular
DNA damage. Counts of NeuN-positive cells (Fig. 7A) revealed a
biphasic loss of neurons in which an initial steady decline (0–24
hr) was followed by a plateau (24–48 hr) and subsequent loss
(.48 hr). The decrease in neurons between 0 and 24 hr was found
to be significant ( p , 0.05) as was the difference between 48 hr
and 5 d ( p , 0.05) as measured by Tukey’s HSD test. Between 24
and 48 hr the decrease in neurons staining positively for NeuN
was not significant. During the plateau phase, a rise in TUNEL-
positive cells occurred (Fig. 7A), indicating the onset of DNA
damage and presumptive apoptosis. The increase in TUNEL-
positive cells was significantly greater at 48 hr compared with
either 24 hr or 5 d ( p , 0.05) as measured by Tukey’s HSD test.

Quantitation of active caspase-expressing cells indicated that
the maximum number of either active caspase-8- or active
caspase-3-positive cells was found at 24 hr after injury (Fig. 7B).
However, even at this time point, the number of immunoreactive
cells accounted for a very small percentage of the total cell
population; for active caspase-8-positive cells this amounted to
9% and for active caspase-3 this amounted to only 6%. Additional
analysis indicated that the number of active caspase-8-positive
neurons found in lamina V of the cortex at 24 hr accounted for
19% of the total neuronal population of lamina V. This peak in
active caspase-8 expression directly preceded a sharp increase in

the number of TUNEL-positive cells found in lamina V at 48 hr
(Fig. 7C).

DISCUSSION
In the present study, we examined the expression of caspase-8 and
caspase-3 to determine whether these enzymes play a role in the
loss of cortical neurons subsequent to permanent focal stroke. A
model of focal stroke was used that has consistent physiological
parameters within normal range for the SHR rat (Table 1).
Previous reports characterizing this occlusion model in SHR rats
have demonstrated a significantly greater consistency in the in-
farct volume compared with that generated in either Wistar
Kyoto or Sprague Dawley rats (Barone et al., 1992).

Positive immunostaining obtained with the procaspase-8-
specific antibody SK441 demonstrated constitutive expression of
procaspase-8 in the majority of cortical neurons. As early as 6 hr
after focal stroke, a subpopulation of cortical neurons located
predominantly in lamina V demonstrated proteolytic processing
of caspase-8 as identified by the active caspase-8-specific antibody
SK440. The number of active caspase-8-immunopositive neurons
in lamina V reached a peak at 24 hr, when close to 20% of the
total neuronal population in lamina V could be immunolabeled;
this peak expression of active caspase-8 directly preceded the rise
in TUNEL and presumptive apoptosis. In contrast, active
caspase-3 expression in neurons was restricted to small clusters of
cells distributed within lamina II/III and was first detectable at 24
hr after focal stroke. Besides this limited pattern of neuronal
caspase-3 expression, microglia throughout the entire region of
the infarct stained intensely for active caspase-3 beginning as
early as 6 hr after stroke. The small percentage of cells expressing
either active caspase-8 or active caspase-3 is probably the reason
that neither active enzyme was detected by Western blot analysis
or by enzymatic assay.

Our results indicate that there is an intracellular redistribution
of caspase-8 associated with its activation. This change in intra-
cellular distribution reflected a greater dispersal of caspase-8
throughout the cytoplasm because the proenzyme had a re-
stricted localization that was of a discrete punctate nature. This
punctate pattern of procaspase-8 immunostaining was suggestive
of a lysosomal localization and bore a marked similarity to the

Figure 3. Western blots demonstrating antibody
specificity. SK441 (lef t) detects full-length en-
dogenous caspase-8, a 55 kDa band, in all lanes of
Jurkat extract and brain. In addition, SK441 rec-
ognizes the processed prodomain (there is auto-
processing of the full-length recombinant
caspase-8, resulting in a mixture of active an
inactive enzyme) as bands at 25 and 14 kDa in
the lane spiked with recombinant full-length
caspase-8. SK440 detects the cleaved p20 subunit
of caspase-8 only (middle). SK398 (right) reacts
with the p20 subunit of human caspase-8 (18
kDa) and the prodomain plus p20 of human
caspase-3 (21.5 kDa) and the p20 subunit of
human caspase-3 (17 kDa). A single band corre-
sponding to active caspase-3 is detected in ex-
tracts of mouse liver after intravenous adminis-
tration of anti-Fas. Mw, Molecular weight
standards; 8A, Jurkat extract spiked with recom-
binant active human caspase-8 (p20/p10 fusion);
8F, Jurkat extract spiked with full-length recom-
binant human caspase-8; Jk, Jurkat extract; Br,
Rat brain; 3A, Jurkat extract spiked with recom-
binant human caspase-3 that has been cleaved to its active form; 3F, Jurkat extract spiked with full-length recombinant human caspase-3; Liver, mouse
liver extract from animals that were not (2) injected with anti-Fas and animals that were injected with anti-Fas (1).
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pattern of neuronal staining obtained with antibodies to lysoso-
mal enzymes reported previously (Cataldo et al., 1990, 1994). If
caspase-8 activation involves signaling through CD95, whose ex-
pression has been shown to be upregulated in neurons after
ischemic brain injury (Matsuyama et al., 1995), then the inactive
form of caspase-8 may associate with the CD95/DISC within an
endolysosomal compartment and become dissociated from this
organelle on activation. A role for an acidic compartment in the
induction of apoptosis by tumor necrosis factor-a (TNF) binding
to the CD95-related protein TNFR-1 has been shown recently
(Monney et al., 1998). Although this is only speculation, the
diffuse cytoplasmic dispersal of active caspase-8 that we found
would certainly facilitate its action on known caspase-8 substrates
because most of these substrates are believed to reside within the
cytoplasm of the cell.

In the current study, active caspase-3 was found to be localized
within the nucleus of cortical neurons. This nuclear localization
of active caspase-3 in neurons correlates with its well established
role as an inactivator of the nuclear protein poly (ADP-ribose)

polymerase (as well as other nuclear substrates) and is in agree-
ment with previous studies demonstrating a nuclear localization
of active caspase-3 in cells undergoing apoptosis (Martins et al.,
1997a,b). Because procaspase-3 has been shown to reside within
the cytoplasm of neurons (Namura et al., 1998), the observed
nuclear localization would indicate an intracellular redistribution
of caspase-3 on activation. The mixed nuclear–cytoplasmic local-
ization of active caspase-3 in neurons that we occasionally ob-
served is in agreement with this, as is the report of both nuclear
and cytoplasmic localization of active caspase-3 in neurons after
ischemia (Namura et al., 1998).

A distinct laminar pattern of active caspase expression in
neurons was found: active caspase-8 expression was predomi-
nantly in lamina V, whereas active caspase-3 expression was
restricted to lamina II/III. This pattern of active caspase expres-
sion suggests that the molecular mechanisms of cell death differ
between the populations of neurons comprising the cerebral
cortex and that selective inhibitors of specific caspases may ame-
liorate the loss of distinct neuronal classes. Indeed, the evidence

Figure 4. Expression of caspase-8 in
cortical neurons of normal and ischemic
rat brain. Punctate cytoplasmic staining
for procaspase-8 is evident in two large
pyramidal neurons of lamina V ( A). The
active caspase-8 antibody fails to dem-
onstrate positive immunostaining in
normal rat brain (B). At 6 hr after in-
jury, positive immunoreactivity is
readily detectable in the large pyramidal
neurons of lamina V ( C). Both positive
and negative (arrow) immunostaining is
still apparent in the large pyramidal
neurons of lamina V at 48 hr (D). Co-
localization of TUNEL reaction prod-
uct (E) and positive immunofluores-
cence for active caspase-8 (F) could be
found. Scale bars: (in A) A, B, 60 mm; C,
D, 60 mm; (in E) E, F, 60 mm.
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presented here would indicate that an inhibitor of caspase-8 may
prove effective in decreasing the loss of lamina V pyramidal
neurons, a population of neurons functionally specialized for
providing the efferent outflow of the cerebral cortex via long
projection axons (i.e., corticospinal tract). Although future ther-

apies for nervous system injury may involve cell grafts capable of
restoring “associative” function via reformation of local synaptic
connections, the ability of replacement cell populations to form
axonal projections extending the entire rostral to caudal length of
the adult CNS is questionable and would argue in favor of the

Figure 5. Detection of active caspase-3 in neurons
and microglia located within the core infarct. All
images are from 24 hr after injury. Positive immu-
nostaining localized to the nucleus is seen in the
small- and medium-sized pyramidal neurons of lam-
ina II/III (A); several immunopositive neurons are
indicated (arrows). No staining is evident in the
deeper cortical lamina (B). Doubling labeling of
active caspase-3-positive cells with NeuN confirms
their neuronal phenotype (C). A mixed nuclear–
cytoplasmic compartmentalization of immunostain-
ing is only rarely observed (D). As early as 6 hr,
small fragmenting cells with robust cytoplasmic im-
munostaining (arrows) could be seen ( E). Immu-
nopositive cells often had either a classical microglia
morphology (F) or appeared atrophic ( G) as evi-
denced by an abnormal cell shape and an eccentri-
cally located pyknotic nuclei bounded by a thin rim
of cytoplasm (arrow, G, H ). Double labeling with the
microglia-specific marker OX42, which is localized
to the plasma membrane, confirms the microglial
phenotype (H ). Scale bars: (in A) A, B, 100 mm; C,
E, 40 mm; D, 20 mm; (in F ) F–H, 15 mm.
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development of therapeutics, whose mode of action is to preserve
efferent neuronal populations such as the pyramidal neurons of
lamina V.

The restricted pattern of active caspase-3 expression in neurons
that we found was surprising because caspase-3 is considered to
serve as an effector of the apoptotic process, and in previous
reported work a widespread pattern of neuronal expression was
demonstrated (Namura et al., 1998). This significant difference in
findings may be related to interspecies variability or a difference
in experimental procedure; in the Namura study the occlusion of
the middle cerebral artery was transient (2 hr) followed by a
period of reperfusion.

Reperfusion subsequent to ischemia has been postulated to
adversely affect neuronal survival (reperfusion injury) (for re-
view, see Hallenbeck and Dutka, 1990) and has been demon-
strated to be associated with an earlier onset of neuronal apopto-
sis than permanent arterial occlusion (Li et al., 1995; Charriaut-
Marlangue et al., 1996; Asahi et al., 1997; Namura et al., 1998).
This difference in the temporal pattern of apoptosis observed
between permanent and transient ischemia suggests that the
dynamics and possibly the molecular mechanisms of neuronal

apoptosis are affected by reperfusion. Curiously, the finding of
nuclear caspase-3 immunoreactivity in only a few scattered neu-
rons in lamina III and V recently reported by Chen et al. (1998)
after transient (15 min) global ischemia in the rat is similar to our
findings. Together, these results suggest that the pattern of active
caspase-3 expression within the cerebral cortex after stroke is
dependent on both the duration and extent of ischemia, as well as
reperfusion.

In addition to the caspase-3 expression by neurons, microglial
expression was also observed. Although the focus has been pri-
marily on neuronal cell death after focal stroke, the glial cell
population is also affected by ischemia. An examination of
caspase expression by microglia after ischemia found upregula-
tion of caspase-1 (also known as ICE or IL-1b-converting en-
zyme) in microglia of the gerbal hippocampus after global isch-
emia (Bhat et al., 1996). The authors suggest that expression of
ICE mediates a component of the inflammatory response after
injury by activating IL-1. Others have shown that microglia in this
injury model undergo delayed apoptosis (Kato et al., 1996; Petito
et al., 1998). Our findings of active caspase-3 expression in atro-
phic microglia in conjunction with the previous demonstration of

Figure 6. The specificity of SB440 and SB398 was further evaluated by adsorption with caspase peptides. Adsorption of SB440 with recombinant human
caspase-3 (irrelevant peptide control) did not have an affect on immunostaining ( A), whereas adsorption with recombinant human caspase-8 completely
abolished immunostaining (B). Adsorption of SB398 with recombinant human caspase-8 (irrelevant peptide control) did not have an affect on
immunostaining (C), whereas adsorption with recombinant caspase-3 abolished all immunostaining (D).
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caspase-1 expression suggest that microglia express multiple
caspases before cell death after an ischemic insult.

The quantitative findings presented indicate that neuronal cell
death within the core infarct after pMCAO occurs in two distinct
phases. There is an early loss of neurons (;46% of the entire
population) within the first 24 hr that does not apparently involve
DNA damage and is presumably a form of necrotic cell loss.

These early and rapidly dying neurons were evenly distributed
throughout the cortex and could not be discerned to possess any
shared phenotypic trait other than an acute vulnerability to isch-
emic conditions, suggesting that mitigating loss within this popu-
lation may best be accomplished by early restoration of blood
flow. In contrast, during the subsequent 24 hr, many of the
remaining neurons begin to undergo a process of cell death that
featured DNA damage as evidenced by TUNEL and, in some
neuronal populations, activation of either caspase-8 or caspase-3.
Although other reports have demonstrated that TUNEL-positive
neurons observed after cerebral ischemia fail to meet the ultra-
structural criteria for apoptosis (Van Lookeren Campagne and
Gill, 1996; Torres et al., 1997), the detection of active caspase
species in neurons and a laddered pattern of DNA fragmentation
shown here and previously (Namura et al., 1998; Chen et al.,
1998; Linnik et al., 1993, 1995; Li et al., 1995) would indicate that
neuronal cell death with characteristics of apoptosis does occur
after focal stroke.

In conclusion, our results indicate that the death of cortical
neurons after pMCAO involves at least two distinct forms of
neuronal cell loss: an early necrotic loss and a delayed elimination
of neurons that involves DNA damage and caspase activation. A
role for caspase activation in microglial cell death is also sug-
gested based on evidence of active caspase-3 expression in mi-
croglia, with morphological abnormalities indicative of cellular
atrophy. Future studies to determine which other members of the
caspase family are expressed after stroke are required for a
greater understanding of the molecular mechanisms involved in
neuronal cell death. This knowledge will in turn facilitate the
development of therapeutics capable of ameliorating the incapac-
itating loss of function resulting from cerebral ischemia.
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