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Regeneration in the CNS is blocked by many different growth
inhibitory proteins. To foster regeneration, we have investigated
a strategy to block the neuronal response to growth inhibitory
signals. Here, we report that injured axons regrow directly on
complex inhibitory substrates when Rho GTPase is inactivated.
Treatment of PC12 cells with C3 enzyme to inactivate Rho and
transfection with dominant negative Rho allowed neurite
growth on inhibitory substrates. Primary retinal neurons treated
with C3 extended neurites on myelin-associated glycoprotein

and myelin substrates. To explore regeneration in vivo, we
crushed optic nerves of adult rat. After C3 treatment, numerous
cut axons traversed the lesion to regrow in the distal white
matter of the optic nerve. These results indicate that targeting
signaling mechanisms converging to Rho stimulates axon re-
generation on inhibitory CNS substrates.
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Axons in the CNS of mammals do not regenerate after injury,
and one barrier to regeneration is growth inhibition by CNS
myelin (Schwab et al., 1993). Myelin inhibits axon growth because
it contains several different growth inhibitory proteins. Myelin-
associated glycoprotein (MAG) inhibits axon growth both in vitro
and in vivo (McKerracher et al., 1994; Mukhopadhyay et al., 1994;
Li et al., 1996; Schafer et al., 1996; Torigoe and Lundborg, 1998).
Also, a different high molecular weight inhibitory activity is
present in myelin (Caroni and Schwab, 1988). Neutralization of
inhibitory activity with the IN-1 antibody allows some axons to
regenerate in white matter (Schwab et al., 1993; Bregman et al.,
1995). Inhibitory proteins expressed at the glial scar also block
axon growth (McKeon et al., 1991). Therefore, multiple inhibi-
tory proteins exist, and, for efficient axon regeneration in the
adult CNS, it will be important to neutralize their inhibitory
effects.

Although axons damaged in the CNS in vivo do not typically
regrow, there have been some reports of long-distance axon
extension in adult white matter. Such growth has been observed
after transplantation of grafted neural tissue (Wictorin et al.,
1990; Davies et al., 1994, 1997), but it is not completely under-
stood. Suppression of the expression of inhibitory proteoglycans
at the glial scar may be one determinant for successful neurite
growth from transplanted neurons (McKeon et al., 1991; Davies

et al., 1997). In other cases, priming with neurotrophic factors to
increase neuronal cAMP levels would make cells less susceptible
to growth inhibition (Cai et al., 1999). For the regeneration of
injured adult neurons, current strategies to foster axonal regrowth
in myelinated regions of the CNS are to bypass myelinated tracts
(David and Aguayo, 1981; Cheng et al., 1996), remove myelin
(Keirstead et al., 1992), or use IN-1 antibody to block myelin
inhibitors (Schnell and Schwab, 1990; Bregman et al., 1995).
However, none of these methods is directed toward neuronal
signaling mechanisms that regulate axon growth. Neurotrophins
have been tested in vivo for their ability to help axons regenerate,
and they are known to delay retrograde cellular atrophy and
apoptosis (Kobayashi et al., 1997; Bregman et al., 1998) and to
promote local branching and sprouting (Schnell et al., 1994; Sawai
et al., 1996). Likely, convergent signaling by multiple growth-
promoting molecules is important in regeneration. Laminin, an
extracellular matrix protein, is able to stimulate rapid neurite
growth (Kuhn et al., 1995), and we have documented that, in the
presence of laminin, neurites can extend directly on myelin sub-
strates (David et al., 1995). Similarly, it has been documented that
when the adhesion molecule L1 is expressed ectopically on astro-
cytes, it can partially overcome their nonpermissive substrate
properties (Mohajeri et al., 1996).Therefore, neurons can, under
appropriate conditions, grow axons on inhibitory substrates, dem-
onstrating that the balance of positive-to-negative growth cues is
a critical determinant for the success or failure of axon regrowth
after injury and that multiple signals converge to regulate axon
growth.

The Rho signaling pathway has been implicated in both posi-
tive and negative signaling events within neurons. Activation of
the small regulatory GTPases may be an important link between
signaling through integrins, signaling cascades of trophic factors,
and regulation of cytoskeletal dynamics (Schlaepfer et al., 1996;
Udagawa and McIntyre, 1996; Hall, 1998). Moreover, both MAG
and the other myelin-derived growth inhibitory proteins block
axon extension by causing growth cone collapse (Bandtlow et al.,
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1993; Li et al., 1996). Rho has been implicated in signaling to the
growth cone cytoskeleton (Mackay et al., 1996; van Leeuwen et
al., 1997) and in regulating growth cone collapse and the retrac-
tion of neurites (Jalink et al., 1994; Tigyi et al., 1996b; Katoh et
al., 1998). These studies prompted us to first examine in PC12
cells and cultures of primary neurons the role of Rho in growth
inhibition by MAG and by myelin. To investigate this possibility,
we have made use of the C3 enzyme from Clostridium botulinum
that selectively ADP-ribosylates Rho in its effector domain with-
out affecting Rac and Cdc42, two other members of the Rho
family (Rubin et al., 1988; Udagawa and McIntyre, 1996). Fur-
thermore, we demonstrate axons regenerate in vivo after treat-
ment of injured optic nerve with C3 to inactivate Rho.

MATERIALS AND METHODS
Preparation of growth substrates and recombinant proteins. Poly-L-lysine
was obtained from Sigma (St. Louis, MO). Laminin was prepared from
Engelbreth–Holm–Swarm tumors (Paulsson and Lindblom, 1994). My-
elin was made from bovine brain corpus callosum, and native MAG was
purified from myelin after extraction in 1% octylglucoside and separation
by ion exchange chromatography (McKerracher et al., 1994). This prep-
aration of native MAG has some additional proteins, including tenascin
(Z. C. Xiao, P. Braun, S. David, and L. McKerracher, unpublished
observations). Recombinant MAG (rMAG) was made in baculovirus-
infected Spodoptera frugiperda (SF) cells as described previously (Shi-
bata et al., 1998), except that the SF9 cells were transferred to serum-free
conditions before collecting the culture supernatant. Test substrates were
prepared as uniform substrates in 96-well plates or eight-chamber Lab-
Tek slides (Nunc, Naperville, IL.). For all substrates, plates were pre-
coated with poly-L-lysine (100 mg/ml) for 3 hr at 37°C and then washed
and dried. MAG or myelin substrates were prepared in 96-well plates by
drying down 4–8 mg of protein overnight. The plasmid pGEX2T-C3
coding for the glutathione S-transferase (GST)-C3 fusion protein was
obtained from N. Lamarche (McGill University, Montréal, Québec,
Canada), and recombinant C3 was purified as described previously
(Ridley and Hall, 1992). Briefly, the GST fusion protein was cleaved by
thrombin, and thrombin was removed by incubation with 100 ml of
p-aminobenzamidine agarose beads (Sigma). The C3 solution was dia-
lyzed against PBS and sterilized with a 0.22 mm filter. The C3 concen-
tration was evaluated by protein assay (DC assay; Bio-Rad, Missassauga,
Ontario, Canada), and C3 purity was controlled by SDS-PAGE analysis.

Cell culture. We used PC12 cells obtained from three different sources:
the American Type Culture Collection, Dr. Phil Barker (Montréal Neu-
rological Institute, McGill University), and Gabor Tigyi (University of
Tennessee, Memphis, TN). We found that all lines were inhibited by both
myelin and MAG in contrast to a different PC12 line tested under
different experimental conditions (Rubin et al., 1995). PC12 cells were
grown in DMEM with 10% horse serum and 5% fetal bovine serum.
Human wild-type RhoA was obtained from Dr. A. Hall (University
College, London, UK), and a dominant negative mutation was generated
by replacing Thr19 for Asn (N19TRhoA). This mutated RhoA was
cloned into the BgllII site of the pEXV mammalian expression plasmid,
and N19TRhoA or mock (empty vector)-transfected PC12 cells were
selected, cloned, and characterized (Sebok et al., 1999). To identify Rho
proteins expressed by PC12 cells, cell lysates were prepared and ribosy-
lated with C3 and [ 32P]NAD1 as described previously (Dillon and Feig,
1995), and the different Rho proteins were detected by two-dimensional
gel electrophoresis and identified as described previously (Santos et al.,
1997). For C3 experiments, PC12 cells were washed once with scraping
buffer (in mM: 114 KCl, 15 NaCl, 5.5 MgCl2, and 10 Tris-HCl) and then
scraped with a rubber policeman into 0.5 ml of scraping buffer in the
presence or absence of 40 mg/ml C3 transferase. The cells were pelleted
and resuspended in 2 ml of DMEM, 1% FBS, and 50 ng/ml nerve growth
factor before plating. Quantitative analysis of neurite outgrowth was with
the aid of Northern Eclipse software (Empix Imaging, Mississauga,
Ontario, Canada). Data analysis and statistics were with Microsoft (Se-
attle, WA) Excel. At least four experiments, each done in duplicate, were
analyzed for each treatment. Experiments on MAG substrates were
analyzed by phase-contrast microscopy. Because myelin is phase dense,
experiments with myelin substrates were by fluorescent microscopy with
DiI-labeled cells (McKerracher et al., 1994). For each well, four images
were collected with a 203 objective using a Zeiss (Oberkochen, Ger-

many) Axiovert microscope. For each image, the number of cells with
and without neurites was counted, and the length of the longest neurite
per cell was determined.

To culture retinal neurons, retinas were removed from postnatal day 1
(P1)–P5 rat pups, and the cells were dissociated with 12.5 U/ml papain in
HBSS, 0.2 mg/ml DL-cysteine, and 20 mg/ml bovine serum albumin. The
dissociated cells were washed and then triturated with C3 or buffer in
culture media. Cells were plated on test substrates in the presence of 50
mg/ml BDNF in DMEM with 10% FBS, vitamins, and penicillin–strep-
tomycin in the presence or absence of 25 or 50 mg/ml C3 transferase.
Quantitative analysis was done with cells treated with 25 mg/ml C3.
Neurons were visualized by fluorescent microscopy with anti-bIII tubulin
antibody, which detects growing retinal ganglion cells (RGCs) (Fournier
and McKerracher, 1997).

To examine the efficiency of C3 scrape loading, PC12 cells or retinal
neurons were treated with C3 or scrape-loading buffer as described
above. After 2 d in culture, cells were washed with PBS and lysed in 50
mM Tris-HCl, pH 7.8, 150 mM NaCl, 2 mM EDTA, 1% Triton X-100, 1
mM PMSF, 1 mg/ml leupeptin, 1 mg/ml aprotinin, and 1 mg/ml pepstatin.
Lysates were cleared by centrifugation, and protein concentrations eval-
uated by DC assay (Bio-Rad). Ten micrograms of protein was separated
on 11% acrylamide gels and transferred to nitrocellulose, and mem-
branes were blocked with TBS containing 0.1% Tween 20 and 5% nonfat
milk powder, incubated in blocking buffer with anti-RhoA antibody
(Upstate Biotechnology, Lake Placid, NY), and revealed with and HRP-
based chemiluminescent kit (Boehringer Mannheim, Laval, Quebec,
Canada). Membranes were reprobed with polyclonal antibody against
Cdc42 (Upstate Biotechnology) and secondary alkaline phosphatase-
linked anti-rabbit antibody and revealed with nitroblue tetrazolium
chloride–5-bromo-4-chloro-3-indyl-phosphate (NBT–BCIP) (Canadian
Life Technology, Burlington, Ontario, Canada).

C3 treatment of crushed optic nerve in adult rats. Rats were anesthetized
with 0.6 ml/kg hypnorm, 2.5 mg/kg diazepan, and 35 mg/kg ketamin. To
make microcrush lesions, the left optic nerve was exposed by a supraor-
bital approach, the optic nerve sheath was slit longitudinally, and the
optic nerve was lifted out from the sheath and crushed 1 mm from the
globe by constriction with a 10.0 suture held for 60 sec (see Fig. 5a). To
verify the lesion was complete, Fluorogold (Flurochrome Inc., Engle-
wood, NJ) was applied bilaterally to the superior colliculus (n 5 3
animals), and the left (microcrush-lesioned) and right retinas were visu-
alized as whole mounts (Selles-Navarro et al., 1996). Lesions were also
examined by anterograde tracing 24 hr after lesion (see below; n 5 4
animals). For C3 treatment and buffer controls, Gelfoam soaked in PBS
or 2 mg/ml C3 transferase was placed on the nerve at the lesion site. Two
3-mm-long tubes of Elvax (Sefton et al., 1984) loaded with buffer or 20 mg
of C3 were inserted in the Gelfoam near the nerve for continued slow
release of C3 (see Fig. 5a). To anterogradely label RGC axons, 5 ml of 1%
cholera toxin b subunit (CT) (List Biologic, Campbell, CA) was injected
into the vitreous, for either 2 d [dichlorotriazinyl amino fluorescein
(DTAF)-labeled] or 3 hr [3,39-diaminobenzidine tetrahydrochloride
(DAB)-labeled]. Two weeks after optic nerve crush, the animals were
fixed by perfusion with 4% paraformaldehyde, and the eye with attached
optic nerve was removed and post-fixed in 4% paraformaldehyde. Optic
nerve were treated in one of two ways. (1) Longitudinal 14 mm cryostat
sections were processed for immunoreactivity to CT with goat anti-CT at
1:12,000 (List Biologic), followed by rabbit anti-goat biotinylated anti-
body (1:200; Vector Laboratories, Burlingame, CA) and DTAF–strepta-
vidin (1:500; Jackson ImmunoResearch, West Grove, Pa) and viewed
with epifluorescence. Some of these sections were further examined for
confirmation of the location of the crush and for myelin staining by a
Luxol fast blue–cresyl violet procedure. After photomicrographs of the
fluorescent images were taken, the coverslips were removed, and the
slides were soaked in PBS, passed through 95% ethanol, and stained in
1% Luxol fast blue overnight. The slides were rinsed in water, differen-
tiated in 0.005% lithium carbonate, and then left in 70% ethanol until the
unmyelinated fibers in the retina cleared. The slides were counterstained
with 0.05% cresyl violet, dehydrated, and mounted with Permount. (2)
Optic nerves were embedded in 20% gelatin, further fixed in 4% para-
formaldehyde for 6–8 hr, and cryoprotected in 30% sucrose, and longi-
tudinal 30 mm cryostat sections were cut and processed as free-floating
sections. The nerves were treated with goat anti-CT as above, incubated
with avidin-biotin HRP complex (ABC; Vector Laboratories), and
rinsed in 0.1 M potassium phosphate buffer, pH 7.2. The color reaction
was by incubating sections in 0.05% DAB, 0.01% cobalt chloride, and
0.01% nickel sulfate for 5 min before adding 0.006% H2O2 for 3–5 min.
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For a quantitative analysis, the numbers of axons per section were
counted at distances of 100, 250, and 500 mm, and at least four sections
per animal were analyzed (see Fig. 9).

RESULTS
Effect of C3 transferase on PC12 cells
PC12 cells typically extend neurites in response to NGF, but,
when plated on myelin substrates, the cells remain round and do
not extend neurites (Rubin et al., 1995). We plated three different
lines of PC12 cells on both native and recombinant MAG sub-
strates (Fig. 1). All of the lines of PC12 cells showed reduced cell
spreading and remained round without neurites in the presence
of NGF. Next, we inactivated Rho in PC12 cells by scrape loading
cells with purified recombinant C3 at 40 mg/ml before plating the
cells on the test substrates (Fig. 2). On MAG substrates, in which
neurite formation is inhibited, C3 had a dramatic effect on the
ability of cells to extend neurites (Fig. 1a–c). On control sub-
strates of poly-L-lysine and laminin, treatment with C3 increased
both the number of cells with neurites and the length of neurites
(Fig. 1d). Moreover, on both MAG and myelin substrates, signif-
icantly more cells extended neurites, and neurite length was
significantly longer after C3 treatment (Fig. 1d). These results
demonstrate that C3 treatment elicits neurite growth from PC12
cells plated on growth-inhibitory myelin or MAG substrates.

To ensure that the effect of C3 treatment resulted from uptake

Figure 1. C3 treatment of PC12 cells plated on inhibitory MAG and myelin substrates. a–c, PC12 cells plated on MAG remained rounded and did not
extend neurites ( a), but cells plated on MAG in the presence of C3 ( b) grew neurites. c, Poly-L-lysine (PLL) controls. Scale bar, 50 mm. d, Quantitative
analysis of neurite growth with C3 treatment (open bars) or in scrape-loaded buffer controls ( filled bars) when PC12 cells were plated on poly-L-lysine,
laminin, rMAG, native MAG (nMAG), or myelin. The number of cells that extended neurites after 18–24 hr of treatment was counted (top), and the
length of the longest neurite per cell was measured (bottom).

Figure 2. ADP-ribosylation of Rho by C3 detected in cultured cells.
PC12 cells or retinal neurons were cultured in the presence (1) or
absence (2) of C3 for 2 d. The cells were lysed, and 10 mg of protein from
each sample was separated on a 11% acrylamide gel. The proteins were
transferred to nitrocellulose, probed with mouse anti-RhoA antibody and
anti-mouse-HRP antibody, and revealed by a chemiluminescent reaction
(top). The membranes were then reprobed with rabbit anti-Cdc42 and
anti-rabbit alkaline phosphatase and revealed with NTB/BCIP color
reaction. Treatment of cells with C3 results in an ADP-ribosylation-
induced decrease in the mobility of RhoA. The mobility of Cdc42 does
not change with C3 treatment.
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of C3 into the cells, we examined by Western blot the electro-
phoretic mobility of Rho in PC12 cells treated with C3 or with
scrape-loading buffer as a control (Fig. 2). It has previously been
shown that ADP-ribosylation of Rho results in decreased mobility
of Rho on SDS-acrylamide gels (Narito and Narumiya, 1995).
Western blots of cell lysates with anti-RhoA antibody revealed an
increase in the apparent molecular weight of RhoA in cells
treated with C3. As a control for the specificity of the effect, we
probed the same blots for another small GTPase of the Rho
family, Cdc42. Cdc42 did not show any change in mobility after
treatment with C3 (Fig. 2), demonstrating the specificity of C3
treatment under our experimental conditions.

Growth of dominant negative Rho-transfected cells on
MAG substrates
PC12 cells transfected with dominant negative RhoA
(N19TRhoA) show enhanced neurite extension after exposure to
NGF (Sebok et al., 1999). The N19TRhoA cells and the mock-
transfected cells were compared for their ability to extend neu-

rites on different inhibitory substrates (Fig. 3a,b). N19TRhoA
cells plated on rMAG substrates were able to extend neurites,
and the neurites were significantly longer than those of the mock-
transfected cells plated on rMAG (Fig. 3d). On myelin substrates,
the N19TRhoA cells were unable to extend neurites (Fig. 3d). To
examine whether other members of the Rho family are also
present in PC12 cells, we examined by ADP-ribosylation of mem-
brane proteins the Rho proteins expressed in PC12 cells (Fig. 3c).
These experiments revealed that PC12 cells express RhoA,
RhoB, RhoC, as reported for brain (Dillon and Feig, 1995). The
inability of the N19TRhoA cells to extend neurites on myelin is
consistent with the report of incomplete inhibition of Rho activity
by dominant negative mutations (Qiu et al., 1995). Inactivation of
all of the Rho proteins or of a threshold amount of RhoA may be
necessary for neurites to extend on myelin substrates.

Effect of C3 on primary cells
To test the involvement of Rho in the response of primary
neurons to MAG and to myelin substrates, we purified retinal

Figure 3. PC12 cells transfected with dominant negative RhoA extend neurites on
MAG substrates. a, b, Mock-transfected cells (a) do not extend neurites on MAG,
whereas N19TRhoA cells (b) were able to spread and extend neurites on MAG
substrates. Scale bar, 80 mm. c, ADP-ribosylation of Rho proteins in PC12 cell
membranes reveal that PC12 cells express RhoA, RhoB, and RhoC. d, Quantitative
comparison of the percentage of mock-transfected (open bars) or N19TRhoA ( filled
bars) cells that grow neurites on different test substrates. The number of cells that grow
neurites (top) was significantly different from N19TRhoA cells plated on MAG. c,
ADP-ribosylation of Rho proteins in PC12 cell membranes. Isolation of crude plasma
membrane, ADP-ribosylation, and two-dimensional gel electrophoresis was per-
formed as described previously (Santos et al., 1997). RhoA, RhoB, RhoC, and an
unidentified protein are ADP-ribosylated.
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neurons and treated them with C3. Neurite outgrowth from these
cells was inhibited by MAG (Fig. 4a) and myelin (Fig. 4d).
Treatment of retinal neurons with C3 allowed neurite extension
on the growth-inhibitory MAG substrates to an extent similar to
that observed on control substrates (Fig. 4b,c). A quantitative
analysis revealed that C3 treatment of retinal neurons plated on
MAG or myelin substrates had significantly longer neurites, and
significantly more cells extended neurites (Fig. 4d). Also, we
documented that, in retinal neurons treated with C3, a shift in the
mobility of Rho, but not Cdc42, was detected (Fig. 2). These
experiments demonstrate that inactivation of Rho by ADP-

ribosylation allows retinal neurons to extend neurites on growth-
inhibitory substrates.

Effects of C3 on retinal ganglion cell axon growth
in vivo
It is known from studies with retrograde tracers that damaged
axons can take up externally applied substances. Therefore, we
explored the possibility that transected axons treated with C3
would foster regeneration in vivo. The RGC response to injury
has been well documented (Vidal-Sanz et al., 1987; Villegas-Perez
et al., 1988; Ajemain, David, 1994; Berkelaar et al., 1994; Berry et

Figure 4. Treatment of retinal neurons with C3 stimulates neurite growth on MAG substrates. On native MAG substrates, neurite growth is inhibited
(a), but after C3 treatment, retinal neurons plated on native MAG substrates extend neurites (b). Growth of neurites from retinal neurons plated on
poly-L-lysine (c). Scale bar, 50 mm. d, Quantitative analysis of neurite growth of retinal neurons on poly-L-lysine, MAG, and myelin substrates, as
described in the legend of Figure 1. Significantly more cells extended longer neurites on MAG and myelin substrates with C3 treatment than with
buffer-treated controls. Scale bar, 50 mm.
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al., 1996), and we examined regeneration of RGC axons in the
optic nerve 2 weeks after injury. Recently, it has been shown that
microlesions in the CNS reduce the extent of the glial scar to
allow axonal growth from transplanted adult neurons into CNS
white matter (Davies et al., 1997). To reduce possible effects of
the glial scar, we made microcrush lesions of optic nerve to
axotomize RGC axons (Fig. 5). To verify that this method com-
pletely axotomized RGC axons, we applied the retrograde tracer
Fluorogold to the superior colliculus at the time of microcrush
lesion and examined retinal whole mounts for the presence of
labeled cells. After microcrush lesion (n 5 3), the RGCs failed to
become labeled, indicating that the lesion was complete (Fig. 6a).
With unlesioned optic nerves (n 5 3), the RGC population was
normally labeled (Fig. 6b). In addition, anterograde labeling (Fig.
5d) of microcrush-lesioned RGC axons 24 hr after injury verified
that RGC axons were effectively axotomized (n 5 4 animals; data
not shown).

To apply C3 to microcrush-lesioned optic nerves, C3 in Gel-
foam was wrapped around the site of crush, and two Elvax tubes,
each loaded with C3, were positioned for sustained slow release
(Fig. 5). For these experiments, 16 animals were treated with C3,
10 animals were treated with Gelfoam and Elvax tubes with buffer
as controls, and four animals received microcrush lesion only. All
animals were examined 2 weeks after surgery. Regenerating ax-
ons were visualized by anterograde labeling with CT injected into
the eye, and longitudinal cryostat sections of the optic nerves were
examined for cholera toxin immunoreactivity. In all 10 of the
buffer-treated animals, most anterogradely labeled axons stopped

abruptly at the crush site (Figs. 7a, 8c), although a few axons did
extend past the crush (Fig. 8c, arrows). In these controls, axon
extension past the crush site was typically restricted to the edge of
the optic nerve. After treatment with C3, large numbers of axons
extended through the site of the crush, both along the edge (Fig.
8c) and in the middle of the optic nerve (Figs. 7b,c, 8d). This
observation of regenerating axons throughout the thickness of the
optic nerve was confirmed by examining serial sections (Fig. 7).
After C3 treatment, many of the axons that extended past the
lesion site showed a twisted path of growth, supporting their
identification as regenerating axons (Fig. 8e). Counterstaining of
the fluorescently labeled sections with Luxol fast blue–cresyl
violet confirmed that the fluorescently labeled axons extended
past the crush and into regions of the nerve that remained
myelinated (Fig. 8b). To examine quantitatively the differences
between C3 and buffer-treated animals, we counted the number
of axons in each section at distances of 100, 250, and 500 mm past
the lesion site in all of the animals examined with the two
immunolabeling methods (Fig. 9a). Significantly more axons ex-
tended past the lesion in the C3-treated animals than in the
microcrush lesion or buffer-treated controls at distances of 100
and 250 mm (Fig. 9b). Therefore, C3 applied to injured RGC
axons can enter axotomized axons and promote robust but short-
lived axon regeneration in the environment of the optic nerve.

DISCUSSION
Here, we report that the small GTP binding protein Rho is a key
intermediate in the neuronal response to neurite growth-
inhibitory signals. Although it is known that treatment of neurons
with C3 to inactivate Rho can stimulate axon outgrowth of cells
plated on poly-L-lysine or laminin (Nishiki et al., 1990; Jin and
Strittmatter, 1997; Kozma et al., 1997), we demonstrate here that
treatment with C3 can also overcome growth inhibition by inhib-
itory substrates. Treatment of cultured PC12 cells and retinal
neurons with C3 enzyme to inactivate Rho allowed neurites to

Figure 5. I llustration of methods used to study the effect of C3 on injured
RGC axons. a, The optic nerve was removed from the sheath before
crushing with 10.0 sutures. b, C3 was applied in Gelfoam and Elvax tubes
immediately after crushing the optic nerve. c, Retinal ganglion cell axons
were detected by anterograde labeling with CT.

Figure 6. Retinal whole mounts visualized after the application of Flu-
orogold to the tectum demonstrate the microcrush lesion is a complete
lesion. a, Retinas are not labeled by Fluorogold applied to the tectum
after a microcrush lesion. b, A control retina to show the normal pattern
of retrograde labeling with Fluorogold.
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extend directly on inhibitory substrates of MAG or myelin. Also,
PC12 cells transfected with dominant negative RhoA extended
neurites on MAG substrates. Therefore, the Rho signaling path-
way is likely to play a key role in the integration of both permis-
sive and inhibitory substrate cues in axon growth and
regeneration.

Regulation of neurite growth by Rho family members
There is now good evidence that members of the Rho family
regulate axon outgrowth in development. Both activating and null
mutations in Rac block the extension of axons in Drosophila (Luo
et al., 1994). Activating mutations of Rho disrupt axonal path-
finding in Caenorhabditis elegans, implicating Rho in coupling
guidance cues to process outgrowth (Zipkin et al., 1997). Re-
cently, it has been shown that the guidance molecule collapsin
acts through a Rac-dependent mechanism (Jin and Strittmatter,
1997). In transgenic mice that express constitutively active Rac in
Purkinje cells, there are alterations in the development of axon
terminals and dendritic arborizations (Luo et al., 1996). The
introduction of mutated Rac, Rho, or Cdc42 into cortical neurons
affects dendritic morphology (Threadgill et al., 1997). Immuno-
cytochemical observations of DRG neurons indicate that Rho
protein is concentrated in growth cones (Renaudin et al., 1998).
Therefore, members of the Rho family regulate axon and den-
drite growth in development.

In PC12 cells, dominant negative Rac disrupts neurite out-
growth in response to NGF (Hutchens et al., 1997; Daniels et al.,
1998), whereas treatment of PC12 cells with lysophosphatidic
acid, a mitogenic phospholipid that activates Rho, or treatment
with constitutively active Rho causes neurite retraction (Tigyi et
al., 1996b; Kozma et al., 1997). Rapid neurite growth consistently
follows treatment with C3 enzyme to inactivate all Rho family
members in PC12 cells and primary neurons (Nishiki, 1990,
Jalink et al., 1994; Tigyi et al., 1996b; Jin and Strittmatter, 1997;

Kozma et al., 1997). We report here that C3 inactivation of Rho
can promote neurite growth of PC12 cells and retinal neurons on
MAG and myelin. A recent study reports that both active RhoA
and active Rac protect chick motor neurons from growth cone
collapse by myelin (Kuhn et al., 1999), but dominant negative
Rho and C3 were not tested to permit a direct comparison with
our results. The difference between our findings could relate to
differences in neuronal cell type. Also, it is possible that different
Rho isoforms (i.e., RhoA, B, and C) contribute differently to
regulating growth, as found for Rac. Activated rRac1B expressed
in retinal neurons stimulates neurite growth, whereas activation
of Rac1A did not (Albertinazzi et al., 1998). We found that
dominant negative RhoA expressed in PC12 cells promoted neu-
rite growth on MAG but not on myelin, perhaps because Rho
inhibition by dominant negative constructs can be low (Qiu et al.,
1995). We and others (Jin and Strittmatter, 1997) have observed
robust neurite growth on myelin substrates when neurons are
treated with C3. We suggest that inactivation of the multiple
forms of Rho by treatment with C3 is the most effective way to
overcome growth inhibition by myelin.

In non-neuronal cells, a complementary hierarchy of signaling
between Rho, Rac, and Cdc42 has been proposed (Nobes and
Hall, 1995). In contrast, Rac and Rho may have opposite effects
on neurite growth (Kozma et al., 1997; van Leeuwen et al., 1997):
inactivation of Rho stimulates rapid neurite outgrowth (Nishiki
et al., 1990; Jalink et al., 1994; van Leeuwen et al., 1997; Katoh et
al., 1998), whereas activation of Rac stimulates neurite extension
(Kozma et al., 1997; van Leeuwen et al., 1997; Daniels et al., 1998;
Albertinazzi et al., 1998). Rho and Rac may have additive effects
on growth cone morphology, with activated Rho and inactive Rac
cooperating to give a spread growth cone morphology, with lower
rates of growth (Jin and Strittmatter, 1997). Kuhn et al. (1999)
found that activation of Rho prevented growth cone collapse by

Figure 7. Anterogradely labeled RGC axons detected past the crush in longitudinal sections of C3-treated optic nerve. a, A series of four sections
through one optic nerve to show that most axons do not extend past a microcrush lesion without C3 treatment. b, A series of four sections though a
C3-treated optic nerve to show that many axons extend past the lesion throughout the thickness of the optic nerve. c, Higher magnification view of the
third and first section shown in b. Scale bar: a, b, 500 mm; c, 100 mm.
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myelin, but growth cone morphology is not always predictive of
the growth state. Rapid neurite elongation in the presence of C3
occurs with a collapsed growth cone morphology (Jin and Stritt-
matter, 1997), and in vivo, rapidly extending axons are bullet-
shaped (Mason and Wang, 1997). Possibly, the prevention of
myelin-derived growth cone collapse by activated Rho (Kuhn et
al., 1999) reflects the cooperative affects of Rac and Rho on
growth cone morphology.

Recently, it was found that priming cells with neurotrophins
increases cAMP levels to block the inhibitory response to MAG
(Cai et al., 1999). We note that, under our experimental condi-
tions with retinal ganglion cells, the neurons were not primed

before treatment with C3 to inactivate Rho. However, our data
that suggest the Rho signaling pathway is a key target for regu-
lating growth cone motility is relevant to the finding that cyclic
nucleotides regulate growth cone responses to inhibitory pro-
teins. Growth cone repulsion by MAG can be converted into
attraction by elevation of intracellular cAMP levels to activate
protein kinase A (PKA) (Song et al., 1998). Experiments with
non-neuronal cells have implicated cAMP in the regulation of
Rho because elevation of cAMP and activation of PKA inhibit
Rho activation (Lang et al., 1996; Laudanna et al., 1996; Dong et
al., 1998). Moreover, PKA directly phosphorylates Rho, and this
phosphorylation decreases the ability of Rho kinase to interact

Figure 8. Treatment of the optic nerve with C3-stimulated regenerative
axon growth on myelin. Longitudinal section of a buffer-treated control
optic nerve (a, c) and a longitudinal section of a C3-treated optic nerve (b,
d, e). The Luxol fast blue stain for myelin (a, b) shows the crush site
(asterisks) and the presence of myelin distal to the crush. Only a few axons
extend past the crush in buffer-treated controls (c, arrows), whereas many
axons extend into the myelinated region distal to the crush in the C3-
treated optic nerve (d, arrows). e, Higher magnification view of d showing
the twisted growth of regenerating axons. Scale bars: a, b, 100 mm; c, d,
100 mm; e, 50 mm.
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with activated Rho (Lang et al., 1996; Dong et al., 1998). In
PKA-deficient PC12 cells, elevation of cAMP fails to protect
from the activation of Rho by lysophosphotydic acid (Tigyi et al.,
1996a). It is likely, therefore, that PKA-dependent regulation of
Rho occurs in growth cones as well.

Not all of the myelin-derived inhibitory molecules are known
to date, and less is known about the neuronal receptors for
growth inhibitory molecules. Several different MAG binding
partners have been identified (Yang et al., 1996; Collins et al.,
1997), and specific neuronal receptors to myelin inhibitors are
likely to exist. Targeting intracellular signaling mechanisms con-
verging to Rho rather than individual receptors may be the most
practical way to overcome growth inhibition in vivo. The advan-
tage of inactivating Rho to stimulate regeneration is that axons
can regenerate directly on the native terrain of the CNS and thus
may be more likely to find their natural targets.

The response of adult rat retinal ganglion cells to
axonal transection
Remarkably, we observed that RGC axons crossed the lesion site
to enter the distal optic nerve after treatment of injured optic
nerve with C3. The striking feature of our results was the large
number of axons that crossed the lesion into the distal white
matter compared with buffer-treated controls or after microcrush
lesion alone. Studies of RGC regeneration after treatment with
IN-1 antibody to block myelin inhibitors have demonstrated that
RGC axons do not regenerate long distances compared with
axons in the spinal cord (Bartsch et al., 1995). One further barrier
to axonal regeneration is the cell death by apoptosis that follows
axonal injury. This has been thoroughly characterized for RGCs
in which the type of injury (cut or crush) and distance of the
lesion from the retina influence the extent of cell death (Villegas-
Perez et al., 1988, 1993; Berkelaar et al., 1994). Treatment of the

Figure 9. Average axon growth in sections of optic nerves from individual animals. A, Quantitative analysis of the average number of RGC axons per
section measured at 100, 250, and 500 mm for C3-treated (F) and buffer-treated (E) animals. Each point represents data from one animal, with the number
of sections analyzed for each animal shown in parentheses. Animals 1–11 were examined by fluorescent microscopy (DTAF) and animals 12–19 by an
HRP–DAB reaction. B, Pooled results for the three groups of animals: C3-treated, buffer-treated controls, and microcrush lesion alone. Average axon
growth after C3 treatment was significantly greater than buffer control or lesion alone at 100 and 250 mm.

Lehmann et al. • Axon Regeneration by Inactivation of Rho J. Neurosci., September 1, 1999, 19(17):7537–7547 7545



optic nerve with C3 is unlikely to prevent the apoptosis that
follows injury. The number of axons that we observed to regen-
erate likely represents ,1% of the normal RGC population, but
only 5–18% of retinal ganglion cells are expected to be alive 2
weeks after intraorbital lesion (Villegas-Perez et al., 1988; Ber-
kelaar et al., 1994). When RGC do regenerate their axons after
grafting of a peripheral nerve, which also provides some trophic
support (Villegas-Perez et al., 1988), an average of only 3% of
RGC axons regrow (Vidal-Sanz et al., 1987).

Our observations of microcrush-lesioned optic nerves after
treatment with C3 provide the first evidence that treatment of
injured white matter tracts with C3 can help foster regeneration
after injury. Whereas the in vitro experiments showed that C3 can
affect directly the growth of neurites from retinal cells, it is likely
that the effects we observed after application of C3 to the optic
nerve in vivo are more complex. In some C3-treated animals, the
crush zone was constricted compared with controls (Fig. 8b),
suggesting that C3 may affect non-neuronal cells such as fibro-
blasts and astrocytes. Also, C3 is known to affect cell migration
(Hall, 1998) and could influence macrophage invasion in the
injured nerve. The effects of C3 on astrocytes and macrophages
need be further examined both in vivo and in vitro to better
understand the implications of C3 treatment for stimulating axon
growth in vivo.

C3 is a 24 kDa protein, and, although it may efficiently enter
transected axons, growing or mature axons may not take up C3
very efficiently. The inability of intact growing axons to take up
C3 may explain why the robust regeneration that we observed was
not sustained for longer distances. It is known that injured axons
take up exogenously applied retrograde tracers such as Fluoro-
gold, but intact axons do not. Our interpretation of our results is
that C3 has a dramatic but short-lived effect on RGC axons
because it is taken up immediately after axon transection but is
not taken up by axons once they begin to regenerate. Antagonists
of Rho activity that can cross the plasma membrane of growing
axons may improve the extent of regeneration. Also, it will be
interesting to test C3 in spinal cord models of axon injury in
which axon growth can be almost an order of magnitude greater
that that observed in injured optic nerve after treatment with
IN-1 antibody (Bartch et al., 1995). Nonetheless, our data of C3
treatment of injured optic nerve provide compelling evidence
that C3 can promote neurite growth on inhibitory substrates in
vitro and helps to overcome growth inhibition in vivo.
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