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Effects of Nonuniform Fiber Sensitivity, Innervation Geometry, and
Noise on Information Relayed by a Population of Slowly Adapting
Type | Primary Afferents from the Fingerpad

Antony W. Goodwin and Heather E. Wheat

Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Victoria 3052, Australia

The capacity of a population of primary afferent fibers to signal
information about a sphere indenting the fingerpad is limited by
factors such as the inhomogeneity of sensitivity among the
afferents, the pattern and density of innervation, and the effects
of noise (response variability). Using experimental data re-
corded from single slowly adapting type | afferents (SAls), we
simulated the response of the SAIl population to such a stimu-
lus. The human ability to discriminate stimulus curvature, loca-
tion, and force has been quantified previously. We devised three
neural measures, treating them as surrogates for the real neural
measures underlying human performance, and explored how
population parameters usually overlooked in neural coding
studies affect such measures. Variation in sensitivity among
SAls is large; this distorts population response profiles mark-
edly but has no significant impact on the neural measures. Two
classes of noise were introduced, one dependent on and the

other independent of the level of neural activity. Resolution of
the model was compared with discrimination in humans. Cor-
relation of noise among neurons had different effects for the
different measures. An increase in correlation decreased reso-
lution in the measure for force but improved resolution in the
measure for position. Increasing innervation density (1) always
increased resolution for position and (2) increased resolution for
force if noise was uncorrelated but had diminishing effects as
correlation increased. Correlation and innervation density had
complex effects on the measure for curvature, depending on
the class of noise. Nonuniformity in the pattern of innervation
had negligible effects on resolution.

Key words: tactile resolution; population response; neural
code; innervation density; neural noise; correlated noise; co-
variance; tactile shape; position on skin; contact force

Responses of single peripheral nerve fibers innervating the fin-
gerpads have been characterized for stimuli similar to objects that
humans manipulate everyday with precision. The multiple param-
eters of such objects, such as their shape, orientation with respect
to the fingers, or position on the skin, cannot be resolved by single
units but are represented clearly in the responses of whole pop-
ulations of fibers (LaMotte and Srinivasan, 1987a,b, 1996; Srini-
vasan and LaMotte, 1987; Ray and Doetsch, 1990; Cohen and
Vierck, 1993; LaMotte et al., 1994; Khalsa et al., 1998). There are
a number of characteristics inherent in such populations that limit
their capacity to signal information. For example, it has been
evident for a long time that the afferents are inhomogeneous,
varying widely in their sensitivity (Knibestol, 1975), and that
innervation density varies from region to region (Johansson and
Vallbo, 1979). However, there have been no quantitative analyses
of the limitations imposed by such factors.

After the initial focus on single neurons (Barlow, 1972), it soon
became obvious that even relatively simple aspects of perception,
such as determining the intensity of a vibratory probe on the skin,
could not be explained by the properties of single cells considered
in isolation (Johnson, 1974). For more complex aspects of per-
ception, the neural bases were only evident when ensembles of
neurons were examined (Georgopoulos et al., 1986; Gochin et al.,
1994). Further progress has been limited by technology; although
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it is possible to record simultaneously from several neurons, the
number is only a small fraction of the active population (Aertsen
et al., 1991; Mountcastle et al., 1991; Lee et al., 1998). Thus, to
characterize processing in ensembles of neurons, less direct
methods are required.

A number of different approaches have been used. First, gen-
eral theoretical studies (Johnson, 1980b; Gerstein and Aertsen,
1985; Fetz, 1997; Rieke et al., 1997) have provided a framework
for analyzing neural populations highlighting, among other is-
sues, the enhancement of signal-to-noise ratios in ensembles of
neurons (Zohary et al., 1994). Second, neural network modeling
has been invaluable in emphasizing the distributed nature of
population coding (Lehky and Sejnowski, 1990; Robinson, 1992).
In the third approach, data from single-cell recordings have been
used to simulate realistic whole populations of neurons, allowing
an investigation of the effects of factors, such as the number of
active neurons (Paradiso, 1988; Shadlen et al., 1996; Zhang et al.,
1998).

In previous studies, we recorded from slowly adapting type I
primary afferents (SAIs) when spherical stimuli were applied
passively to the fingerpad and developed a mathematical descrip-
tion of those responses (Goodwin et al., 1995, 1997; Wheat et al.,
1995). In matching psychophysics experiments, we quantified the
human capacity to scale and discriminate three parameters of the
stimulus: its curvature, position on the skin, and contact force
(Goodwin et al., 1991). In the current study, we build on those
single-fiber data by simulating the whole population response.
Neural measures for the three stimulus parameters are extracted
and compared with human performance. This approach allows us
to answer specific questions about the inherent properties of the



8058 J. Neurosci., September 15, 1999, 19(18):8057-8070

A

Magnitude

25

AN
S

o
S5
e
g

o2y
AL
o le et

o,
,‘;0
&

R

&

2
iR

s,
2re
LA o
AR e,
TARTHLS
LT
4“‘,’
(2D
LI
1,,('? e

%
.7
A
{7
2%
T %

AT
S s
DNAPLID
rededals
el
LA
%,
5’. '0/
R
5
%,

FA
"y,
%

3,

£,

%,

35N
G
-l,'

Goodwin and Wheat ¢ SAl Population Properties and Tactile Resolution

B

694

Magnitude

T
6 4 2 0 2

y position (mm)

Figure 1. Gaussian curves of the form ae’(b"zﬂyz) reflecting the “receptive field profile” common to all SAIs on the monkey fingerpad. 4, Profile shown
for both directions on the finger for a sphere of curvature 256 m ~*. B, Profiles along the y-axis (x = 0) for spheres with curvature 694, 521, 340, 256,
172, 80.6, and 0 m ~'. These profiles may also be viewed as the responses of an ideal population of SATs, all with the same sensitivity, when a sphere is

located at the origin.

population, such as the following. How does the variation in
sensitivity among afferents compromise stimulus representa-
tions? How does the innervation density affect the resolution of
shape? Is the geometry of innervation important? How are dif-
ferent neural measures affected by response variability? Our aim
is to elucidate how the population characteristics affect the dif-
ferent types of neural measures rather than to accept or reject
specific candidate codes.

MATERIALS AND METHODS

Background. Reconstructions presented in this paper were derived from
data recorded from 55 SAIs innervating the fingerpads of Macaca nem-
estrina monkeys (Goodwin et al., 1995; Wheat et al., 1995). The receptive
fields of the afferents were located on the central, relatively flat, portion
of the finger. When a sphere was applied to the skin, it was found that the
response of any SAI could be expressed as the product of two factors: one
determined by the curvature of the sphere and the position of the
receptive field relative to the sphere, and the second representing the
sensitivity of the afferent. Regression of the data showed that the first
factor could be described by a two-dimensional Gaussian function. Thus,
for any SAI, the response r was given by:

r=sae” ®¥re?) (1)

where the afferent, with sensitivity s, had a receptive field center located
at coordinates x and y (distances from the point where the sphere first
contacted the skin in directions orthogonal to and parallel to the axis of
the finger, respectively). Values of the constants a, b, and ¢ were deter-
mined by the curvature of the sphere and were the same for all afferents;
values for these constants can be found in Goodwin et al. (1995). The
Gaussian profiles, which are central to our simulation, are illustrated in
Figure 1. Changing the contact force scaled the profiles by a multiplica-
tive constant.

The simulation. Our aim is to simulate the activity of populations of
SAIls in the human fingerpad when a sphere, of variable curvature,
contacts the skin. In the model, the receptive field centers of the fibers
are located at discrete positions (x;, y;) in a matrix on the skin (Fig. 2). For
most of the simulations, the receptive field centers are uniformly spaced,
with the same spacing (6 mm) in the x and y directions. The point of
initial contact between the sphere and the skin is located at the origin of
the matrix. The total area spanned by the receptive field centers is kept
constant at 13.2 X 13.2 mm, which is consistent with the size of human
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Figure 2. Geometry of the simulation. 4, The sphere is located centrally
on the fingerpad with the x- and y-axes passing through the point of initial
contact. B, Receptive field centers of afferents are located on the skin at
points in a matrix with positions x; and y;. For most simulations, i = 1,k
and j = 1,k and k is odd so that a receptive field center is located at the
origin, which corresponds t0 X _ 1) + 1» Yk — 1y2 + 1- For uniform
innervation density, the distance between receptive field centers is the
same in the x and y directions (8).

fingerpads. There is a fixed relationship n8% = 13.2 X 13.2 between the
total number of fibers 7, the distance between receptive field centers 5,
and the 13.2 X 13.2 mm innervated region of skin; the innervation
density is given by 52 mm 2. Initially, the spacing is set to 1.2 mm, which
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corresponds to an innervation density of 0.7 mm 2, the value estimated
by Johansson and Vallbo (1979).

We have assumed that the underlying Gaussian receptive field profiles
in humans are the same as those measured by us in monkeys. The basis
for this assumption is that the active population is on the relatively flat
portion of the finger in which skin and receptor mechanics are likely to
be similar in humans and monkeys. Our limited measurements of profiles
in human peripheral nerves corroborate this (Goodwin et al., 1997). For
each afferent in the model, the response depends on three factors. The
first factor comprises the stimulus parameters (the curvature and position
of the sphere and the contact force), and these are reflected in the
Gaussian profile. The second factor is the sensitivity of the fiber. Later in
the manuscript, we will introduce the third factor, which is noise affecting
the response of the fiber and also the subsequent processing of that
response by the CNS. Thus, in the absence of noise, the response of any
afferent is given by:

rij = sijkaef(bx.brcy,l) (2)

In the above equation, the terms are defined as follows. The afferent with
areceptive field center located in the matrix (Fig. 2) at position (x;, y;) has
a response r;; measured by the number of impulses occurring in the first
second of response (imp s ~'). This is the time period that was used in the
analysis of our experimental data from monkeys and humans. The
sensitivity s; of each fiber in the matrix varies randomly from fiber to
fiber; the distribution of s, derived from our experimental data, is normal
with a mean * SD of 40 = 15.5 (Goodwin et al., 1995). Changing the
curvature of the sphere changes the values of the constants a, b, and c. In
our neural experiments, we estimated these constants from data at seven
different curvatures. Here, we use those seven sets of values; for curva-
tures in between, the constants are determined by interpolation. Contact
force is set by the constant k, which was also estimated experimentally.

Population response measures. A number of measures is calculated from
each simulated population response. These measures were chosen as
being plausible representations of the position, curvature, and contact
force of the stimulus and are detailed in Results.

Discrimination performance. Estimates of the difference limen are used
to assess the ability of the model to discriminate two stimuli. A two-
alternative forced-choice paradigm equivalent to that used in our human
psychophysics experiments is used. Standard signal detection theory is
used to calculate an unbiased measure of discrimination d’ as follows.
Two stimuli differing in one parameter, the standard S and the compar-
ison C, are presented to the model in pairs. For 100 pairs, the first and
second stimuli are both the same and are both the standard (S, S,), and
for 100 pairs, the first stimulus is the standard and the second is the
comparison (S,, C,). From the responses of the afferents to the standard
stimulus, a code or measure for the relevant stimulus parameter is
extracted as m*® so that the pair S;, S, result in a pair of measures m$,m5.
Similarly, a pair of stimuli S;, C, result in a pair of measures mj,m5. In
the presence of noise, each response is different, even if the stimulus does
not change.

A decision boundary bnd is defined by half of the difference between
the mean value of the measure for the comparison stimulus and the mean
value for the standard stimulus. Thus,

bnd = 0.005‘ D0 M= Do M

Because there is no interaction between successive stimuli in the model,
the mean of m3 is identical to the mean of mj.

For each pair S}, S,, the stimuli are judged by the model to be different
if |m$ — mj |, and the stimuli for pair S;, C, are judged different if [mS —
mj3| = bnd; otherwise, the two stimuli are judged to be the same. From
the conditional probabilities P(judged different 244 SS) and P(judged
different 244 SC), d’ is calculated. Using a range of comparison stimuli,
d' is plotted against the difference between the comparison and standard
stimuli, and linear regression is used to obtain the difference limen
corresponding to a d' value of 1.35 (Johnson, 1980a; Goodwin et al.,
1991).

Stimulus parameter values. When characterizing the curvature or posi-
tion of the stimulus, a contact force of 147 mN [15 grams force (gf)] is
used; this is the force used by us in our monkey experiments. A number
of studies in which corresponding tactile stimuli have been used in
monkeys and humans indicate that a force of 147 mN in monkeys is
equivalent to the force of 490 mN (50 gf) used by us in human experi-
ments; for example, the afferent responses are comparable in the two
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species (Goodwin et al., 1997). When characterizing curvature or contact
force, the stimulus is located at the center of the innervated region of
skin. The values of the standard stimuli used to characterize discrimi-
nation performance of the model and the ranges of values used to
characterize scaling performance are the same as those used in our
human psychophysics experiments.

The simulation is written in Fortran, and random variables, all of
which have a Gaussian distribution, and are generated using the algo-
rithms of Press et al. (1986).

RESULTS

Population response measures

Parameters of the population, such as innervation density, are
major factors in determining the characteristics of the neural
representation of a stimulus. To quantify these effects, a popula-
tion response measure was calculated for each of the three stim-
ulus parameters that we vary (curvature, location, and force). The
measures are used to indicate similarities and differences in the
way real neural codes for the three stimulus parameters would be
affected by the population parameters.

The rationale for the measures is developed from the curves in
Figure 1, which can be viewed as the responses of an ideal
population in which all afferents have the same sensitivity and
there is no noise. When the position of the sphere on the finger
shifts, there is a corresponding shift of the response profile within
the afferent population. Thus, the position of the stimulus is
clearly signaled by the locus of the center of neural activity, which
is simply calculated by the x and y components of the centroid of
the three-dimensional profile:

i Xil'i
Xeent = z and _YCem:
ij i

Zi,[ iy
N )
ij '

The solid line in Figure 34 shows the y component of the centroid
as a function of the y position of the stimulus. This curve matches
the human scaling function for position documented by Goodwin
and Wheat (1999).

As the sphere increases in curvature, the response profiles in
Figure 1B become higher and narrower. For the flat surface
(curvature 0 m ~ '), the response of each afferent equals the mean
response of all the afferents. As the curvature of the sphere
increases, responses of individual afferents deviate further from
the mean response of all afferents. Thus, a simple measure of the
curvature is the second moment of the responses about the mean.
The calculation, normalized for independence of innervation
density and response magnitude, is given by:

Zu(ﬁj -7’ ij Tij

—— ~ 5 Where the mean r =
8 (Ei,j rij)

The solid line in Figure 3B shows this measure as a function of the
curvature of the stimulus; the function is remarkably similar to
the human scaling function for perceived curvature published by
Goodwin et al. (1991) showing a tendency to saturate at higher
curvatures. The independence of the measures is illustrated by
the crosses in Figure 3B, which show that changes in curvature do
not affect the centroid, which is our measure for the position of
the stimulus.

Increasing the contact force scales the response profiles in
Figure 1B upward (Goodwin et al., 1995) so that any measure of
overall activity will increase with increasing force. Perhaps the
simplest measure is the sum of the responses of the afferents. The
sum certainly increases with an increase in contact force, but

secmom =

(4)
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Figure 3. Proposed population measures for the position, curvature, and contact force of a sphere contacting the fingerpad. Shown for an ideal
population with uniform sensitivities (solid line and filled circles) and for three realistic populations (broken lines and open symbols). The characteristics
of populations 1, 2, and 3 are defined in Results. 4, The y component of the centroid plotted against the y position of the stimulus. B, The second moment,
which from Equation 4 has dimensions in mm ~2, as a function of the curvature of the stimulus. Solid line with crosses shows that the y component of
the centroid is invariant with curvature. C, Weighted sum (dimensions in imp s ~'mm?).

there is a significant interaction between the curvature of the
sphere and the sum, mainly because of the broad skirts in the
response profiles for the less curved surfaces. The sum increases
markedly with a decrease in curvature, whereas the published
data of Goodwin and Wheat (1992) show only a minor interaction
that is in the opposite direction. This problem is overcome by
using a weighted sum of responses with a progressively decreasing
contribution from afferents with receptive fields located at pro-
gressively increasing distances from the center of activity. An
exponential weighting factor is used:

wisum = 8>, rye” "6 )

L

where dj; is the distance from the receptive field center of the
fiber to the centroid of neural activity; thus, dij2 = (% — Xeend) > +
(yj - ycent)z‘

There is no interaction between the centroid and curvature or
force, nor between the second moment and position or force.
Similarly, the weighted sum is not affected by position, but it is
affected slightly by curvature for curvatures below 200 m .

Although the three measures illustrated in Figure 3 are simple,
they reflect the three stimulus parameters that are different in
nature. We use the measures to indicate the behavior of real
neural codes for these parameters, allowing us to investigate the
effects of the population characteristics on the neural represen-
tation of the parameters.

Variation in fiber sensitivity

There is a large variation in sensitivity among SAlIs, and this
results in “distortions” of the ideal population response. In two
studies in the monkey, we found that SAI sensitivities (s; in Eq.
2) were normally distributed, with a mean of 40 and an SD of 15.5
(Goodwin et al., 1995; Wheat et al., 1995), and data from humans
are consistent with this (Goodwin et al., 1997). In our model,
individual afferents are assigned sensitivities by a Gaussian ran-
dom number generator, with a mean of 40 and an SD of 15.5. One
set of sensitivities, generated in this way, are shown for fibers with
receptive field centers along the x-axis (Fig. 44), along the y-axis
(Fig. 4B), and as a two-dimensional contour plot for the whole
population (Fig. 4C). The population with the particular distri-

bution of sensitivities shown in Figure 4, A-C, is referred to as
population 1 in the remainder of the paper. How do these vari-
ations in sensitivity affect the population response profiles? The
response of each afferent in this population is given by the
product of its sensitivity and the underlying Gaussian receptive
field profile (Eq. 2). The broken lines in Figure 4, D and E, show
the Gaussian profile for a sphere of curvature 256 m ~', and the
solid lines show the responses of the afferents to this sphere. For
this population, the response profile is distorted and there is a
lateral shift in the peak of activity, particularly in the x direction
(Fig. 4F).

A second set of sensitivities, with the same underlying distri-
bution, defines population 2 in Figure 4, G and H; this population
exhibits a marked narrowing of the response profile, particularly
in the y direction. The third illustrative population (Fig. 47) has a
profile that exhibits less distortion than the previous two. Pre-
sumably, the spatial pattern of the distribution of sensitivities
varies widely from finger to finger in humans; therefore, we
generated a large number of patterns and selected these three
examples for further analysis. Most patterns showed distortions
of the order of that shown by population 3, whereas populations
1 and 2 exhibit two of the more extreme cases of distortion.

The effects of these response profile distortions on our popu-
lation measures are shown by the broken lines in Figure 3. It is
obvious that, for each population, the measures reflect the stim-
ulus parameters, despite the distortions in response profiles. In
simple terms, although changes in sensitivity have a large effect
on the responses of individual afferents, these effects tend to
cancel when averaged over the whole population. Differences in
vertical offsets for each population can easily be accounted for
when scaling stimuli and, as will be shown later, do not affect the
ability to discriminate stimuli.

Response variability

As presented so far, a population of SAIs has infinite resolution
because arbitrarily small changes in a stimulus parameter will
result in changes in the corresponding measure of the population
response. In reality, resolution is limited by neural noise. Noise of
some form occurs all the way along the pathway, starting with
variations in skin mechanics and ending with noise in the final
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Figure 4. Characteristics of three realistic populations of SAIs with sensitivities randomly distributed with a mean value of 40 and an SD of 15.5. The
sensitivity distribution of population 1 is shown along the x- and y-axes in A and B, respectively, and as a contour plot for the whole population in C.
The Gaussian receptive field profile for a sphere of curvature 256 m ~' (broken lines in D and E), together with the sensitivities of the afferents, determine
the responses of population 1 to the sphere as shown by the solid lines in D and E and by the contour plot in F. Responses for population 2 are shown
in G and H. Sensitivities for population 3 are shown in I. The gray scale (for values) shown at the bottom is common to all contour plots.

decision process. Regardless of the source of the noise, it can be
placed in one of two broad categories, namely, noise that is
dependant on the level of neural activity and noise that is inde-
pendent of the magnitude of the responses. These two categories
are accounted for by modifying Equation 2 to:

rij = (1 + aij)sijkae_(bx‘z””z) + B,J (6)

The first noise factor «;; is a normally distributed random vari-
able, with a mean of 0 and an SD o, that is set as a parameter.
The effect of this factor is that the response varies about its mean
value such that the magnitude of the variation is proportional to
the magnitude of the mean response (the coefficient of variation
is o, regardless of the mean response). For convenience, we will
refer to the factor « as “proportional noise.” The second noise

factor B;; is a normally distributed random variable (independent
of @), with a mean of 0 and an SD o, (imp s™') set as a
parameter. The effect of this noise factor is that the response of
the afferent varies about its mean value such that the magnitude
of the variation is independent of the magnitude of the mean
response. For convenience, we will refer to the factor B as “ad-
ditive noise.” In the initial analysis, the noise attributed to each
afferent is independent of the noise on the other afferents; that is,
the o are independent for all ij and similarly for the B;. The
peripheral component of noise has been estimated by experimen-
tal measurement as o, = 0.03, o3 = 0 (Wheat et al., 1995). Values
of a and B for the central components of noise are not known, so
we illustrate a range of values that are consistent with published
responses of somatosensory cortical neurons (see Discussion).
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Figure 5. Effect of noise on measures of the population response. 4, Distribution of second moments for 500 presentations of a standard sphere of
curvature 287 m ~' (shaded histogram) and of a comparison sphere with a curvature, 316 m ~', that is 10% greater (open histogram). Solid lines are best-fit
Gaussians. Noise level, oz = 6 imp s ', The decision boundary bnd is half the distance marked Sep. B, C, Second moment and centroid, respectively.
Lines and data points show means, and error bars show unilateral SDs; n = 100. For clarity, not all error bars are shown. For the solid line (no data points),
there is no noise. Broken lines with down triangles and squares represent proportional noise with o, = 0.1 and 0.25, respectively. Additive noise,
independent of activity, with o5 = 6 and 12 imp s ', are shown by broken lines with circles and up triangles, respectively. The centroid (B) is shown for

a sphere of curvature 172 m ~'. For the population used in this simulation, all afferents had the same sensitivity (40).

In the presence of noise, repeated application of a single
stimulus will result in a distribution of varying responses in each
afferent and, therefore, any measure extracted from these re-
sponses will show a distribution of values as illustrated for the
second moment in Figure 54. In general, changing the noise level
will affect both the mean and the SD of any measure calculated
from the responses. For the second moment (Fig. 5B), activity-
dependent noise levels of 10% (o, = 0.1) hardly change the
means of the measure, and the magnitudes of the SDs indicate the
effect of the noise. Increasing the noise level to 25% shifts the
means upward slightly and increases the SDs. In contrast, increas-
ing the amount of noise that is independent of the level of
responses (o0g = 6 and 12 imp s™!) results in a progressive
compression of the function (reduction in signal), with little
increase in the SDs. For the centroid (Fig. 5C), the overall
characteristics are similar, but there are differences in detail. For
example, increasing oz from 6 to 12 imp s ~' increases the SD of
the measure, and the compression of the function is less marked
than it was for the second moment. For the weighted sum (data
not shown), there is a negligible shift in means, and an increase in
either type of noise increases the SD of the measure. Functions
for the second moment and the centroid are compressed with
additive noise because it tends to flatten the response profiles. In
the model, afferents are not permitted to have negative responses;
these are set to zero.

From the above illustrations, it is apparent that the effect of
neural noise on each population response measure and its SD is
complex and differs for the three stimulus parameters. To visual-
ize the impact on tactile resolution, we have extracted from the
model difference limens and Weber fractions analogous to those
measured in our human psychophysics experiments. The princi-
pal is illustrated in Figure 54 for curvature discrimination. The
distributions of second moments for the standard and comparison
stimuli are approximately normal and, as noise increases, the
distributions increase in width. The discrimination threshold is
calculated as described in Materials and Methods.

Discrimination thresholds

How is resolution affected by the two classes of noise, and what
effect does the variation in sensitivity among afferents, which we
have shown “distorts” the population responses, have on the
discriminative capacities of specific populations? We computed
the ability of the model to discriminate curvature using the same
two standard spheres that we used in our psychophysics experi-
ments (curvature 287 and 144 m ). The results, expressed as a
Weber fraction (difference limen divided by the value of the
standard), should be viewed in light of the Weber fraction of ~0.1
measured by us in humans (Goodwin et al., 1991). For position
discrimination, we computed the difference limens for spheres of
curvature 172 and 521m~!; the human difference limens we
measured with these spheres were 0.55 and 0.38 mm, respectively
(Wheat et al., 1995). Weber fractions for the model were also
computed for contact force, but we do not have directly compa-
rable experimental measurements of human performance. The
nearest equivalent is the Weber fraction of 0.134 reported by
Brodie and Ross (1984) for a 50 gm weight placed on the subject’s
palm.

The resolution of population 3 (Fig. 4), which exemplifies a
distribution of sensitivities that results in a typical degree of
distortion of the response profiles, is shown in Figure 6 for
combinations of the two types of noise. Resolution decreases with
an increase in either type of noise for all three stimulus param-
eters, but there are differences in effect because of the different
natures of the corresponding stimulus measures. For position
discrimination, the effect of proportional noise decreases with
increasing additive noise, whereas for curvature discrimination,
the effects of the two types of noise are approximately additive
over the whole range. For force discrimination, proportional
noise with an SD of 0.5 swamps the effect of additive noise.

It is obvious from Figure 6 that, with peripheral noise alone (o,
= 0.03, o = 0), resolution far exceeds the resolution of human
subjects. Thus, the model shows clearly that the limiting factor for
humans is central noise of some form. The model also indicates
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that the two forms of noise affect different measures differently.
For example, to match the human Weber fraction for curvature of
~10%, the SDs for additive noise and proportional noise must be
less than 6 imp s ! and 0.25, respectively, whereas the human
difference limen for position, 0.55 mm, is easily achieved if addi-
tive noise has an SD less than 6 imp s~ even in the presence of
high levels of proportional noise.

It is possible that, in some human fingerpads, the SAI popula-
tion may have a sensitivity distribution of an extreme nature,
resulting in a greater than average distortion of the response
profiles. The model indicates the consequences of this as seen by
comparing the resolution of population 3 with the resolution of
populations 1 and 2 (which have greater distortion) in Figure 7.
Position discrimination is not affected much by the population
sensitivity characteristics, and, in fact, the resolution is fortu-
itously slightly better for populations 1 and 2, despite their greater
distortion compared with population 3 (Fig. 4). Curvature dis-
crimination is also not affected much, except at high levels of

—1

additive noise in which case populations 1 and 2 show a decreased
resolution.

In our human psychophysics experiments, discrimination of
curvature and of position were measured for two different
spheres. The Weber fraction for curvature was ~10% for both
standards used, 287 and 144 m ~'. With a small amount of pro-
portional noise (o, = 0.1), the Weber fractions produced by the
model for curvature discrimination (Fig. 84) do not depend on
the curvature of the standard, although with more proportional
noise (o, = 0.25), performance is slightly better for the less
curved sphere. Thus, human performance and performance of
the model are similar.

For position discrimination, the difference limen produced by
the model (Fig. 8B) is smaller for the less curved sphere. This is
the reverse of our finding in human psychophysics experiments in
which the difference limen was lower for the more curved sphere.
Thus, our subjects could not have used a code with the charac-
teristics of the centroid. Instead, we suggest that the subjects used
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a different, nonspecific cue that exists in a two-alternative forced-
choice design for changes in position like that used in our exper-
iments. If the standard and comparison stimuli are presented at
different positions on the finger, then the shift in the population
response can be exploited without determining the absolute po-
sitions of the two stimuli. As a surrogate code for this type of
strategy, we have used the volume between the response to the
standard and the response to the comparison stimulus.
The difference volume can be calculated from the model as:

VOI = 52 Z|rij - Rl]‘

y

where r; and R;; are the responses of the fiber with a receptive
field center at position (x;, y;) to the first and second stimulus,
respectively, in the pair being compared. Difference limens for
position computed from this volume measure are shown in Figure
8C; performance of the model is better for the more curved
sphere as was the case for human performance, suggesting that a
strategy of this nature was used by our subjects. Moreover, the
magnitudes of these difference limens are close to those of the
human for noise levels up to o, = 0.25 and oz = 6. Codes bases
on measures such as the difference volume are not useful in
everyday multi-dimensional tasks because such a difference vol-
ume will result from a change in any stimulus parameter or
combination of stimulus parameters. However, they can be used
effectively in a forced-choice paradigm in which only one stimulus
parameter is varied. The results illustrated for population 3 in
Figure 8 held for the other populations as well.

Response covariance

In all computations performed so far, we have assumed that the
noise contributed by each afferent is independent of that contrib-
uted by the other afferents, and thus the variables «;; for all i)
were independent of each other as were the variables ;. How-
ever, such independence is unlikely, and correlation among the
variation of responses of the afferents has a significant effect on
the resolution of the population. This type of correlation is not to
be confused with the fact that a change in a stimulus parameter
will produce correlated changes in the responses of the afferents

by virtue of Equation 2; for example, a decrease in k will reduce
the response in all afferents. Here, we are concerned with corre-
lation among the random variables «;; and among the random
variables B;, which does not depend on the stimulus parameters.
There have been a number of theoretical studies of the effect of
such covariance but only for codes, or population measures, that
are effectively sums of the responses of all the afferents and
usually for conditions in which each of the afferents has a similar
response. In such cases, the resolution of the population decreases
as the covariance increases (Johnson et al., 1979; Gawne and
Richmond, 1993; Zohary et al., 1994; Shadlen et al., 1996). In
contrast, Johnson (1980b) has pointed out that, for spatial popu-
lation codes, covariance will improve the resolution, but there
have been no detailed analyses.

The effect of correlation on resolution is not amenable to
experimental analysis, but the model provides a way of investi-
gating this issue. In this section, the random variables are con-
structed in such a way that the correlation coefficients for pairs of
a;; (for all i and j) are 0, 0.2, or 0.8, and similarly for B;;. Three
representative levels of noise are illustrated: additive noise alone
(o, = 0, og = 6), proportional noise alone (o, = 0.25, o5 = 0),
and a combination of additive and proportional noise (o, = 0.25,
o = 6).

The measure for contact force, a weighted sum, has many of the
features of a total population response, although a weighting
factor is present and, unlike the usual theoretical treatments, all
afferents do not have the same mean response. Thus, an increase
in covariance results in a decrease in the resolution of force (an
increase in the Weber fraction) for both types of noise (Fig. 9C).
The population measure used to indicate position is a spatial
code; therefore, resolution increases as the covariance increases
for both types of noise (Fig. 9B). The second moment, used as a
measure for curvature, is a more complex code with both spatial
components and components that depend on overall responses; it
is not easy to predict from Equation 4 how covariance will affect
resolution. This measure is affected differently by the two types of
noise (Fig. 94). For proportional noise, the spatial effects domi-
nate, and increasing covariance improves resolution. For additive
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noise, the overall responses dominate and the resolution de-
creases. A major reason for this is that previously inactive affer-
ents around the skirts of the population response become active
and are recruited by additive noise. When both types of noise are
present and covariance is nonzero, the effects of additive noise
swamp the effects of proportional noise on the second moment.
Because the level of noise is so low in the periphery (o, =
0.03), these effects of correlation must be occurring centrally.

Innervation density

The innervation density of the afferent fibers will affect the
resolution of the system, but in a way that is not obvious. The
effect of changes in spatial sampling on the behavior of spatial
codes is analyzed here using the measure for the position of the
stimulus. Human discrimination of position is “hyperacute”
(Wheat et al., 1995). For nonspatial codes, represented here by
the measure for contact force, the effect of innervation density is
mediated through a change in statistical reliability resulting from
a change in the number of contributing fibers. More complex
codes, represented here by the measure for curvature, will be
affected by both spatial sampling changes and changes in the
number of fibers.

So far, the SAI populations have been reconstructed with the
default innervation density of 0.7 mm 2, which is the value
estimated by Johansson and Vallbo (1979) for the human finger-
tip. Assuming a uniform square arrangement of receptive field
centers, this corresponds to a spacing of 1.2 mm between adjacent
centers. To examine the effect of innervation density, we in-
creased it by 84% to 1.29 mm ~2 (spacing 0.8 mm) and decreased
it to 66 and 20% of the default value, 0.465 mm ~2 (spacing 1.47
mm) and 0.143 mm ~? (spacing 2.64 mm), respectively. In each
case, the area of skin was kept constant at 13.2 X 13.2 mm so that
the potential total number of fibers was 121 for the default density
of 0.7 mm 2 and was 225, 81, and 25 for the densities of 1.29,
0.465, and 0.143 mm ~2, respectively. Two important aspects of
the size of the population, not usually accounted for, should be
stressed. First, the size is an upper bound, but the actual size will
often be smaller because not all fibers will be active; moreover,
the size will vary from trial to trial because of the effects of

random noise. This is true in both the model and real life. Second,
the number of afferents is relatively small.

When the noise associated with the afferents is uncorrelated,
behavior of the weighted sum is consistent with predictions based
on the size of the population (Fig. 10C). Resolution improves
with an increase in innervation density (decrease in spacing)
when the noise is additive and even more so for proportional
noise. For the centroid, the situation is more complex (Fig. 10B).
For additive noise, increasing innervation density increases res-
olution, but for proportional noise, the effect is smaller and
inconsistent. Local increases and decreases in resolution reflect
the characteristics of specific populations in that the variations in
sensitivity of the afferents may lead to spurious increases in
resolution, with decreases in density such as that seen in Figure
10B when spacing increases from 1.2 to 1.47 mm. In all cases,
position resolution greatly exceeds that predicted by simplistic
application of the sampling theorem (i.e., twice the afferent
spacing). For the second moment, changing innervation density
to approximately half or double the default value has small and
inconsistent effects, again depending on the characteristics of the
particular population (Fig. 104).

With an increase in the correlation of the noise, there is a
fundamental difference in the behavior of measures, which are
analogous to the summed activity of the afferents and the behav-
ior of measures based on the spatial characteristics of the popu-
lation. Resolution for contact force decreases as covariance in-
creases, and the effect of changing innervation density diminishes
(Fig. 10C,F,I). This is consistent with previous studies, which
have shown that, for total response codes, resolution improves
with the number of fibers in the population when noise is uncor-
related but diminishes and becomes independent of the popula-
tion size as correlation increases (Zohary et al., 1994). The
behavior of the centroid, which is a spatial code, is quite different.
As covariance increases, resolution for the position of the stim-
ulus increases, and at all values of the correlation coefficient,
position resolution increases with increasing innervation density
(Fig. 10B,E,H). The measure for the curvature of the stimulus,
the second moment, has attributes of both spatial codes and total
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response codes, and therefore its behavior is a mixture of the
behaviors of the codes for force and position (Fig. 104,D,G).

The model shows clearly, as seen in Figure 10, that the effects
of innervation density, which is a peripherally determined popu-
lation parameter, are determined primarily by the characteristics
of noise, which is of central origin.

Innervation geometry

Details of the geometric arrangement of SAI receptive field
centers in the human fingerpad are not known, but it is unlikely
to be precisely uniform. Also, it is known that, with aging or
injury, some receptors or fibers are lost, presumably in a nonuni-
form manner. Thus, it is important to know how variations in the
innervation geometry affect the resolution of the population.
Positions of receptive field centers in population 3 were ran-
domized by adding a normally distributed random variable to the
y position of each receptive field center (Fig. 11.4). Positions were
perturbed in the y direction because, in both our human psycho-
physics experiments and in this simulation, the position of the
sphere was varied in the y direction. The overall innervation
density is still 0.7 mm 2, but there is considerable variation in
local density. Receptive field centers (Fig. 2) still lie along col-
umns in the matrix with constant x values (x;) but do not lie in
rows with constant y values (y;); instead, each y value is different
and is therefore denoted y;;. For nonuniform spacing, a slight
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elaboration of Equations 3-5 is needed to calculate true estimates
of the centroid, second moment, and weighted sum as follows.
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randomizing their y positions. Overall innervation density is 0.7 mm 2

[] 1.89 mm scattered

Resolution in populations with nonuniform patterns of innervation. 4, Positions of receptive field centers in population 3 were modified by
, corresponding to an average spacing between centers of 1.2 mm. B, The overall

innervation density of this population is 0.281 mm ~2 (average spacing 1.89 mm). C-E, Resolution for curvature, position, and contact force measured
by the second moment, centroid, and weighted sum, respectively. For an innervation density of 0.7 mm ~2, resolution for the population in A (striped bars)
is compared with resolution for the same population spaced uniformly ( filled black bars). The open bars and gray bars, respectively, compare resolution
for the population in B and resolution for the same population with uniform spacing (density 0.281 mm ~2). Both additive noise (o, = 0, o5 = 6) and

proportional noise (o, = 0.25, 0z = 0) are shown.

The effect that this scattering of receptive fields has on resolution
can be seen by comparing the filled black bars and the striped bars
in Figure 11, C-E. For both additive and proportional noise, with
zero covariance between the afferents, nonuniformity in the re-
ceptive field geometry has a negligible affect on the resolution of
curvature, position, or force. This is also true at a lower inner-
vation density (0.281 mm ~2), as shown by the gray bars and open
bars in Figure 11. The same analysis was done with the noise
correlated among afferents, and the results were equivalent to
those in Figure 11. Regardless of the nature of the neural noise,
resolution was hardly affected by a nonuniform pattern of
innervation.

DISCUSSION

Previous studies of the responses of SAIs to spatially complex
stimuli have shown that the various features of the stimulus are
represented in the whole population response (LaMotte and
Srinivasan, 1987b, 1996; Ray and Doetsch, 1990; Phillips et al.,
1992; Cohen and Vierck, 1993; Blake et al., 1997; Dodson et al.,
1998; Khalsa et al., 1998). However, these studies did not quantify
the effects of inherent population characteristics, such as the
pattern and density of innervation, on the representation or
encoding of stimulus parameters. We tackled this problem di-
rectly by simulating the responses of the SAI population to a

sphere contacting the fingerpad and by comparing neural mea-
sures with human performance for the perception of the curva-
ture of the sphere, its position on the skin, and the contact force.

Value of the model

Quantitative comparison of neural and psychophysical data,
which allows rigorous hypothesis testing, is essential for gaining
insight into the behavior of the tactile system. Factors, such as
innervation density, which have a profound effect on the system
but are not seen in single-unit responses, must be accounted for.

A modeling approach permits an analysis of the consequences
of the population characteristics, and its power and value are
illustrated by a few examples from Results. (1) When experimen-
tally measured values of innervation density and peripheral fiber
noise are accounted for, the resolution of the population of SAIs
far exceeds human performance (Fig. 6), demonstrating that the
limiting factors occur in the central processing. (2) Variations in
the pattern of innervation of the skin do not affect resolution (Fig.
11). (3) When subjects are highly trained in forced-choice para-
digms, they may use singular cues to achieve levels of perfor-
mance superior to those predicted from neural measures appli-
cable to more general tasks (Fig. 8).
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Neural measures

We proposed three neural measures that we used as surrogate
codes for the real neural measures underlying human perception
of the three stimulus parameters. The centroid of the population
response corresponds to the position of the sphere on the skin,
the second moment of the response about its mean reflects the
curvature of the stimulus, and the weighted sum of responses
parallels the contact force. We do not imply that these are the
actual codes used by the brain; rather, they are measures that
behave in a similar manner to the real codes and that therefore
allow us to contrast the effects of the population characteristics on
the three types of codes that are different in nature. Testing
specific candidate codes will require more systematic studies.

The sensitivity of SAIs in human fingerpads varies widely
(Knibestol, 1975; Goodwin et al., 1997) so that profiles of re-
sponse across the population are distorted (Fig. 4). Moreover, the
distortion will be different for different fingers. Despite this mar-
ring of the peripheral neural representation, humans are able to
discriminate stimuli with high fidelity. The three measures used
by us are robust and insensitive to the inhomogeneity in afferent
sensitivity. Simplistic neural codes, which are viable in ideal
populations, cannot be used for real human fingers. For example,
the profile distortions preclude using the location of the receptive
field center of the most active fiber to determine the position of
a sphere on the skin.

In principle, it is possible that the variation in sensitivity of the
afferents is compensated for by complementary strengths at syn-
apses in the CNS. In such a case, the effective population re-
sponse profiles would correspond to those of a population with
uniform sensitivity. Because neural measures, such as those pro-
posed here, are effective despite sensitivity variations, the gain in
resolution from such a strategy would not be great.

Response variability

The reliability with which information about a stimulus is relayed
is limited by the inherent variability in responses resulting from
factors such as variation in skin mechanics, noise in membrane
potentials, and synaptic noise. At the primary afferent level of the
somatosensory system, noise levels are low. We have measured a
value of o, = 0.03, 0z = 0 for our stimuli (Wheat et al., 1995),
which is consistent with the data of Edin et al. (1995) for brushes
moving over the skin and the results of Johnson et al. (1979) for
thermal stimuli. We have been unable to locate detailed and
specific central noise measurements for any somatosensory stim-
uli. However, inspection of published trial-by-trial raster plots for
somatosensory cortical cells (Gardner and Costanzo, 1980; Trem-
blay et al., 1996) shows noise values consistent with the ranges
used in the model. For example, in Figure 2 of Whitsel et al.
(1978), the response to a stimulus repeated 25 times had a
mean *= SD of 39.1 * 8.8 impulses. The detailed variability
analysis of Whitsel et al. (1977) and Schreiner et al. (1978) does
not address the variability of responses to repeated stimuli, but
rather the “variability” or distribution of the interspike intervals
for a single stimulus.

In the visual cortex and motor cortex, it has been shown that
variability of response increases as the response of the neuron
increases (Heggelund and Albus, 1978; Dean, 1981; Vogels et al.,
1989; Snowden et al., 1992; Lee et al., 1998). In general, the mean
number of spikes and its variance are proportional. For retinal
ganglion cells and neurons in the lateral geniculate nucleus, the
extent of variability is independent of the magnitude of the
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response (Schiller et al., 1976; Croner et al., 1993; Edwards et al.,
1995).

Together, the above data suggest that our partitioning of noise
into proportional and additive components is an appropriate
starting point and that the ranges of noise illustrated are reason-
able. Other forms of noise, such as response variance propor-
tional to response magnitude, may also occur. The lack of precise
information on somatosensory noise weakens the model to some
degree. There is a need for such experimental measurements that
would enhance the power of the model and improve it by allowing
subdivision of the lumped noise into components corresponding
to the various levels in the CNS.

Correlation

Correlation of noise among central neurons has only been esti-
mated in a few specific situations for a relatively small number of
neurons; the reported correlations vary widely (Gawne and Rich-
mond, 1993; Zohary et al., 1994; Lee et al., 1998). Because the
details of correlation coefficients in the somatosensory system are
not known, we have illustrated a full range from 0 through 0.2 up
to 0.8. Our aim is to delineate what effects increasing correlation
has on the three types of measures rather than to imply that
particular values exist. Correlation among lumped noise is a
simplification of the real situation, but it serves to highlight the
major effects of correlation on different types of neural measures.
An increase in correlation decreased discrimination capacities for
the weighted sum, in keeping with theoretical analyses and sim-
ulations for other neural codes based on sums or averages across
the population (Johnson et al., 1979; Gawne and Richmond,
1993; Zohary et al., 1994; Shadlen et al., 1996). However, the
reverse was true for the centroid, which is a neural measure
relying on spatial patterns within the population; here, an in-
crease in correlation among noise increased resolution. Abbott
and Dayan (1999) have also shown that correlation can improve
the accuracy of a population code.

Because noise levels are low in the periphery, these effects of
correlation would be occurring in the CNS, and the model high-
lights the need for experimental measurements of covariance
among somatosensory cortical neurons.

Innervation density

Johansson and Vallbo (1979) estimated the density of SAIs from
the fingertip in humans as 0.7 mm 2, and Darian-Smith and
Kenins (1980) estimated a similar density in the monkey. Assum-
ing that receptive field centers lie in a uniform square matrix, the
sampling theorem limits spatial resolution in general to 0.417
cyclessmm or to a period of 2.4 mm. Specific tasks, such as
position discrimination, are limited by other factors. The human
difference limen of ~0.5 mm, so called hyperacuity (Loomis and
Collins, 1978; Westheimer, 1981), is readily explained by the use
of a neural code equivalent to the centroid described here. This
measure, which combines the responses of a number of neurons
with overlapping receptive field profiles that have widths at half-
height of 4 mm or more (Dodson et al., 1998), is sensitive to
changes in position smaller than the separation between adjacent
receptive fields and smaller than the “size” of the receptive fields.
Similar mechanisms have been proposed for hyperacuity in the
electric fish (Heiligenberg, 1987).

A major strength of the modeling approach is shown by the
results in Figure 10. Although innervation density is a property of
the afferent fiber populations, its effect on resolution depends on
noise levels and correlations that are primarily central in origin,
a fact not usually acknowledged and not apparent without some
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sort of model. For neural codes that are entirely spatial in nature,
such as the centroid of response, resolution increases with an
increase in innervation density, regardless of the nature of the
noise. Neural codes that reflect the average or total response of
the neurons and are not spatial in nature, such as the measure
used here for contact force, behave differently. Resolution im-
proves with an increase in density if the noise for each afferent is
independent of the noise on other afferents; however, when the
noise is correlated, the effect of increasing density is diminished,
consistent with the analysis of Zohary et al. (1994). From purely
theoretical considerations, Johnson (1980b) pointed out that spa-
tial and total response codes would differ in this regard. The
situation is more complex for codes that contain elements of
spatial codes and elements of total response codes, such as the
measure used for the curvature of the stimulus.

Merkel endings are located at the bases of the glandular ridges
(Halata, 1975), and there is a large variability in the pattern of
skin ridges among human fingers. Thus, it is likely that the pattern
of innervation varies considerably for different fingers; also, the
loss of innervation with age is likely to be patchy. The neural
measures used here, which are based on whole population re-
sponses, were not affected by nonuniformity in the pattern of
innervation of the skin. In future, the model could be used to
assess how critical it is that the brain has information about the
position of the receptive field of each afferent.
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