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A major challenge in studying sensory processing is to under-
stand the meaning of the neural messages encoded in the
spiking activity of neurons. From the recorded responses in a
sensory circuit, what information can we extract about the
outside world? Here we used a linear decoding technique to
reconstruct spatiotemporal visual inputs from ensemble re-
sponses in the lateral geniculate nucleus (LGN) of the cat. From
the activity of 177 cells, we have reconstructed natural scenes
with recognizable moving objects. The quality of reconstruction

depends on the number of cells. For each point in space, the
quality of reconstruction begins to saturate at six to eight pairs
of on and off cells, approaching the estimated coverage factor
in the LGN of the cat. Thus, complex visual inputs can be
reconstructed with a simple decoding algorithm, and these
analyses provide a basis for understanding ensemble coding in
the early visual pathway.
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The foundation of our current knowledge of sensory processing
was established by characterizing neuronal responses to various
sensory stimuli (Adrian, 1926; Hartline, 1938; Barlow, 1953; Kuf-
fler, 1953; Hubel and Wiesel, 1962). In this paradigm, sensory
neurons are studied by measuring their receptive fields and tun-
ing properties, which can in turn be used to predict the responses
of neurons to arbitrary sensory inputs (Brodie et al., 1978; Dan et
al., 1996). A critical test of our understanding of sensory coding,
however, is to take an opposite approach: to reconstruct sensory
inputs from recorded neuronal responses. The decoding approach
can provide an objective assessment of what and how much
information is available in the neuronal responses. Although the
function of the brain is not necessarily to reconstruct sensory
inputs faithfully, these studies may lead to new insights into the
functions of neuronal circuits in sensory processing (Rieke et al.,
1997).

The decoding approach has been used to study several sensory
systems (Bialek et al., 1991; Theunissen and Miller, 1991; Rieke
et al., 1993, 1997; Roddey and Jacobs, 1996; Warland et al., 1997;
Dan et al., 1998). Most of these studies aimed to reconstruct
temporal signals from the response of a single neuron (Bialek et
al., 1991; Rieke et al., 1993, 1995; Roddey and Jacobs, 1996) or a
small number of neurons (Warland et al., 1997). An important
challenge in understanding the mammalian visual system is to
reconstruct more complex, spatiotemporal inputs from the re-
sponses of a large number of neurons. Here we have developed an
input reconstruction technique to decode information from en-
semble activity in the lateral geniculate nucleus (LGN). Rather
than analyzing a single neuron at a time, this technique takes into
consideration the relationship between neurons within the popu-

lation. This is crucial for understanding how sensory information
is coded, in a distributed manner, in the activity of large neuronal
circuits.

As a step toward understanding visual coding in the natural
environment, we used natural scenes as visual stimuli in the
current study. Although simple artificial stimuli are very useful in
characterizing response properties of sensory neurons, the task of
the brain is primarily to process information in the natural
environment. Natural scenes are known to have characteristic
statistical properties (see, for example, Field, 1987; Dong and
Atick, 1995); the importance of using such stimuli for studying the
visual system has been well demonstrated (Creutzfeldt and Noth-
durft, 1978; Olshausen and Field, 1996; Bell and Sejnowski, 1997;
Rieke et al., 1997; Gallant et al., 1998). Some studies have further
suggested that the nervous system may be specifically adapted for
efficient processing of natural stimuli (Barlow, 1961; Laughlin,
1981; Atick, 1992; Rieke et al., 1995, 1997; Dan et al., 1996). Thus,
it is important to investigate how natural signals are coded in the
activity of visual circuits.

In this study, we reconstructed spatiotemporal natural scenes
(movies) from recorded responses in the LGN. The reconstruc-
tion algorithm takes into consideration not only the response
properties of the neurons, but also the statistics of natural scenes
(Bialek and Rieke, 1992). From the responses of 177 cells, we
were able to reconstruct time-varying natural scenes with recog-
nizable moving objects. Between 3 and 16 Hz, the signal-to-error
ratio of the linear reconstruction reaches the theoretical limit set
by noise in the neuronal responses. As expected, the quality of
reconstruction depends on the number of cells. For each pixel in
the visual scene, the quality begins to saturate at six to eight pairs
of on and off cells, approaching the estimated coverage factor in
the LGN of the cat. Thus, we have provided a first demonstration
that spatiotemporal natural scenes can be reconstructed from the
ensemble responses of visual neurons. The results from these
studies also provide an explicit test of the linear model of LGN
coding and an assessment of the number of neural channels
required for coding spatiotemporal natural scenes.
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MATERIALS AND METHODS
Physiological preparation
Adult cats ranging in weight from 2 to 3 kg were used in all the
experiments. The animals were initially anesthetized with isofluorane
(3%, with oxygen) followed by sodium pentothal (10 mg/kg, i.v., supple-
mented as needed). A local anesthetic (lidocaine) was injected before all
incisions. Anesthesia was maintained for the duration of the experiment
with sodium pentothal at a dosage of 6 mg/hr.

A tracheostomy was performed for artificial ventilation. The cat was
moved to a Horsley–Clarke stereotaxic frame. A craniotomy (;0.5 cm)
was performed over the LGN, and the underlying dura was removed. The
hole was filled with 3% agar in physiological saline to improve the
stability of the recordings.

Pupils were dilated with a topical application of 1% atropine sulfate,
and the nictitating membranes were retracted with 10% phenylephrine.
The animal was paralyzed with Norcuron (0.2 mg/kg/hr, i.v.) and arti-
ficially ventilated. Ventilation was adjusted so that the end-expiratory
CO2 was ;3.5%. Core body temperature was monitored and maintained
at 37°C. The electrocardiogram and electroencephalogram were also
monitored continuously. Eyes were refracted, fitted with appropriate
contact lenses, and focused on a tangent screen. Eye positions were
stabilized mechanically by gluing the sclerae to metal posts attached to
the stereotaxic apparatus. All experiments were performed as approved
by the Animal Care and Use Committee, University of California at
Berkeley.

Electrophysiological recording and visual stimulation
Neighboring geniculate cells were recorded with a multielectrode array
(Eckhorn and Thomas, 1993). The array allows seven fiber electrodes to
be positioned independently with a vertical accuracy of 1 mm. We used a
glass guide tube to restrict the lateral scattering of the electrodes in the
array. The inner diameter at the tip of the guide tube was ,400 mm. All
recordings were made in layer A or A1 of the LGN.

Recorded signals were amplified, filtered, and passed to a personal
computer (PC) running Datawave (Broomfield, CO) Discovery software.
The system accepts inputs from up to eight single electrodes. Up to eight
different waveforms can be discriminated on a single electrode, but two
or three is a more realistic limit. The waveforms were saved on disk.
Spike isolation was based on cluster analysis of waveforms, and the
presence of a refractory period, which is reflected in the shape of
autocorrelations.

Visual stimuli were created with a PC containing an AT-Vista graphics
card (Truevision, Indianapolis, IN) at a frame rate of 128 Hz. The
movies were digitized segments of black and white video recordings.
They covered a wide range of natural scenes (street, indoor, woods). The
movie signals (spatiotemporal natural scenes) were updated every four
frames, resulting in an effective frequency of 32 Hz. Because natural
scenes have a high degree of temporal correlation, most of the power in
the stimuli is captured with this sampling rate (see Fig. 3a). Each frame
contained 64 3 64 pixels with a spatial resolution of 0.2°/pixel. Each
movie was 16 sec long. To generate enough data to obtain reliable
estimates of the reverse filters, we showed eight different movies, each
repeated eight times. The root-mean-square contrast of the movies (the
square root of the mean of the squared difference between the intensity
of each pixel at each frame and the mean intensity of the whole movie)
was 30.4%. The cells used for reconstruction were screened based on the
reliability of their responses over multiple repeats of the same movie.
White-noise stimuli were also generated by the same system. Spatially,
the white-noise stimuli were made up of 16 3 16 pixels. The pixel sizes
were adjusted to map receptive fields with a reasonable level of detail
(0.2–0.4°, at ;10° eccentricity). For every frame of the stimulus, the
pixels were either black or white (100% contrast), according to a binary
pseudorandom m sequence (Sutter, 1987; Reid et al., 1997). The com-
plete m sequence consisted of 32,767 frames, updated at 128 Hz.

Data analyses
Linear input reconstruction. The spike trains of the neurons were binned
according to the frame rate of the stimulus (32 Hz for movies, 128 Hz for
white noise) and converted to firing rate signals. We use the following
notation: [r1 r2 . . . rnr

] are the responses of the neurons and [s1 s2 . . . sns
] are

the stimuli at different pixels, scaled between 21 and 1. The term ri is a
time-dependent signal representing the firing rate of the i th neuron, and
sj is a time-dependent signal representing the luminance at the j th pixel.
To reconstruct spatiotemporal visual inputs from the responses of mul-

tiple neurons, we derived linear reverse filters that minimize the mean-
square error of the reconstruction. The multi-input, multi-output reverse
filter matrix h can be expressed as:

F h11 · · · h1ns···
· · ·

···
hnr1 · · · hnrns

G5 F Pr1r1 · · · Pr1rnr···
· · ·

···
Prnrr1 · · · Prnrrnr

G21F pr1s1 · · · pr1sns···
· · ·

···
prnrs1 · · · prnrsns

G (1)

Note that each term in Equation 1 represents a submatrix. The column
vector hij 5 [hij[ 2 (L 2 1)] . . . hij[L 2 1]] T is the time-domain
representation of the linear reverse filter from the i th neuron to the j th

pixel, where L is the filter length (set to 50 frames in this study). Prmrn
is

a Toeplitz matrix that represents the cross-covariance between the re-
sponse of the m th neuron and the response of the n th neuron. The
element at the k th row and l th column of Prmrn

represents the cross-
covariance at a delay of k 2 l frames. This term ensures that the
correlation between different cells is taken into consideration in the
computation of reverse filters, a crucial feature for studying ensemble
decoding. pr is j

5 [pr is j
[ 2 (L 2 1)] . . . pr is j

[L 2 1]]T is a column vector
that represents the cross-covariance between the response of the i th

neuron and the stimulus at the j th pixel. Both Prr and prs were estimated
by averaging over the modeling data set, and h was then computed
directly using Equation 1. Note that this computation is performed
entirely in the time domain. For natural scenes, the modeling data set
consisted of 63 movie clips (each clip was 16 sec long, so the total
duration was 1008 sec). For white noise, the modeling data set consisted
of 240 sec of data. Finally, the stimulus signal at the j th pixel, sj, was
reconstructed by convolving the reverse filters with the responses of the
corresponding cells and summing over all the cells used for the
reconstruction:

ŝ j@t# 5 O
i51

nr O
u52~L21!

L21

hij@u#ri@t 2 u# (2)

where ŝj[t] is the reconstructed stimulus at the j th pixel. The responses
used in this convolution (16 sec for natural scenes, 15 sec for white noise)
were not used for estimating h.

Signal-to-error ratio of the reconstruction. Signal-to-error ratio (SER)
was computed in the frequency domain. The error of the reconstruction
is defined as the difference between the reconstructed and the actual
inputs. The SER is defined as the ratio between the power spectral
density of the actual input and that of the error as a function of temporal
frequency. The total SER shown in Figure 4, c and e, is defined as the
ratio between the total power of the actual input (integrated between
0.125 and 16 Hz) and the total power of the error. To compute the
control SER (see Fig. 3b, dashed line), we used the same cells as those
used for the real SER, but shuffled the neuronal responses to different
movies, so that the visual stimuli and the responses were mismatched.
The reconstruction was generated from this randomized data set in which
the causal relationship between the stimuli and the responses was elim-
inated. The control SER was then computed from this reconstruction,
which provides a baseline against which the significance of the real SER
can be judged.

Theoretical signal-to-error ratio. Assuming a perfect linear relationship
between the stimuli and the responses, the theoretical power spectrum of
the error can be expressed in the following matrix form:

@Fee~v!# 5 @Fss~v!# 2 @Fss~v!#@K~v!#*@Frr~v!#21@K~v!#@Fss~v!# (3)

where v is the temporal frequency, and [ ] denotes matrix. The entry at
the i th row and the j th column of the matrix [Fee(v)] represents the
cross-spectrum between the error at the i th pixel and that at the j th pixel.
[Fss(v)] represents the cross-spectra between the actual stimuli at differ-
ent pixels. [K(v)] represents the temporal Fourier transform of the linear
receptive fields (mapped with white noise) of the neurons used in the
reconstruction. [Frr(v)] 5 [K(v)][Fss(v)][K(v)]* 1 [Fnn(v)] represents
the theoretical cross-spectra between the responses of different cells.
[Fnn(v)] represents the cross-spectra of the noise in the responses of
different cells, and * denotes the complex conjugate transpose. Noise in
the response is defined as the difference between the firing rate of each
individual repeat and the average PSTH from multiple repeats of the
same movie. Because of the rectification of the actual responses, each
pair of on and off cells used in the real reconstruction was approximated
as a single linear filter in the theoretical computation. For each pixel of
the movie, the theoretical error spectrum was therefore computed from
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half of the cells used in the real reconstruction. Finally, the theoretical
SER was computed as the ratio between the power spectrum of the actual
stimulus and the theoretical spectrum of the error, Fee(v), as defined
above.

Estimation of coverage factor. The coverage factor is defined as the
average number of cells whose receptive fields cover a single point in the
visual space. Previous studies have shown that the coverage factor for X
cells in the cat retina is 7–10 (Peichl and Wässle, 1979). This coverage
factor represents the coverage by the centers of the receptive fields. In
our analysis, some cells were also used to reconstruct signals in the
surround of their receptive fields. In the great majority of cases, the pixel
being reconstructed was within an area twice that of the receptive field
center. Therefore, we scaled the estimate of Peichl and Wässle (1979) by
a factor of 2, resulting in a coverage factor of 14–20 for the retina. In the
cat, the number of X cells in the retina is ;75,000 (Wässle and Boycott,
1991), and the number of geniculate X cells representing each eye is
;120,000 (Peters and Payne, 1993). We estimated the coverage factor for
LGN X cells by multiplying the coverage factor in the retina (14–20) by
the ratio between geniculate and retinal X cells (;1.5). The coverage
factor for LGN X cells is therefore ;20–30 cells.

RESULTS
Multiple cells in the LGN of anesthetized cats were recorded
simultaneously with multielectrodes (Eckhorn and Thomas,
1993). The receptive fields of these cells were mapped with
spatiotemporal white-noise stimuli and the reverse correlation
method (Sutter, 1987; Reid et al., 1997). Only X cells were
selected for further studies because they are presumably involved
in processing the spatial details of visual scenes (Wässle and
Boycott, 1991) and they have relatively linear response properties
(So and Shapley, 1981). We recorded the responses of the cells to
multiple repeats of eight short movies, and these data were used
for subsequent analyses. The geniculate cells were well driven by
the movie stimuli, as indicated by their mean firing rates, which
were higher during movie presentation (11.7 spikes/sec; n 5 57
cells) than in the absence of visual stimuli (6.8 spikes/sec; n 5 41
cells).

A multi-input, multi-output linear decoding technique was im-
plemented to reconstruct the spatiotemporal visual inputs. Figure
1a shows the receptive fields of eight neurons recorded simulta-
neously. Outlined in white are the four pixels at which the movie
signals were reconstructed. As a first step in the reconstruction, a
set of linear reverse filters from the responses of all the neurons
to these pixels was computed (see Data Analyses). These linear
reverse filters (Fig. 1b) are optimal in the sense that they mini-
mize the mean-square error of the reconstructed luminance sig-
nals. They depend on not only the response property of each cell,
but also the correlation between cells, as well as the statistics of
natural scenes (Warland et al., 1997; Bialek and Rieke, 1992). The
visual signal at each pixel was reconstructed by convolving the
spike train of each cell (Fig. 1c) with the corresponding reverse
filter and summing the results from all eight cells. Figure 1d shows
the actual (black) and the reconstructed (magenta) luminance
signals as functions of time. The low frequency, slow varying
features of the stimuli were well captured by the reconstruction.
Consistent with the known temporal properties of X cells, which
respond poorly to stimuli at high frequencies, some of the quick
transients were not well reconstructed. For these four pixels, the
mean correlation coefficient between the reconstructed and the
actual signals was 0.60 6 0.04.

In addition to reconstructing the temporal features, our goal
was also to capture the spatial patterns of natural scenes. To
reconstruct movie scenes in an area large enough to contain
recognizable objects, we pooled the responses of 177 cells (89 on,
88 off) recorded in 11 experiments using the same visual stimuli.

Figure 2a shows the receptive fields of these cells, distributed
over an area of 6.4 3 6.4°. For each pixel of the movie, we used
the responses of 7–20 cells (average 14, with approximately equal
numbers of on and off cells) whose receptive fields, including both
center and surround, covered that pixel. The reconstruction was
carried out in the same manner as illustrated in Figure 1. The
results at all pixels were then combined to obtain a spatiotempo-
ral signal. Figure 2b shows three examples of the actual and the
reconstructed images in consecutive movie frames. Note that

Figure 1. The procedure for reconstructing visual stimuli from the re-
sponses of multiple neurons. a, Receptive fields of eight neurons recorded
simultaneously with multielectrodes. These receptive fields were mapped
with white-noise stimuli and the reverse correlation method (Sutter, 1987;
Reid et al., 1997). Red, On responses. Blue, Off responses. The brightest
colors correspond to the strongest responses. The area shown is 3.6 3
3.6°. The responses of these cells were used to reconstruct visual inputs at
the four pixels (0.2°/pixel) outlined with the white squares. b, Linear filters
for input reconstruction. The eight blocks correspond to the eight cells
shown in a. Shown in each block are the four filters from that cell to the
four pixels outlined in a. They represent the linear estimates of the input
signals at these pixels immediately preceding and following a spike of that
cell. Each filter is 3.1-sec-long, with 1.55 sec before and 1.55 sec after the
spike. c, Spike trains of the eight neurons in response to movie stimuli. d,
The actual (black) and the reconstructed (magenta) movie signals at the
four pixels outlined in a. Unlike white noise, natural visual signals exhibit
more low-frequency, slow variations than high-frequency, fast variations.
Such temporal features are well captured by the reconstruction.
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moving objects (tree trunks, branches, and a human face) are
discernible in the reconstructed movies. To evaluate the recon-
struction quantitatively, we computed the correlation coefficients
between the reconstructed and the actual signals along two di-
mensions: as functions of time at each pixel and as functions of
spatial position at each frame (Fig. 2c). Both the spatial and
temporal correlation coefficients peaked at 0.6–0.7. The spatial
correlation coefficients are more dispersed than the temporal
correlation coefficients, which may be caused by the fact that
different pixels were reconstructed from different sets of cells.
Such inhomogeneity may introduce an additional source of vari-
ability along the spatial dimension.

To further evaluate the linear decoding technique used in the
current study, we performed spectral analyses of the reconstruc-
tion. First, we computed the temporal power spectra of the actual
(Fig. 3a, thick line) and the reconstructed (thin line) inputs. They
closely resemble each other, both exhibiting an ;1/f2 profile that

is characteristic of natural scenes (Dong and Atick, 1995). Sec-
ond, we computed the power spectrum of the error, which is the
difference between the actual and the reconstructed signals. The
SER of the reconstruction was plotted as a function of temporal
frequency (Fig. 3b, solid line). To evaluate the significance of the
SER, we computed a control SER (dashed line), which is the SER
of the reconstruction generated from randomly matched visual
stimuli and neuronal responses. Between 0.125 and 16 Hz, the
real SER (solid line) is significantly higher than the control SER,
indicating that meaningful visual information is extracted at all of
these frequencies. Finally, previous studies have shown that
geniculate X cells can be modeled as spatiotemporal linear filters
(Derrington and Fuchs, 1979; Dan et al., 1996) with additive
noise (Sestokas and Lehmkuhle, 1988). Using this model, we
estimated the theoretical SER of the reconstruction (dotted line)
based on its analytical relationship with the noise in the re-
sponses, assuming perfect linear encoding (see Data Analyses).

Figure 2. Reconstruction of natural scenes from the responses of a population of neurons. a, Receptive fields of 177 cells used in the reconstruction.
Each receptive field was fitted with a two-dimensional Gaussian function. Each ellipse represents the contour at one SD from the center of the Gaussian
fit. Note that the actual receptive fields (including surround) are considerably larger than these ellipses. Red, On center. Blue, Off center. An area of 32 3
32 pixels (0.2°/pixel) where movie signals were reconstructed is outlined in white. The grid inside the white square delineates the pixels. b, Comparison
between the actual and the reconstructed images in an area of 6.4 3 6.4° (a, white square). Each panel shows four consecutive frames (interframe interval,
31.1 msec) of the actual (top) and the reconstructed (bottom) movies. Top panel, Scenes in the woods, with two trunks of trees as the most prominent
objects. Middle panel, Scenes in the woods, with smaller tree branches. Bottom panel, A face at slightly different displacements on the screen. c,
Quantitative comparison between the reconstructed and the actual movie signals. Top, Histogram of temporal correlation coefficients between the actual
and the reconstructed signals (both as functions of time) at each pixel. The histogram was generated from 1024 (32 3 32) pixels in the white square.
Bottom, Histogram of spatial correlation coefficients between the actual and the reconstructed signals (both as functions of spatial position) at each frame.
The histogram was generated from 4096 frames (512 frames per movie; 8 movies).
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Between 3 and 16 Hz, the SER of the reconstruction (solid line)
closely matches the theoretical SER, consistent with the notion
that geniculate cells function as linear spatiotemporal filters. The
difference between these curves below 3 Hz may be due to
nonlinearities, such as those caused by light adaptation and con-
trast gain control (Shapley and Enroth-Cugell, 1985) or nonsta-
tionarities of the neuronal response properties.

An important issue is how the density of cells affects the quality
of reconstruction. We compared the spatial distribution of recep-
tive fields with the quality of reconstruction. Figure 4a shows a
map of the receptive fields of cells used in Figure 2 and the
correlation coefficient between the actual and the reconstructed
stimuli at each pixel. There is a close correspondence between
the density of cells and the quality of reconstruction at each area.
To investigate this relationship more quantitatively, we systemat-
ically varied the number of cells used for reconstructing a single
pixel, from 2 to 20 cells (1–10 on/off pairs). Both the total SER of
the reconstruction and the correlation coefficient between the
reconstructed and the actual signals improve with increasing
numbers of cells, but they begin to saturate at 12–16 cells (Fig.
4b,c). Natural scenes are known to have a high degree of spatio-
temporal correlation (Field, 1987; Dong and Atick, 1995). Such
correlation reduces the amount of information in the visual input,
which may explain the saturation at a relatively small number of
cells. To test whether the saturation is specific to natural scenes,
we reconstructed white-noise signals with no spatiotemporal cor-
relation and analyzed the dependence of the reconstruction on
the number of cells. Both the correlation coefficient and the SER
for white noise are much lower than those for natural scenes (Fig.
4d,e). This difference in reconstruction quality is consistent with
the notion that white-noise stimuli contain more information than
natural scenes. More importantly, the quality of reconstruction
does not exhibit saturation below 20 cells. This indicates that the
saturation in this range is not a general property of visual coding
in the LGN. Rather, it is related to the statistics of natural scenes.

DISCUSSION
The current study is motivated by the following fundamental
question: when neurons fire action potentials, what do they tell
the brain about the visual world? As a first step to address this
question, we reconstructed spatiotemporal natural scenes from
ensemble responses in the LGN. Responses of visual neurons to
natural images have been studied in the past. Creutzfeldt and
Nothdurft (1978) studied the spatial patterns of the responses by
moving natural images over the receptive fields of single neurons
and recording the responses at corresponding positions. They
generated “neural transforms” of static natural scenes that re-

vealed important features of the neurons in coding visual signals.
In contrast to this “forward” approach to studying neural coding,
we have taken a “reverse” approach, which is to decode informa-
tion from the neural responses. Given the known properties of X
cells in the LGN, significant information can in principle be
extracted from their responses with a linear technique. Here we
have presented the first direct demonstration that spatiotemporal
natural scenes can be reconstructed from experimentally re-
corded spike trains. The results from the linear technique also
provide a benchmark for future decoding studies with nonlinear
techniques.

In this study, we extracted information from the responses of a
population of neurons. The reconstruction filters not only reflect
the response properties of individual neurons, but also take into
consideration the correlation between neighboring cells. This is
crucial for decoding information from ensemble responses. Not
surprisingly, an important factor affecting the quality of recon-
struction is the density of cells (Fig. 4). In Figure 2, visual signals
within an area of 6.4 3 6.4o (1024 pixels) were reconstructed from
the responses of 177 cells, corresponding to an average tiling of
9 3 9 on/off pairs over a 32 3 32 array of pixels. As shown in
Figure 4a, some areas of the scenes were covered with lower
densities of cells, resulting in lower correlation coefficients. A
better coverage of these areas could potentially improve the
reconstruction. For natural scenes, the quality of reconstruction
begins to saturate at 12–16 cells, which appears to be related to
the spatiotemporal correlation in the inputs. A previous study
using a similar technique has shown that the saturation of the
reconstruction quality occurs at approximately three pairs of
on/off retinal ganglion cells in the salamander (Warland et al.,
1997), which is significantly lower than the number that we have
observed. This discrepancy may be caused by the difference in the
visual inputs. In the earlier study the input was full-field white
noise with no spatial variation, whereas in our study the natural
scenes contain considerable spatial variation. The more complex
natural input ensemble presumably contains more information
that is carried by a larger number of cells. On the other hand,
compared to spatiotemporal white noise, natural scenes contain
more spatiotemporal correlation and therefore less information.
This results in the difference in the saturation for white noise and
for natural scenes (Fig. 4). Based on previous anatomical studies
in the retina and the LGN of the cat (Peichl and Wässle, 1979;
Wässle and Boycott, 1991; Peters and Payne, 1993), we estimated
that every point in visual space is covered by the receptive fields
of 20–30 geniculate X cells (see Data Analyses). The density of
cells required for optimal reconstruction of natural scenes ap-

Figure 3. Evaluation of reconstruction using spectral anal-
yses. Because natural scenes were presented at 32 Hz, these
analyses were performed at up to 16 Hz. a, Temporal power
spectra of the actual and the reconstructed inputs. Both
were averaged from 192 pixels near the center of the screen.
For each pixel, the input was reconstructed from the same
cells used in Figure 2. b, Comparison between the SER of
the reconstruction and the theoretical SER estimated based
on the noise in the neuronal responses. Above 3 Hz these
two curves are not significantly different. The control SER
represents the SER of the reconstruction if there is no
causal relationship between the visual stimuli and the neu-
ronal responses. It provides a baseline against which the
significance of the real SER can be judged. All three curves
were averaged from the same 192 pixels used in a. Vertical
lines represent SEs. For the control SER, the error bars are
smaller than the thickness of the line.
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proaches this coverage factor, supporting the notion that the early
visual pathway is well adapted for information processing in
natural environments.

Several factors contribute to the error in the reconstruction,
including noise, nonlinearity, and nonstationarity in the neuronal
responses. Assuming linear encoding, we derived the theoretical
error of the reconstruction based on noise in the neuronal re-
sponses (Fig. 3b). The quality of the actual reconstruction reached
this theoretical limit between 3 and 16 Hz, suggesting that noise
in the responses is the major source of reconstruction error over
this frequency range. We would like to emphasize, however, that
the definition of noise is directly related to the assumed mecha-
nism of encoding. Here, our conclusion is based on the assump-
tion of rate coding, under which noise in the responses is defined
as the difference between the firing rate of each repeat and the
average firing rate from multiple repeats of the same movie. The
disagreement between the actual and the theoretical reconstruc-
tion errors below 3 Hz is likely to reflect deviation of the neuronal
responses from the linear model in this frequency range. To
further confirm this hypothesis, we predicted the neuronal re-

sponses based on the linear model. The prediction was computed
by convolving the visual stimuli and the linear spatiotemporal
receptive fields of the cells, followed by a rectification (Dan et al.,
1996). The predicted and the actual firing rates were then Fourier
transformed and compared in the frequency domain. Significant
difference was observed only below 3 Hz (data not shown),
supporting the notion that at these low frequencies, the neuronal
responses significantly deviate from the linear model. Such devi-
ation is not surprising because certain nonlinearities, such as light
adaptation and contrast gain control, are known to occur at
slower time scales (Shapley and Enroth-Cugell, 1985). Also, some
of the geniculate cells used in our study may be in the bursting
firing mode (Sherman and Koch, 1986; Mukherjee and Kaplan,
1995). Cells in the bursting mode are known to exhibit nonlinear
responses, which could contribute to the errors in the reconstruc-
tion. In addition, there may be nonstationarities in the responses
unaccounted for by the model, such as that caused by slow drifts
in the general responsiveness of the visual circuit. Future studies
incorporating these mechanisms may further improve the
reconstruction.

Figure 4. Dependence of the quality of reconstruction
on the number of cells. a, Spatial distribution of cell
density and reconstruction quality from the results
shown in Figure 2. Ellipses represent centers of recep-
tive fields. On and off cells are represented by the same
color. Correlation coefficient between the actual and the
reconstructed stimuli (minimum, 0.52; maximum, 0.79)
is indicated by the brightness at each pixel. Note that
areas covered by higher densities of cells have higher
correlation coefficients between the reconstructed and
the actual inputs. b, The average temporal correlation
coefficient between the actual and the reconstructed
natural scenes versus the number of cells used for re-
construction. c, The temporal total SER of the recon-
struction (natural scenes) of each pixel versus the num-
ber of cells used for that pixel. Total SER was defined as
the ratio between the total power of the actual input
(integrated between 0.125 and 16 Hz) and the total
power of the error. In this analysis, we always used equal
numbers of on and off cells. Each point represents the
mean from multiple (160–192) pixels near the center of
the screen. The vertical lines represent SEs. For both b
and c, we included data from four of the eight different
movie clips whose statistics closely matched that for
natural scenes described in previous studies (Field,
1987; Dong and Atick, 1995). d,e, The same as b and c,
respectively, except the stimulus is spatiotemporal white
noise. Here, the white noise was presented at 128 Hz.
For calculating the correlation coefficient, both the ac-
tual and reconstructed white-noise signals were aver-
aged every four frames to match the sampling rate of
natural scenes.
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Our current decoding method assumes that all information is
coded in the firing rates of neurons. It is optimal only in the sense
that it minimizes the mean-square error under the linear con-
straint. Although this technique proved to be effective in the
present study, more complex, nonlinear decoding techniques (de
Ruyter van Steveninck and Bialek, 1988; Churchland and Se-
jnowski, 1992; Abbott, 1994; Warland et al., 1997; Zhang et al.,
1998) may further improve the reconstruction from ensemble
thalamic responses. Furthermore, recent studies have shown that
neighboring geniculate cells exhibit precisely correlated spiking
(Alonso et al., 1996). With white-noise stimuli, up to 20% more
information can be extracted if correlated spikes are considered
separately (Dan et al., 1998). Such correlated spiking may also
contribute to coding of natural scenes. Ultimately, the success of
any reconstruction algorithm is related to the underlying model of
the neural code. The decoding approach therefore provides a
critical measure of our understanding of sensory processing in the
nervous system.
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