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How are sensory-motor transformations organized in a cortical
motor system? In general, sensory information is transformed
through a variety of signal processing operations in the context
of distinct coordinate frameworks. We studied the interaction of
two distinct operations in pursuit eye movements, learning and
vector-averaging, to gain insight into their underlying coordi-
nate frameworks and their sequence in sensory-motor process-
ing. Learning was induced in the initiation of pursuit eye move-
ments by targets that moved initially at one speed for 100 msec
and then increased or decreased to a sustained final speed.
Vector averaging was studied by comparing the initial eye
acceleration evoked by the simultaneous motion of two targets
with that evoked by each target singly. Learning caused spe-
cific effects on the direction of the vector-averaged responses
to two-target stimuli that included one target moving in the
direction used to induce learning. Learned increases or de-

creases in eye acceleration caused the direction of the re-
sponses to two-targets to rotate toward or away from the
learning direction. Learning also caused nonspecific changes in
the responses to two-target stimuli. After any learning protocol,
two-target responses usually became smaller, and their direc-
tions rotated away from the axis of the target motion used for
learning. Quantitative analysis showed that the specific effects
of learning were predicted most closely by a model in which
vector averaging occurs downstream from the site(s) of learn-
ing. We suggest that the pursuit system creates parallel com-
mands for potential movements to each of the targets in two-
target stimuli, and that learning occurs in the coordinates of the
potential movements.
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Conversion of sensory inputs into motor outputs involves a com-
plex series of neural transformations. These transformations can
be described in terms of the coordinate system of the represen-
tation at each stage of processing. For visual-motor processing,
sensory signals encoded in retinal coordinates are converted into
intermediate sensorimotor coordinates (Andersen et al., 1993)
and then into motor coordinates that specify muscle contractions.
Superimposed on these coordinate transformations are a variety
of signal processing operations that compute the metrics, kine-
matics, and dynamics of the movement. What are the coordinate
frameworks for sensory-motor transformations, and how are they
related to the signal processing operations that create them?

Pursuit eye movements provide an ideal system to study the
coordinate transformations underlying signal processing opera-
tions of the brain. First, something is known about the coordinate
systems at the different sites in the neural pursuit system. The
specifics of the representation of sensory information in retinal
coordinates (Lisberger and Movshon, 1999) and the encoding of
commands for eye movement in motor coordinates (Skavenski
and Robinson, 1973; Shidara et al., 1993; Krauzlis and Lisberger,
1994; Van der Steen et al., 1994) have been described quantita-

tively. A number of recent behavioral observations have sug-
gested that much of pursuit processing is done in an intermediate,
world-centered coordinate framework (Grasse and Lisberger,
1992; Kahlon and Lisberger, 1996; Kiorpes et al., 1996). Second,
several studies have revealed diverse signal processing operations
that are part of the generation of pursuit. These include predic-
tive pursuit (Kowler, 1990), on-line gain control (Goldreich et al.,
1992; Schwartz and Lisberger, 1994), target selection (Ferrera
and Lisberger, 1995), learning (Optican et al., 1985; Kahlon and
Lisberger, 1996; Ogawa and Fujita, 1997), and most recently
vector averaging (Lisberger and Ferrera, 1997).

We have now used behavioral approaches to determine the
coordinate systems and the relative placements of two of these
operations: learning and vector averaging. Learning occurs in the
initial pursuit response during repeated presentation of targets
that move at one speed for 100 msec and then change to a higher
or lower speed (Optican et al., 1985; van Donkelaar et al., 1994;
Kahlon and Lisberger, 1996; Ogawa and Fujita, 1997). Previous
behavioral analysis revealed that learning in pursuit is expressed
in coordinates related to eye or target motion in the world, rather
than to image motion on the retina (Kahlon and Lisberger, 1996).
Vector-averaged pursuit responses occur when a monkey is pre-
sented simultaneously with two potential targets (Lisberger and
Ferrera, 1997). Although available evidence does not favor any
hypothesis for the coordinate system of vector averaging, we and
others have favored tacitly the hypothesis that it occurs in retinal
coordinates as an operation on image motion signals (Groh et al.,
1997; Lisberger and Ferrera, 1997; Recanzone et al., 1997).

We evaluated the relative placement of vector averaging and
learning in the neural circuitry of pursuit by comparing vector-
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averaged pursuit responses before and after learning. The
learning-related changes in the direction and magnitude of
vector-averaged responses were predicted best by the hypothesis
that learning occurs upstream from vector averaging. Our data
imply that vector averaging occurs quite late in pursuit processing
and operates in a directional coordinate framework. The inputs to
vector averaging appear to represent commands for two potential
movements, already transformed by learning.

MATERIALS AND METHODS
Behavioral experiments were conducted on four rhesus monkeys. Surgi-
cal and behavioral methods have been described previously (Lisberger
and Westbrook, 1985; Kahlon and Lisberger, 1996). Briefly, monkeys
were first trained to attend to spots of light in a bar press task for liquid
reinforcements. Using isoflurane anesthesia and aseptic conditions, head
holders were implanted on the skull of each monkey. At the same time,
a coil of wire was implanted in one eye to measure voltages proportional
to eye position with the scleral search coil technique (Judge et al., 1980).
After postsurgical recovery, monkeys were trained to track the slow
movement of small spots of light. The animals used in the experiments
presented in this paper were overtrained on such tracking tasks. In
previous experiments, two had tracked targets in pursuit learning para-
digms (Kahlon and Lisberger, 1996), and two had tracked two-target
stimuli used to reveal vector averaging (Lisberger and Ferrera, 1997).
Each daily session consisted of one learning experiment and lasted ;2 hr.

Visual stimuli. Visual targets were generated by a digital signal pro-
cessing board on a Pentium computer and displayed on a 12-inch diag-
onal oscilloscope (1304A, P-4 phosphor; Hewlett–Packard, Palo Alto,
CA). The screen was 40 cm from the monkey and provided a 32 3 26°
visual display. The system provided a spatial resolution of 65,536 3
65,536 pixels and a temporal resolution of 4 msec. Pursuit targets were
0.4° squares, had a luminance of 3.5 cd/m 2, and were presented on a
uniform gray background. All experiments were conducted in a moder-
ately lit room.

Experimental paradigm. Animals tracked targets in a series of trials.
Each trial had the basic structure illustrated in Figure 1 A. A fixation
target appeared in the center of the monitor for a random interval of
500–900 msec. When the fixation target was extinguished, one or two
pursuit targets appeared at 3° left, right, up, or down relative to the
fixation target and began moving toward the center of the monitor. The
monkey was given a grace period of 350 msec to let his eye catch up with
the target, after which he had to keep eye position within a 64 o square
window centered on the target. If the monkey completed the trial
successfully, he received fluid reinforcement.

Single-target trials provided either single or double steps of target
speed. Single steps (Fig. 1 A) were used in “control trials” that delivered
target motion at 20°/sec. Double steps of target speed (Fig. 1 B) were used
as “learning trials.” In learning trials, the target moved at 20°/sec for 100
msec before undergoing a step change to another speed. For the target
shown in Figure 1 B, target speed stepped down to 5°/sec to cause learned
decreases in the eye acceleration at the initiation of pursuit. In trials
designed to increase eye acceleration (results not shown), the target
speed was 20°/sec for 100 msec and then stepped up to 40°/sec. Learning
trials providing leftward or rightward target motion were always inter-
leaved with control trials in the opposite direction. Thus, there were four
possible combinations of learning: increases and decreases in eye accel-
eration for leftward or rightward target motion. As shorthand, we will
refer to these experiments as left-increase, left-decrease, right-increase,
or right-decrease experiments.

In two-target trials, two identical targets appeared simultaneously at
two different locations that were 3° eccentric: left, right, up, or down
relative to the fixation light. For 148 msec, both targets moved at 20°/sec
toward the position of fixation. With equal probability, one of the targets
then disappeared, and the other became the tracking target for the
monkey. Therefore, each two-target combination was repeated in two
separate trials, with two distinct final pursuit targets but with identical
initial motion of two targets. In the schematic diagram of Figure 3A, the
two targets started at 3° left and 3° down relative to the fixation light and
moved to the right and up. The upward target disappeared after 148
msec, and the rightward target continued to move at 20°/sec for at least
another 600 msec. The five other combinations of two-target motions
provided three other pairs that interacted orthogonal directions of target
motion (up and left, left and down, and down and right) and two pairs

that interacted opposite directions of target motion (left and right and up
and down).

Each experiment consisted of 20 blocks of prelearning tests, followed
by 500 blocks of learning and control trials and finally another 20 blocks
of postlearning tests. In three monkeys we performed two experiments in
two separate configurations. One configuration was designed to deter-
mine the effect of pursuit learning on vector averaging for two-target
stimuli. Prelearning and postlearning tests provided target motion in
single-target and two-target trials. Each block of trials provided target
motion in 12 two-target trials (6 combinations of two initial targets 3 2
final tracking targets) and 4 single-target trials in the four orthogonal
directions. Animals repeated this experiment on 16 d: 4 d for each
combination of leftward versus rightward learning trials and learned
increases versus decreases in eye acceleration. A second configuration
was designed to evaluate the generalization of pursuit learning across
directions of single-target motion. Prelearning and postlearning tests
provided target motion only in single-target trials, in which each trial
provided motion in one of 12 directions sampled at 30° intervals. Pursuit
targets were presented in step–ramp motion, configured so that the ramp
took the target from 3° eccentric back through the position of fixation.
Animals repeated this experiment on 12 d: 3 d for each combination of
rightward versus leftward learning trials and learned increases versus
decreases in eye acceleration. In one animal we combined the two

Figure 1. Basic structure of trials used to evoke pursuit. A, Single-step
trial. The pursuit target moved at 20°/sec for the entire duration of the
trial. B, Double-step learning trial that caused decreases in eye accelera-
tion. The pursuit target began to move at 20°/sec. After 100 msec, velocity
was stepped down to 5°/sec. In A and B, the top traces show superimposed
eye ( E) and target ( T) position, and the bottom traces show eye and target
velocity, respectively. Dashed traces show target position and velocity.
Solid traces show eye position and velocity. Data are shown starting 300
msec before the pursuit target began to move.

9040 J. Neurosci., October 15, 1999, 19(20):9039–9053 Kahlon and Lisberger • Vector Averaging Is Downstream from Learning



experimental configurations. Prelearning and postlearning tests provided
12 combinations of two-target motion and 12 directions of single-target
motion. Monkey N completed this experiment in 16 d.

Data acquisition and analysis. Experiments were run and data acquired
with a 90 MHz Pentium-based computer. This computer communicated
over the local area network with a UNIX workstation that provided a
user interface for determining experimental parameters. Voltages pro-
portional to eye position, obtained from the magnetic search coil elec-
tronics, were differentiated by an analog circuit (bandpass DC to 25 Hz;
220 dB/decade) to generate eye velocity signals. Voltages proportional to
horizontal and vertical eye position and velocity were sampled at 1000
Hz/channel and saved on disk along with codes representing the com-
mands sent to the display oscilloscope. The codes were used to recon-
struct horizontal and vertical target position and velocity for data
analysis.

For data analysis, horizontal and vertical eye position and velocity
were displayed on the video monitor and marked using software that ran
on a UNIX workstation. The first and last 20 learning trials were
analyzed first. Trials that lacked saccades in the first 200 msec after the
onset of target motion were aligned on the onset of target motion and
averaged. The averages of eye velocity in the first and last 20 pursuit
learning trials were then superimposed and compared to select the
analysis-interval that displayed the greatest effects of learning. These
intervals were 128–176 msec (monkey I) or 138–186 msec (monkeys K,
E, and N) after the onset of target motion. All the intervals corresponded
approximately to the second 48 msec of pursuit eye movements, which
has been shown previously to express the greatest changes in eye accel-
eration after a sequence of learning trials (Kahlon and Lisberger, 1996).

Once the analysis interval had been chosen, data in prelearning and
postlearning tests were viewed individually for each trial. Horizontal and
vertical eye velocity traces were marked and discarded if saccades oc-
curred in or before the analysis intervals. In all but one case, this allowed
us to retain at least 85% of two-target trials and 95% of single target
trials but still to analyze only presaccadic smooth eye velocity. The one
exception was monkey N, whose upward pursuit included many early
saccades so that 50% of the responses to upward moving single targets
had to be discarded. Prelearning and postlearning test trials were then
analyzed separately by dividing the trials into groups that presented the
same target or targets, aligning on the onset of target motion, and
computing averages of horizontal and vertical eye velocity. For two-
target trials, this grouping included the two types of trials that started
with the same pair of target motions but ended with either of the two
stimuli as the tracking target. It was legitimate to group the two trials for
each pair of two-target stimuli, because we quantified responses only
during intervals that were driven by the motion of the two targets, before
the disappearance of one of the targets. We then used the averaged traces
to measure average horizontal and vertical eye acceleration as the change
in eye velocity across the 48 msec period of analysis, divided by 0.048.
Most of the data displayed in the paper show the mean of these mea-
surements across multiple repeats of the same experiment (usually four).
We show SDs in Figure 4 and data taken from multiple daily experiments
for one monkey in Figure 5 to provide estimates of trial-to-trial and
day-to-day variability in our measurements.

RESULTS
Hypotheses for the effects of learning on responses to
two-target stimuli
Figure 2 illustrates two predictions for the effect of learning on
the responses to two-target stimuli, depending on whether the
neural sites of learning are upstream or downstream from those
for vector averaging in the flow of signals that guide pursuit eye
movements. Each prediction is for experiments that cause a
learned decrease in rightward eye acceleration, under the as-
sumption that learning does not cause changes in the direction of
responses to the upward motion of single targets.

(1) If vector averaging occurs upstream from learning (Fig.
2A), then learning may cause changes in the amplitude but not in
the direction of the responses to two-target stimuli. In Figure 2A,
lef tmost diagram, the vectors simulate the responses to upward or
rightward motion of single targets. The result of vector averaging
before learning (Fig. 2A, middle diagram, Average) is a response

that is oblique upward and rightward with an amplitude equal to
half the amplitude of the sum of the rightward and upward
vectors. Because subsequent learning operates on the averaged
response, it causes only small changes in the amplitude of the
response to two-target stimuli without changes in the direction of
the response (Fig. 2A, rightmost diagram, Learn).

(2) If vector averaging occurs downstream from learning (Fig.
2B), then learning should cause a change in the direction of the
responses to two-target stimuli. The leftmost, prelearning dia-
gram of Figure 2B is the same as that in Figure 2A and simulates
responses to rightward and upward single-target motions. If
learning causes a decrease in the size of the response to a
rightward target with no change in the size or direction of the
response to an upward moving target (Fig. 2B, middle diagram,
Learn), then subsequent vector averaging predicts a change in the
direction of smooth eye movement. The simulated postlearning
response (Fig. 2B, rightmost diagram, Average) rotates away from
rightward (i.e., toward upward) relative to the response predicted
for the same two-target stimulus if averaging occurs before learn-
ing (Fig. 2A, rightmost diagram).

We will discriminate between these two alternatives by show-
ing that learning causes consistent and specific changes in the
direction of the responses to two-target stimuli.

Two additional hypotheses seemed plausible but are not illus-
trated in Figure 2. In one, the mechanism of learning is a change
in the weights used for vector averaging. This hypothesis takes the
same general computational form but has different predictions
from the two outlined above. It will be tested and rejected in the
section of the paper that considers quantitatively the order of
learning and vector averaging. In the other, which we call the

Figure 2. Two hypotheses for the relative placement of vector averaging
and learning. A, Learning is downstream of vector averaging. B, Learning
is upstream from vector averaging. Each arrow scheme uses polar nota-
tion to summarize the steps in converting the visual inputs from a
two-target stimulus consisting of rightward and upward target motions
into a command for a single pursuit eye acceleration. The arrows labeled
Two Targets at the lef t are the same in A and B and show equal amplitude
signals related to rightward and upward target motion. Bold arrows
indicate steps that are after learning-induced decreases in eye accelera-
tion for rightward target motion. Schemes that contain one arrow are after
vector averaging; schemes that contain two arrows are before vector
averaging.
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“motor hypothesis,” learning occurs after vector averaging but
also after the pursuit signals have been divided into separate
commands for the horizontal and vertical extraocular muscles. A
priori the motor hypothesis seemed unlikely to be true, because it
was incompatible with some of our behavioral findings (Kahlon
and Lisberger, 1996). It also predicts agreement we did not
observe between the effects of learning on the responses to
single-target and two-target stimuli in the experiments of the
present paper (see discussion of Figs. 11, 12 below).

Vector averaging for two-target stimuli
When two moving, potential targets were presented simulta-
neously to an animal trained to pursue single targets, the initial
smooth eye velocity was between the responses that would have
been evoked by either target separately (Lisberger and Ferrera,
1997). In the example shown schematically in Figure 3A, two
targets moved up and right for 148 msec before the upward
moving target disappeared and the rightward target became the
tracking target. The data traces in Figure 3B show the time
courses of the average horizontal and vertical eye velocities
evoked by these stimuli for a typical experiment. For single
targets, the responses to both the upward (long dashed traces) and
the rightward (short dashed traces) target motion consisted of
large smooth eye velocities in the direction of motion and small
changes in eye velocity in the orthogonal direction. The response
to simultaneous motion of two targets, rightward and upward, was
intermediate to the response to either the rightward- or the
upward moving single target (Fig. 3B, solid traces). In the first 148
msec after the onset of pursuit (Fig. 3B, interval ending at the
arrow), the responses to two targets included both horizontal and
vertical components that were smaller than those evoked by the
motion of either target alone but much larger than those evoked
when a single target moved in the orthogonal direction. There-
after, vertical eye velocity began to decrease toward zero, and
horizontal eye velocity increased, because the upward moving
target had disappeared, and only the rightward moving target

remained visible. If the traces had been extended longer, then
horizontal eye velocity would have attained final target velocity.

Lisberger and Ferrera (1997) showed previously that the inter-
mediate eye velocities in the first 100 msec of the responses to
two-target stimuli could be described as a weighted vector average
of the responses to single-target motion in each of the two
directions. Our data on the responses to two-target stimuli were
entirely consistent with theirs. For each animal, the two-target
stimuli could be used to determine weights associated with each
direction of target motion that best described the pursuit response
to interactions of that direction of target motion with all others.
These weights were different for target motions in different di-
rections but were consistent over repeats of the two-target para-
digm in separate experimental sessions.

Effects of learning on responses to single-target and
two-target stimuli
Figure 4 contains averages of eye velocity that illustrate the effect
of learning-induced decreases in rightward eye acceleration on
responses to a two-target stimulus consisting of rightward and
upward target motion. Before learning ( fine traces), a single

Figure 3. Vector-averaged responses to two-target stimuli. A, Schematic
description of presentation of two-targets. The dashed vectors labeled
Target and Distractor indicate rightward and upward moving targets that
start 3° left and down, respectively, and move toward the fixation point,
shown by 3. The solid vector labeled Eye shows an initial eye movement
response that is a vector average of the two target motions. B, Average
horizontal (H ) and vertical (V ) eye velocities for the stimuli shown in A.
Solid traces describe the response to the two-target stimulus. Short dashed
traces show the eye velocity response to a single rightward moving target.
Long dashed traces show the eye velocity response to a single upward
moving target. The vertical arrows indicate the time that was 70 msec after
the distractor disappeared and coincides with the end of the interval in
which pursuit is influenced by the 148 msec of two-target motion. The
traces in B start 100 msec before the onset of target motion.

Figure 4. Example showing the effect of learning on responses to single-
target and two-target stimuli in one experiment. The two targets moved
rightward and upward, and learning caused a decrease in rightward eye
acceleration. A, Horizontal (H ) and vertical (V ) eye velocity responses to
rightward moving targets. B, Horizontal and vertical eye velocity re-
sponses to upward moving targets. C, Horizontal and vertical eye velocity
responses to right and up two-target stimuli. In A and B, the dashed traces
show steps of target velocity. In A–C, the fine and bold solid traces show
prelearning and postlearning averages of eye velocity. The dashed traces
that parallel the eye velocity traces show SDs: for clearer viewing, the SDs
are shown above the average trace for prelearning data ( fine traces) and
below the average trace for postlearning data (bold traces). D, Polar plot
showing quantification of average eye acceleration in the interval from
138 to 186 msec after the onset of target motion. Open symbols show eye
acceleration measured from prelearning data; filled symbols show eye
acceleration measured from postlearning data. Circles, squares, and trian-
gles show the end points of vectors summarizing responses to single
rightward moving targets, single upward moving targets, and right and up
two-target stimuli, respectively. Fine arrows give the magnitude and di-
rection of prelearning eye acceleration. Bold arrows give the magnitude
and direction of postlearning eye acceleration.
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rightward moving target (Fig. 4A) evoked smooth eye movements
that began ;100 msec after the onset of target motion and that
consisted of a brisk increase in rightward eye velocity toward the
final target velocity of 20°/sec and a slight downward eye accel-
eration. After the monkey had completed 500 rightward learning
trials and 500 leftward control trials, there was a large decrease in
the initial rightward eye acceleration evoked by rightward target
motion and no change in the small downward response to the
same target motion (Fig. 4A, bold traces). In contrast to their large
effects on responses to rightward single-target stimuli, learning
trials along the horizontal axis caused little or no change in the
response to single upward moving targets (Fig. 4B). In this
monkey, the initiation of upward pursuit had a low gain and failed
to reach target velocity in the part of the response that is illus-
trated, but the low-gain upward pursuit was the same before (Fig.
4B, fine traces) and after (Fig. 4B, bold traces) learning.

Learned decreases in eye acceleration for rightward single
target motion caused a change in the direction of the initial
pursuit response to two-target stimuli that combined a rightward
moving target with an upward moving target. Figure 4C shows
this finding by plotting average eye velocity as a function of time.
Comparison of the responses to two-target stimuli before learn-
ing ( fine traces) and after learning (bold traces) reveals a reduc-
tion in the horizontal component of eye velocity with no change
in the vertical component. We quantified the effect of learning on
the responses to two-target stimuli by measuring horizontal and
vertical eye acceleration in 48 msec intervals, starting either 128
msec (monkey N) or 138 msec (monkeys E, I, and K) after the
onset of target motion. Figure 4D illustrates a polar plot that
graphs these measurements for the prelearning data (open sym-
bols) and postlearning data ( filled symbols) from the single ex-
periment documented in Figure 4A–C. For rightward target mo-
tion (circles), learning caused a decrease in the magnitude of eye
acceleration without a change in direction. For upward target
motion (squares), learning caused only a very small change in
magnitude and direction. The prelearning response to the simul-
taneous presentation of the rightward- and upward moving target
(open triangle) was intermediate to the responses to the rightward
moving target and the upward moving target presented singly.
The postlearning response to the two-target stimulus ( filled tri-
angle) included a smaller horizontal component relative to the
prelearning response. Thus, learned decreases in rightward eye
acceleration caused the vector for the response to the rightward
and upward two-target stimulus (bold arrow, filled triangle) to
rotate away from the rightward direction and decrease slightly in
magnitude. In subsequent figures, the responses to single- and
two-target stimuli will be represented as vectors that describe the
direction and magnitude of eye acceleration, as in Figure 4D.

Although the data shown in Figure 4D were measured from the
averaged eye velocity traces shown in Figures 4A–C, we use this
example to describe the trial-by-trial variance of eye acceleration
in single- and two-target trials. For the averages in Figure 4A, the
SDs are demonstrated by the dashed traces that follow above or
below the averages, which are shown as solid traces. In a separate
trial-by-trial analysis, the SDs of prelearning eye accelerations to
single upward or rightward moving targets ranged from 14.59 to
30.25°/sec2, and those of postlearning eye accelerations ranged
from 10.26 to 21.15°/sec2. SDs of horizontal and vertical eye
acceleration in right-up two-target trials were 26.67 and 22.83°/
sec2 in prelearning trials, and 31.12 and 25.84°/sec 2 in postlearn-
ing trials, respectively. Tests of statistical significance on the
responses to all stimuli shown in Figure 4D revealed that learning

induced significant changes ( p , 0.05) only in the horizontal eye
acceleration components of the responses to rightward single-
target stimuli and right-up two-target stimuli (unpaired t tests,
p 5 0.0001 for both). Unfortunately, it would not have been
meaningful to perform similar statistical tests on most experi-
ments. We will show in the following sections that learning caused
both specific and nonspecific effects on the responses to two-
target stimuli in almost all experiments. The nonspecific effects of
learning could have created statistical significance in the specific
effects, even when they were actually not significant. In the ex-
periment illustrated in Figure 4, the nonspecific effects were not
present, and statistical evaluation was feasible. We will resort to
other controls to support our contention about the consistency
and veracity of the specific effects of learning on responses to
two-target stimuli.

Specific effects of learning on responses to
two-target stimuli
Learning had both specific and nonspecific effects on the initia-
tion of pursuit evoked by two-target stimuli. Specific effects of
learning depended systematically on the learning paradigm,
whereas nonspecific effects of learning were the same for a given
two-target stimulus, regardless of the learning paradigm. We
begin by describing the specific effects for a monkey that showed
a relatively small nonspecific effect. Consider first Figure 5A,
which shows the results of “left-increase” experiments, in which
the responses to two-target stimuli were measured before and
after learning-induced increases in leftward eye acceleration.
Results are shown for the four two-target pairs that consisted of
one horizontal and one vertical target motion, and the data are
plotted in the quadrant that would reflect the vector average of
each pair of target motions. Thus, responses to two-target stimuli
consisting of leftward and upward target motion are plotted in the
left, top quadrant of the graph. The vectors show the mean eye
acceleration during the initiation of pursuit to two-target stimuli
before and after learning, and the points show the same data from
four individual experiments.

Left-increase learning (Fig. 5A) caused a change in both the
magnitude and direction of the responses to two-target stimuli
that paired upward or downward target motion with leftward
target motion. Both before learning ( fine vectors and open sym-
bols) and after learning (bold vectors and filled symbols), the
responses were intermediate between the directions of the two-
targets. Comparison of the responses before and after learning
reveals that learning caused the responses to rotate in the direc-
tion of the learned increase in leftward eye acceleration. The
change in direction reflected by the two vectors is also evident in
the results from the four individual experiments (symbols) that
were averaged to obtain the vectors. In contrast, left-increase
learning had very little effect on the responses to two-target
stimuli that paired rightward target motion with upward or down-
ward target motion. There may have been a small decrease in the
magnitude of the vectors after learning, but there was no change
in the direction.

Right-increase learning caused complementary effects (Fig.
5B). There were changes in the direction and magnitude of the
responses to two-target stimuli that paired upward or downward
target motion with rightward target motion. After learning, the
responses were rotated in the direction of the learned increase in
rightward eye acceleration. The effects again are visible in the
results of the four individual experiments (symbols) as well as in
the averages across experiments (vectors). There were only small
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changes in the magnitude and no change in the direction of the
responses to two-target stimuli that paired upward or downward
target motion with leftward target motion.

The results were similar but a little more complex for experi-
ments that measured the effect of learning-induced decreases in
eye acceleration. In Figure 5C, left-decrease learning caused
changes in the direction of the responses to all pairs of two-target
stimuli. When one of the two targets provided leftward target
motion, learning caused the responses to be smaller and to rotate
away from the left. When one of the two targets provided right-
ward target motion, an equivalent change occurred. Postlearning
responses changed direction, in this case rotating toward the right
(away from the left), with only a small change in magnitude. In
Figure 5D, right-decrease learning caused small changes in the
direction of the responses to all pairs of two-target stimuli. When
one of the two targets provided rightward motion, the postlearn-
ing response rotated consistently away from the right and de-
creased in magnitude. When one of the two targets provided
leftward motion, the changes in direction were smaller and
inconsistent.

The 16 daily experiments summarized in Figure 5 show that
pursuit learning had consistent effects on the directions of re-
sponses to two-target stimuli in the monkey we have chosen to
illustrate our general findings. Learned increases in eye acceler-
ation for a given direction of horizontal target motion caused
responses to two targets to be rotated toward that direction.
Learned decreases in eye acceleration for a given direction of
horizontal target motion caused responses to two targets to be
rotated away from that direction. Changes in the direction of eye
acceleration were always seen when one of the targets in a
two-target stimulus moved in the learning direction. Changes
were sometimes seen when one of the targets moved in the
control direction.

We documented the specific effects of learning on the responses

to each two-target stimulus by comparing the postlearning re-
sponses after learned increases versus decreases in eye accelera-
tion for a given learning direction. Figure 6 summarizes results
for a total of 64 experiments (16 daily experiments on each of
four monkeys). Consider first the four graphs in Figure 6A1–A4,
which compare the effects of left-increase and left-decrease learn-
ing on the responses to two-target stimuli that paired leftward
target motion with upward or downward target motion. Of the
eight quadrants available for comparison (two quadrants by four
monkeys), six showed a consistent effect of learning on the direc-
tion of the eye acceleration evoked by two-target stimuli. The two
exceptions are the upper-left quadrants for monkeys N and I (Fig.
6A1, A4). In general, responses after left-increase learning (solid
vectors) were rotated toward the left, whereas responses after
left-decrease learning (dashed vectors) were rotated away from the
left. Figure 6B1–B4 shows that learning-induced changes in right-
ward eye acceleration had complementary effects in all eight of
the available quadrants (two quadrants by four monkeys). Re-
sponses after right-increase learning (solid vectors) were always
rotated to the right relative to responses after right-decrease
learning (dashed vectors). On top of the very consistent general
trend in the data in Figure 6, there is considerable variability
between different monkeys. This variability represents genuine
differences in the details of the responses and can be attributed to
intersubject differences in (1) the baseline weighting of different
directions in two-target stimuli, (2) pursuit gain for different
directions of eye motion, and (3) size of the nonspecific effects of
learning.

As a control to assess the specificity of the effects illustrated in
Figure 6, Figure 7 illustrates mean data from two-target trials that
paired target motion in the nonlearning (control) direction with
upward or downward target motion. If the small but consistent
effects in Figure 6 are real and specific, then Figure 7 should
reveal no effect of learning on the responses to two-target stimuli

Figure 5. Specific effects of all four learning conditions on
two-target responses for orthogonal target motions. Each
plot summarizes responses averaged over four experiments
for one learning protocol. A, Left-increase learning. B,
Right-increase learning. C, Left-decrease learning. D, Right-
decrease learning. Within each graph, the arrows in the four
oblique directions show the effect of the given learning
condition for two-target stimuli with vector averages in that
direction. Fine and bold arrows show the vectors for pre-
learning and postlearning eye acceleration. Open symbols
show eye acceleration from the four individual experiments
that make up each prelearning average. Filled symbols show
eye acceleration from the four individual experiments that
make up each postlearning average. Data are from monkey K.
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with horizontal target motion in the control direction. In each of
the 16 quadrants illustrated in Figure 7, the differences between
the prelearning and postlearning vectors are small. The success of
the control analysis in Figure 7 persuades us that the effects
illustrated in Figures 5 and 6 are specific to the learning direction
and are functionally significant.

The effect of learning on responses to two-target stimuli con-
sisting of leftward and rightward target motion was entirely
consistent with the picture described above for two-target stimuli
comprising orthogonal target motions. Consider first experiments
that induced learning for leftward target motion (Fig. 8, lef t
column). After left-increase learning, two-target stimuli consist-
ing of leftward and rightward target motion consistently caused
more leftward eye acceleration (solid vectors with filled arrow-
heads) than after left-decrease learning (dashed vectors with open
arrowheads). We obtained complementary effects for rightward
learning directions (Fig. 8, right column). The responses to two-
target stimuli consisting of rightward and leftward target motion

were always more rightward or less leftward after right-increase
learning (solid arrows with filled arrowheads) than after right-
decrease learning (dashed arrows with open arrowheads). In fact,
in several cases, after both leftward and rightward learning,
learned decreases and increases in eye acceleration resulted in
opposite directions of movement (e.g., monkey K).

Nonspecific effects of learning on responses to
two-target stimuli
In Figure 5, we analyzed the prelearning and postlearning re-
sponses to a given two-target stimulus in one monkey that had
relatively little nonspecific effect. This analysis provided perfectly
controlled comparisons based on data obtained within single
experiments. In Figures 6–8, we finessed nonspecific effects and
presented data from each of four monkeys by comparing the
responses to a given two-target stimulus after increase and de-
crease learning experiments conducted on different days. Now we
document nonspecific effects by comparing the responses to a

Figure 7. Summary showing the absence
of specific effects of learning on responses
to two-target stimuli that combined motion
in the control direction with vertical target
motion. In A and B, the four separate plots
summarize data from four animals: mon-
keys N, E, K, and I. A1–A4, Responses to
two-target stimuli that interacted rightward
target motion with vertical target motions
after experiments that caused learning for
leftward target motion. B1–B4, Responses to
two-target stimuli that interacted leftward
target motion with vertical target motions
after experiments that caused learning for
rightward target motion. Solid arrows plot
the vectors of average postlearning eye ac-
celeration after experiments that increased
eye acceleration. Dashed arrows show the
vectors of average postlearning eye acceler-
ation after experiments that decreased eye
acceleration.

Figure 6. Summary of specific effects of
learning on responses to two-target stimuli
that combined motion in the learning direc-
tion with vertical target motion. In A and B,
the four separate plots summarize data from
four animals: monkeys N, E, K, and I. A1–A4,
Responses to two-target stimuli that inter-
acted leftward target motion with vertical
target motions after experiments that caused
learning for leftward target motion. B1–B4,
Responses to two-target stimuli that inter-
acted rightward target motion with vertical
target motions after experiments that caused
learning for rightward target motion. Solid
arrows describe the vectors of average postle-
arning eye acceleration after experiments that
increased eye acceleration. Dashed arrows
plot the vectors of average postlearning eye
acceleration after experiments that decreased
eye acceleration. Circles display the predic-
tions of model 1. Open and filled circles show
predictions for experiments that decreased or
increased eye acceleration, respectively.
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given two-target stimulus for all four combinations of learning
direction and learned increases versus decreases in eye accelera-
tion. Although less well controlled than the earlier comparisons
in the sense that we are now comparing responses obtained in
four different groups of four daily experiments, this approach
revealed consistent nonspecific effects of learning that we needed
to analyze to be able to interpret the specific effects.

The four vector plots in Figure 9A–D show average eye accel-
eration for the most compelling example we found of a nonspe-
cific effect of learning. Each plot shows the responses before and
after learning for two-target stimuli that delivered rightward and
upward target motions. The four plots summarize groups of
experiments that used different learning conditions. For example,
Figure 9A shows that right-decrease learning caused the response
to this two-target stimulus to show a large change in direction.
After learning (bold solid arrow), eye acceleration was nearly
upward, whereas before learning ( fine solid arrow), eye acceler-
ation was more rightward than upward. Figure 9B shows the
seemingly paradoxical finding that right-increase learning also
caused the response to this two-target stimulus to be rotated
toward upward eye acceleration. This apparent paradox is con-
sistent with Figure 6B2, however, because the upward rotation of
the responses was much greater after right-decrease learning (Fig.
9A) than after right-increase learning (Fig. 9B). The explanation
for the apparent paradox appears in Figure 9, C and D. Left-
decrease and left-increase learning both caused a large upward
rotation of the responses to two-target stimuli consisting of up-
ward and rightward motions. Thus, every learning condition
caused the response to rightward and upward targets to rotate
upward. We conclude that the inescapable upward rotation in
Figure 9A–D represents a nonspecific effect of learning.

Figure 9, E and F, estimates the nonspecific changes separately
for each two-target stimulus that paired horizontal and vertical
target motion and each of our four monkeys. To isolate the
nonspecific changes, we analyzed the effects of learning on the
responses to two-target stimuli in which horizontal target motion
was in the control direction for the learning condition. For each
two-target pair, we averaged the magnitude and direction of the
nonspecific changes from learned increases and decreases in eye
acceleration across all repetitions of the relevant learning exper-
iments. For the experiments summarized by Figure 9A–D, for
example, the nonspecific effect of learning on the response to
right and up targets was calculated as the mean of the magnitude
and direction changes measured from left-decrease and left-
increase experiments (Fig. 9C,D). The analysis of nonspecific

Figure 8. Effects of learning on responses to two-target stimuli that
combined leftward and rightward target motions. Left and right columns
show results from experiments with learning for leftward and rightward
target motion. From top to bottom, the four graphs in each column show
data from monkeys N, E, K, and I, respectively. Solid arrowheads show the
vectors describing average postlearning eye acceleration for two-target
stimuli after experiments that caused increases in eye acceleration for
single targets. Open arrowheads show the vectors describing average
postlearning eye acceleration for two-target stimuli after experiments that
caused decreases in eye acceleration for single targets. Circles display the
predictions of model 1. Open and filled circles show predictions for exper-
iments that decreased or increased eye acceleration, respectively. Hori-
zontal and vertical dashed lines show zero vertical and horizontal eye
acceleration, respectively.

Figure 9. Summary of nonspecific effects of learning on responses to
two-target stimuli. A–D, Data from four different experiments on one
monkey to document the largest nonspecific shift we observed in the
direction of eye acceleration. Each vector plot shows the effect of one
learning condition on the responses to upward or rightward motion of
single targets and two-target stimuli consisting of rightward and upward
target motion. Learning conditions are right-decrease (A), right-increase
(B), left-decrease ( C), and left-increase ( D). Fine and bold arrows show
responses before and after learning, respectively. Dashed arrows show
responses to single target stimuli. Solid arrows show responses to two-
target stimuli. E, Summary of nonspecific effects of learning on the
direction of responses to two-target stimuli. Positive changes in direction
describe shifts toward the horizontal axis. Negative changes in direction
describe shifts toward the vertical axis. F, Summary of nonspecific effects
of learning on the magnitude of responses to two-target stimuli. Each
graph plots responses for the different monkeys at different locations
along the x-axis. For each monkey, the four points quantify nonspecific
effects for each of the four combinations of orthogonal two-target mo-
tions. The oblique arrows in E and F indicate the measurements taken
from the examples in A–D.
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effects for the four combinations of orthogonal two-target stimuli
yielded the four observations plotted in Figure 9, E and F, for
each monkey. Inspection of Figure 9E reveals that monkeys N and
K showed only small nonspecific effects on the direction of the
response to two targets, monkey I showed slightly larger effects,
and monkey E had the largest nonspecific effects on response
direction. Figure 9F reveals quite a few examples of nonspecific
decreases in magnitude of responses to two-target stimuli. For
reference, the arrows in Figure 9, E and F, indicate the results of
analyzing the vector plots in Figure 9A–D.

Generalization of learning to different directions of
single-target motion
Because learning caused consistent changes in the initial pursuit
to two-target stimuli, it seemed important to ascertain whether
similar changes in direction or magnitude of initial eye accelera-
tion were observed in the responses to single targets moving in
the directions of the vector-averaged responses to two targets. We
tested the effect of learning on the initiation of pursuit for single
targets moving in 12 directions at 30° intervals. For each learning
condition and each monkey, we averaged the changes in the
magnitude and direction of eye acceleration across three repeats
of each of the four learning conditions. Changes in the magnitude
of eye acceleration were tuned around the learning direction,
which is plotted at 0° on the x-axis (Fig. 10A,B). These graphs
show eight curves each for learned increases and decreases in eye
acceleration: one each for leftward and rightward learning direc-
tions in each of four monkeys. The generalization bandwidth at
half-height for pursuit learning was ;60°, and pursuit learning
rarely generalized from the learning direction to orthogonal di-
rections, except for monkey N (Fig, 10, diamonds). There was a
tendency for eye accelerations in the opposite, control direction
(plotted at 6180°) to increase slightly regardless of the learning
protocol. Again, monkey N (Fig. 10B, diamonds) provided the
only exception: left-decrease and right-decrease learning experi-
ments caused little or no decrease in eye acceleration in the
learning direction but still caused large increases in eye acceler-

ation in the opposite, control direction. Separate experiments in
which animals tracked only test trials in both directions suggested
that some of the small increases in the opposite direction were
general effects of pursuing targets for 1000 trials (data not
shown).

Figure 10C–F shows that learning for target motion along the
horizontal axis usually had only small effects on the direction of
pursuit for targets moving in other directions. Inspection of each
of these graphs reveals that there was essentially no change in the
direction of eye movement for single targets moving in the learn-
ing direction, plotted at direction of target movement of 0°.
However, there was a tendency for organized changes in the
direction of the eye movement evoked by single targets in direc-
tions within 60° of the learning direction. When the learning
direction was rightward (Fig. 10C,D), learned increases in eye
acceleration caused eye movement to rotate toward the right in
most cases (Fig. 10C), and learned decreases in eye acceleration
caused the eye movement to rotate away from the right (Fig.
10D). The opposite tendencies were present when the learning
direction was leftward. Learned increases in eye acceleration
caused the responses to single targets to rotate toward the left
(Fig. 10E), and learned decreases caused the responses to rotate
away from the left (Fig. 10F). Except for a few points, these
changes are quite subtle. Furthermore, not all of the small
changes were present in all four monkeys.

Lack of generalization of learning to the same eye
movement evoked by different stimuli
We showed above that the responses to single targets tended to
deviate in the same direction as the specific effects of learning on
the responses to two-target stimuli. In the present section, we
evaluate the possibility that learning-induced changes in the di-
rection of responses to two-target stimuli might generalize to all
smooth eye movements in a given direction. For example, one
might see the same change in the direction of a response to a
single target moving rightward and upward as to a two-target

Figure 10. Generalization of learning to
pursuit evoked by 12 directions of single
target motion. A, B, Changes in the mag-
nitude of eye acceleration are plotted as a
function to the direction of target motion,
separately for experiments that increased
( A) or decreased ( B) eye acceleration.
C–E, Changes in the direction of eye ac-
celeration are plotted as a function of the
direction of target motion, separately for
right-increase ( C), right-decrease ( D),
left-increase ( E), and left-decrease ( F) ex-
periments. Changes in direction that ro-
tated the vector toward rightward and left-
ward are plotted as positive and negative
values on the y-axis. In all six graphs, 0° on
the x-axis represents the learning direc-
tion, 290° represents upward target mo-
tion, and 90° represents downward target
motion. Therefore, for left-increase and
left-decrease experiments, responses to
single targets moving at 30 and 60° left and
up plot at 230 and 260°, and responses to
single targets moving at 30 and 60° left and
down plot at 130 and 160° on the x-axis.
For right-increase and -decrease experi-
ments, responses to single targets moving

at 30 and 60° right and up plot at 230 and 260°, and responses to single target moving at 30 and 60° right and down plot at 130 and 160° on
the x-axis. Different symbols show data from different animals: circles, monkey E; squares, monkey K; triangles, monkey I; diamonds, monkey N.

Kahlon and Lisberger • Vector Averaging Is Downstream from Learning J. Neurosci., October 15, 1999, 19(20):9039–9053 9047



stimulus consisting of rightward and upward motions. If true, this
possibility would make it difficult to interpret our data.

Figure 11A evaluates the most extreme example of this class of
explanation for our data, which is the motor hypothesis we
defined earlier. According to the motor hypothesis, the site of
learning would be after the pursuit commands have been divided
into the horizontal and vertical components of eye movements. If
the motor hypothesis were true, then learning should generalize
to the initial pursuit evoked by any target motion with a horizon-
tal component, as it does to target motion at different speeds in
the learning direction (Kahlon and Lisberger, 1996). According
to the motor hypothesis, it should be possible to predict the
postlearning responses to the oblique motion of single targets by
simply adjusting the prelearning horizontal component by the
same gain factor obtained for single-target motion in the learning
direction. To make this prediction, we calculated the horizontal
components of the prelearning response for all eight oblique
single-target motions in each of the four monkeys, scaled each
horizontal component by the gain change induced in the appro-
priate learning direction, and predicted the direction of the
postlearning responses. Figure 11A plots the actual learning-
induced shift in direction of the single-target responses versus the
shift in direction predicted by the motor hypothesis. All but two
of the points plot below the line with slope of 1, showing that the
actual changes in direction were considerably smaller than the
predictions. Linear regression with errors in both coordinates
(Press et al., 1992) under the assumption of equal variances along
the x- and y-axes revealed a regression slope of 0.37. Of course,
there need not be a single site of learning; sites could be distrib-
uted across different levels of the pursuit system, with one site in
the motor pathways. This slope places an upper limit of 37% on
the fraction of learning that could occur in the motor pathways,
after separate commands have been formed for the horizontal
and vertical components of eye movement.

We next tested a more general formulation of the motor hy-
pothesis in which changes in the direction of the initial eye
acceleration depend only on the direction of the prelearning
smooth eye movement and not on whether the stimulus consisted
of one or two targets. Figure 11B analyzes whether learning-
induced changes in the direction of the responses to two-target
stimuli were the same size as the changes in the direction of
same-direction responses to single-target stimuli. For two-target
responses, we calculated the difference between the directions of
responses to a given pair of targets after increase and decrease
learning in a given direction. For single-target responses, we
computed the same difference but did so only after interpolating

along the curves in Figure 10C–F to estimate the effect of learning
on the responses to single targets in the direction of the prelearn-
ing response to each combination of two targets. In Figure 11B,
a plot of the direction shift for single-target responses as a
function of that for two-target responses reveals that almost all of
the data plot below the line of slope 1. Thus, as a general rule the
changes in direction of responses to two-target stimuli were larger
than those to single-target stimuli in the same direction. Monkey
E (circles) comes closest to being an exception to the general rule,
because his data plot only slightly below the line of slope 1. Linear
regression with errors in both coordinates (Press et al., 1992)
under the assumption of equal variances along the x- and y-axes
yielded a regression slope of 0.33. Again, if learning is distributed
across multiple neural sites, then this slope places an upper limit
of 33% on the amount of the learning-induced change in the
direction of smooth pursuit that depends on the direction of the
evoked eye movement and not on the exact stimulus.

Monkey N provided a final, serendipitous opportunity to test
directly whether learning generalized equally to eye movements
evoked by single- and two-target stimuli when the resulting eye
movements had approximately the same magnitude and direc-
tion. This monkey emitted almost zero smooth eye acceleration
for upward motion of single targets and showed pure horizontal
eye acceleration for two-target stimuli consisting of horizontal
and upward target motion at 20°/sec. The magnitude of the
response to two targets was slightly smaller than that for single
horizontal target motion at 20°/sec. Before taking advantage of
this opportunity, we attempted to match the sizes of the prelearn-
ing responses to horizontal single targets and horizontal and
upward two-target stimuli by using single-target motion at 15°/sec.
We then evaluated the generalization of learning to eye move-
ments evoked by single- and two-target stimuli when both evoked
the same eye movements before learning. Different effects on the
same eye movements would argue strongly that the site(s) of
learning are upstream from the conversion of pursuit commands
to motor coordinates.

The poor generalization of learning between the two matched
eye movements is shown in Figure 12 for two-target stimuli that
consisted of rightward and upward or leftward and upward target
motion. The lef t column summarizes responses to single right-
ward or leftward moving targets. For each graph in the lef t
column, the companion graph in the right column shows the
responses to two-target stimuli that paired upward with rightward
or leftward targets. Each point represents the end of a vector that
starts at the intersection of the horizontal and vertical dashed lines
in each graph. Consider first the right-increase experiments sum-

Figure 11. Quantitative rejection of hypotheses predicting
learning-induced changes in the direction of the initial eye
acceleration that depend only on the direction of the pre-
learning smooth eye movement and not on whether the
stimulus consisted of one or two targets. A, Comparison of
the actual changes in direction of responses to oblique mo-
tion of single targets with the shift predicted if learning
altered only the horizontal component of pursuit. Eight
points are plotted for each monkey: one point for each of
four single-target stimuli and each of two learning direc-
tions. The four single-target stimuli moved obliquely 30 and
60° up and down relative to the learning direction. B, Com-
parison of the shifts in direction of responses to two-target
stimuli (x-axis) with those for single-target stimuli ( y-axis)
that evoked responses in the same direction. Each data point
shows the average for the upper and lower quadrants in the
learning direction, so four data points are plotted for each monkey: one each for right-up, right-down, left-up, and left-down two-target motions. Different
symbols show data from different animals: circles, monkey E; squares, monkey K; triangles, monkey I; diamonds, monkey N.
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marized in Figure 12, A and B. Before learning, rightward target
motion at 15°/sec evoked eye accelerations that averaged 65°/sec2

(Fig. 12A, open circles), and rightward and upward two-target
stimuli evoked eye accelerations that averaged 75°/sec2 (Fig. 12B,
open circles). Learning caused increases in the average eye accel-
eration evoked by the single target to 135°/sec 2 (Fig. 12A, filled
circles). In contrast, the eye acceleration evoked by the rightward
and upward two-target stimulus was unchanged in two of the
three experiments and increased to an average of only 95°/sec 2

(Fig. 12B, filled circles).
The rest of Figure 12 shows that we obtained the same result

for leftward target motion after left-increase learning (Fig.
12E,F), for rightward target motion after left-decrease learning
(Fig. 12C,D), and for leftward target motion after right-decrease
learning (Fig. 12G,H). Even though we were not able to obtain
learned decreases in eye acceleration in monkey N, Figure 12, C,
D, G, and H, takes advantage of the associated increase in eye
acceleration in the control direction in this monkey. From top to
bottom in Figure 12, the mean changes in the responses to
two-target stimuli were 29, 11, 31, and 38% (mean, 27%) of those
to single-target stimuli. Thus, the eight examples in Figure 12
show that learning generalizes only partly according to the direc-
tion of the eye movement evoked by a stimulus. Instead, learning
appears to generalize according to the evoking stimulus configu-
ration (two-target or single target) and the directions of target
motion relative to the learning stimulus. Again, if learning is
distributed across multiple sites, then this analysis places an
upper limit of 27% on the amount of learning that can occur in
pathways that are organized according to the direction of the
ultimate eye movement.

Modeling the effects of learning on vector averaging
The effects of learning on the responses to two-target stimuli
provide qualitative support for the hypothesis outlined in Figure
2B: learning is upstream from vector averaging. To provide a
quantitative analysis, we now test our data against linear models
that formalize the two hypotheses described in Figure 2 and those
of a third hypothesis that is a variant on the first.

Model 1 places learning upstream from vector averaging.
Model 2 places learning downstream from vector averaging.
Model 3 implements learning as changes in the weights used for
vector averaging.

Using equations and methods described in Appendix, we com-
pared the ability of each model to predict the effects of learning
on the responses to two-target stimuli. We wish to emphasize that
this was not a fitting procedure. Rather, we predicted the re-
sponses to two-target stimuli after learning using a deterministic
procedure based on the weights afforded each target motion for
vector averaging before learning, the eye accelerations induced by
single targets before and after learning, and the direction gener-
alization data. Each prediction was compared with the actual
postlearning response by measuring the distance from the pre-
diction to the data point in an x–y coordinate framework. Predic-
tion errors were computed as the mean error across the three
two-target stimuli that combined motion in the learning direction
with upward, downward, or control direction target motion. Er-
rors were averaged across learning directions, but those associ-
ated with learned increases and decreases in eye acceleration
were computed separately. Figure 13 shows that the prediction
error was almost always smallest for model 1, which placed
learning upstream of averaging. The only exception was for
learned decreases in eye acceleration in monkey N ( filled dia-
mond), whose postlearning responses after increases in eye ac-
celeration were predicted best by model 3. The predictions of
model 1 are plotted as circles in Figures 6 and 8 to allow direct
comparison with the data. The predictions fit the data well for
two-target stimuli that paired horizontal target and vertical target

Figure 12. Weak generalization of learning from single-target stimuli to
two-target stimuli that evoked eye movements in the same direction in
monkey N. Each graph compares the responses before and after a given
learning condition for a given single-target or two-target stimulus. The lef t
column of graphs contains data from single-target trials, and the right
column contains data from two-target trials. Each row of graphs shows the
responses from a given set of experiments. From top to bottom, learning
conditions were right-increase, left-decrease, left-increase, and right-
decrease. Open and filled symbols show data from prelearning and postle-
arning trials, respectively. Dashed vertical and horizontal lines show zero
eye acceleration on the horizontal and vertical axes.

Figure 13. Comparison of the errors between the data and the predic-
tions of models 1–3. Histogram bars labeled, 1–3 show the average
prediction error across monkeys for models 1–3. Groups of bars labeled
Decrease and Increase show average prediction error across monkeys for
experiments in which learning either decreased or increased eye acceler-
ation. Symbols show average prediction error for each monkey, averaged
across the three two-target conditions that interacted the learning direc-
tion of target motion with two orthogonal directions or the opposite
direction and over experiments that caused learning in pursuit for left-
ward and rightward target motion. Open symbols show errors associated
with the winning model 1. Filled symbols show errors associated with other
models. Different symbols display data for different monkeys: circles,
monkey E; triangles, monkey I; squares, monkey K; diamonds, monkey N.
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motion (Fig. 6). They fit the data less well (albeit better than other
models) when the two-target stimuli consisted of oppositely di-
rected target motions (Fig. 8). There are two possible reasons for
this. First, we were unable to estimate any nonspecific offset that
may be associated with interactions of leftward and rightward
moving targets and therefore could not compensate for these
nonspecific effects in our model predictions. Second, two-target
stimuli using opposite directions of motion generally yielded
more variable data than did two-target stimuli using orthogonal
target motions.

It proved difficult to distinguish the three models statistically,
because the differences between the predictions of the different
models were themselves small. However a number of our findings
disagreed qualitatively with the predictions of models 2 and 3. (1)
Model 2 fails because it predicts that learning will cause very little
or no change in the direction of vector-averaged responses to
two-target stimuli that pair orthogonal target motion. (2) Model
2 also fails to reproduce some of the data for two-target stimuli
that pair opposite direction target motion. Because the gain
factor ( gab) is outside the averaging expression, model 2 cannot
reproduce changes in the left–right direction of the responses to
these stimuli and therefore cannot account for the responses of
monkeys N and K in Figure 6. (3) Model 3 fails because it predicts
that learning will cause changes in the magnitude of responses to
two-target stimuli that contradict the data in some instances. It
predicts no change in the magnitude of the responses to two
targets if the magnitude of the response to the vertical component
of a two-target stimulus is equal to the horizontal component. It
also predicts changes in the magnitude of the responses to two
targets that are opposite in direction to the learning if the mag-
nitude of the response to the vertical target motion singly is
greater than that for the horizontal target motion. In contrast to
these predictions, we always observed changes in the magnitude
of the responses to two-target stimuli that were in the same
direction as learning: for each two-target pair of horizontal and
vertical target motion, we recorded increases (decreases) in mag-
nitude when learning caused increases (decreases) in eye accel-
eration, whether the response to the horizontal target motion
singly was larger or smaller than that to the vertical target motion
singly. Thus, model 1 had both quantitative and qualitative re-
sponse properties that provided the best prediction of the full
range of results we obtained when we tested two-target responses
after learning in single target responses.

DISCUSSION
Relative location of vector averaging and learning
We have analyzed the effects of motor learning in horizontal
pursuit eye movements on the initiation of pursuit for stimuli
consisting of two identical targets that moved either in orthogonal
directions or in opposite directions along the horizontal axis. Our
results revealed “specific” effects that were modulated in a con-
sistent way by the learning condition and “nonspecific” effects that
were the same across all learning conditions. We were able to
devise data analysis procedures to segregate nonspecific effects
from specific effects of learning, but we did not attempt to deter-
mine the site or mechanism of nonspecific effects.

Specific effects of learning on the responses to two-target stim-
uli were consistent across monkeys, and we have evaluated them
in relation to three hypotheses for the sites of learning and vector
averaging: (1) learning occurs before averaging; (2) learning
occurs after averaging but before the creation of separate com-
mands for horizontal and vertical smooth pursuit; and (3) learn-

ing is mediated by changes in the weights used for averaging. Both
quantitative and qualitative observations revealed that the spe-
cific effects were predicted most closely by a model that imple-
mented hypothesis 1: learning is upstream of vector averaging.
We did not attempt to localize the nonspecific effects. Perhaps
they are an example in monkeys of the compelling effects of the
history of target motion on pursuit in humans (Kowler, 1990).

The conclusion that learning is upstream of vector averaging is
based heavily on the finding that learning in the responses to
single-target stimuli causes changes in the direction of the vector
averaged responses to two-target stimuli. In principle, this finding
would be compatible with learning downstream from vector av-
eraging if learning occurred entirely in the motor system, after
the creation of separate commands for the horizontal and vertical
extraocular muscles. In practice, however, our data are incompat-
ible with the prediction of the motor hypothesis that learning
should have the same effect on the direction and amplitude of
pursuit in a given direction, whether the stimulus consisted of one
or two targets. In almost all monkeys, learning caused small
changes in the direction of responses to single targets, but these
changes could account for at most 33–37% of the change in the
direction of responses to two-target stimuli (from the analyses of
Fig. 11A,B). In monkey N, we observed different effects of learn-
ing on the horizontal pursuit evoked by single-target and two-
target stimuli. When the prelearning eye movements were similar
for single-target and two-target stimuli, the changes in the re-
sponses to two-target stimuli were only ;27% as large as those
for single targets (from the analysis of Fig. 12).

Our data and modeling do not exclude the possibility that there
are multiple sites of learning. For example, ;35% of the effect of
learning on responses to two-target stimuli could be attributed to
changes in the direction of responses to single-target stimuli. This
implies that it would be possible to explain the effects of learning
on responses to two-target stimuli by placing up to 35% of
learning in the final motor pathways, after the creation of sepa-
rate commands for the horizontal and vertical extraocular mus-
cles. Even if some of the learning occurs in the motor final
pathways, our data imply that the remaining 65% occurs before
the pursuit signals are converted into commands for the horizon-
tal and vertical extraocular muscles and before vector averaging.
Furthermore, our data do not support the idea that learning and
vector averaging are widely distributed. Model 3 would be one
way to formalize the hypothesis that learning and vector averag-
ing are codistributed over many sites, and it is consistently less
able than model 1 to reproduce our data.

Functional organization of the pursuit system
Observations of the pursuit response to a single moving target
suggest models of pursuit in which simple, serial computations
convert visual inputs into commands for smooth eye velocity
(Krauzlis and Lisberger, 1994). Recent observations from a num-
ber of laboratories, however, imply that pursuit results from a
much richer and more complex series of neural computations that
create properties such as learning (Kahlon and Lisberger, 1996),
on-line control of pursuit gain (Schwartz and Lisberger, 1994),
and vector averaging (Lisberger and Ferrera, 1997). The results
of the present paper provide some insight into the organization of
these neural computations and how they map onto the anatomy
and physiology of the pursuit system. The general flow of signals
for pursuit is diagrammed in Figure 14, center panel, green arrows.
Anatomical studies (Tusa and Ungerleider, 1988) have shown
that visual signals flow from the primary visual cortex (V1)
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through the extrastriate middle temporal visual area (MT) to the
medial superior temporal area (MST) and the part of the frontal
cortex that we call the “frontal pursuit area” (FPA). MT, MST,
and FPA then project in parallel through the dorsolateral pontine
nucleus (DLPN) to the cerebellum and on to the final ocular
motor pathways in the brainstem.

Figure 14 outlines a hypothesis for the localization of functions
such as learning, on-line gain control, and vector averaging. It
suggests that learning occurs downstream from area MT and
upstream from Purkinje cells in the cerebellum, perhaps in MST,
FPA, or DLPN. Our previous paper (Kahlon and Lisberger,
1996) showed that learning alters the response to a brief pertur-
bation of target velocity only if the perturbation and the ongoing
target motion are both in the learning direction. The gating of
learning according to the direction of eye and target motion
suggested that learning and on-line gain control (Schwartz and
Lisberger, 1994) might occur at the same site. The gating also
implies that the site of pursuit learning must relay signals related
to eye or target movement. This probably excludes MT, where the
firing of most neurons encodes only image motion and does not
reflect extraretinal signals related to eye or target motion (New-
some et al., 1988; Ferrera and Lisberger, 1997). In contrast,
neurons in MST (Newsome et al., 1988) and FPA (Tanaka and
Fukushima, 1998) seem to encode both retinal and extraretinal
events and may represent smooth pursuit in a spatial, rather than
retinal, coordinate system. One common behavioral finding is
explained most easily if some of the cortical signals for pursuit are
in a spatial frame of reference. In two cases in which pursuit eye
velocity was maintained well below target velocity for a single
direction of motion (Grasse and Lisberger, 1992; Kiorpes et al.,
1996), the deficit was related to the direction of target motion, not
the direction of image motion. Pursuit became entirely normal if
image motion in the direction of the deficit was presented during
pursuit of target motion in the opposite direction.

At the other end of the pursuit system, current evidence sug-
gests that learning is upstream of Purkinje cells, which are the

output neurons of the cerebellar cortex. The outputs from at least
one of the relevant parts of the cerebellar cortex appear to be
organized as separate commands for horizontal and vertical eye
motion (Miles et al., 1980; Krauzlis and Lisberger, 1996). Vector
averaging describes the mechanisms used to create these separate
commands and must, therefore, reside either in or before the
cerebellar circuits that create Purkinje cell simple spike discharge
related to horizontal or vertical eye movements. If vector averag-
ing occurs at the level of or upstream from Purkinje cell output of
the cerebellum, then learning occurs even further upstream and
may reside before the cerebellum. This conclusion is consistent
with the results of single-unit recordings from cerebellar Purkinje
cells during pursuit learning (Kahlon and Lisberger, 1997;
Kahlon, 1998). Figure 14 implies that the DLPN is a site of vector
averaging that is downstream from learning, but available evi-
dence is equally compatible with DLPN as a site of learning that
is upstream from vector averaging.

Our data place the site of vector averaging surprisingly far
downstream in the pursuit system. If learning is downstream of
area MT, and vector averaging is even further downstream, then
vector averaging occurs well beyond the immediate outputs from
area MT. This does not negate the possibility of vector averaging
as a mechanism of readout from cells with similar receptive fields
in MT (Groh et al., 1997; Recanzone et al., 1997) but instead
raises the possibility that vector averaging happens at multiple
levels of the pursuit system. For the stimulus configuration we
used, in which the two targets stimulated different parts of the
visual field and activated different groups of MT cells, the site
responsible for behavioral vector averaging seems to be quite far
downstream in the system. Perhaps a more upstream site would
be responsible for “local” vector averaging if the two targets
stimulated the same area of visual field.

Coordinate transformations in the pursuit system
The coordinate system of area MT appears to be retinal, and its
output therefore represents the direction and speed of image

Figure 14. Schematic diagrams show-
ing a hypothesis for signal processing
operations and coordinate transforma-
tions underlying the generation of pur-
suit eye movements. The center panel
uses green arrows to summarize the pos-
tulated flow of signals through the pur-
suit system. V1, Primary visual cortex;
MT, middle temporal visual area; MST,
medial superior temporal area; FPA,
frontal pursuit area; DLPN, dorsolat-
eral pontine nucleus. The center panel
uses boxes to indicate signal processing
operations and coordinate transforma-
tions. The three main boxes suggest a
progression from retinal to spatial to
muscle coordinates. The four boxes con-
taining names of signal processing op-
erations and anatomical areas indicate
the postulated order of signal process-
ing in the pursuit system. The lef t and
right panels show how single-target and
two-target stimuli would be processed
according to the hypothesis in the cen-
ter panel. The lef t panel shows process-
ing for a single target moving obliquely
at 45° right and up. The right panel

shows processing for two targets moving purely rightward and upward. At each stage, the blue and red icons represent prelearning and postlearning
representations, respectively, for right-decrease learning experiments. The top pairs of icons are meant to show population responses in V1 and MT,
whereas the icons in the second through fourth groups indicate the direction and magnitude of representations at downstream levels.

Kahlon and Lisberger • Vector Averaging Is Downstream from Learning J. Neurosci., October 15, 1999, 19(20):9039–9053 9051



motion as a population code (Maunsell and Van Essen, 1983;
Ferrera and Lisberger, 1997). As signals pass from MT through
MST and FPA, they are converted to a representation of target
motion in space by the addition of extraretinal signals presumably
related to eye motion in space (Newsome et al., 1988; Gottlieb et
al., 1994; Tanaka and Fukushima, 1998). The diagrams in Figure
14, lef t and right, show how the signals needed to drive pursuit
responses to single- and two-target stimuli would be represented
at each level in our hypothetical pursuit system. At the level of V1
and MT, the direction and speed of each target are represented by
a population code. Within the spatial coordinate frame at the site
of learning, the visual inputs from the two targets are processed
separately to create plans for movements to each of the two
targets. The gains of the planned movements are modified ac-
cording to previous experience and subjected to weighted vector
averaging to create a command for a single movement in spatial
coordinates. The cerebellum then divides this unified command
into control signals for the horizontal and vertical extraocular
muscles. At first blush, it seems cumbersome to maintain separate
representations of two potential tracking targets far into the
pursuit system and to combine those representations by vector
averaging only to separate them later into control signals for the
horizontal and vertical extraocular muscles. However, the com-
plexity of the signal transformations suggested in Figure 14 is
commensurate with the diversity of the basic properties of pursuit
behavior and may reflect the necessity of guiding a complex,
voluntary movement during natural visual stimuli.

APPENDIX
We derived three linear models in which the response to a given
two-target stimulus (ABpre and ABpost) is described in terms of the
weights for vector averaging before learning (wa and wb), the
responses to the motion of single targets before learning (A and
B), and the changes in pursuit gain caused by learning ( ga, gb, and
gab). For the weights and the gains, the subscript indicates the
direction of eye and target motion that applies: subscript a means
direction A, subscript b means direction B, and subscript ab
means the direction of the eye movement that resulted from a
two-target stimulus consisting of directions A and B.

Model 1 places learning upstream from vector averaging:

ABpost 5
wa~ gaA! 1 wb~ gbB!

wa 1 wb
. (1)

Model 2 places learning downstream from vector averaging:

ABpost 5 gabFwaA 1 wbB
wa 1 wb

G . (2)

Model 3 implements learning as changes in the weights used for
vector averaging:

ABpost 5
~wa ga!A 1 ~wb gb!B

gawa 1 gbwb
. (3)

We assessed the performance of each model against the aver-
aged performance of each monkey separately in each learning
condition. For each set of data, we first derived the values of wa

and wb that provided the best fit weighted vector averaging to the
prelearning responses to each two-target stimulus:

ABpre 5
waA 1 wbB

wa 1 wb
. (4)

The weights obtained for any one direction were very similar for
all two-target stimuli that included that direction, even though we
did not include this constraint in the fitting procedure. Next, we
used the three models to predict the eye accelerations evoked by
two-target stimuli after learning (ABpost). Note that the proce-
dures used to make these predictions do not use any additional
fitting. Instead, we derived the parameters on the right side of
each equation from the data, evaluated the equations, and asked
which model performed better. The weights (wa and wb) assigned
each target in two-target stimuli before learning were obtained
from Equation 4, and the prelearning eye accelerations (A and B)
evoked by single targets were taken directly from the data. The
gains representing the effects of learning on the responses to
single targets in a given direction ( ga, gb, and gab) were derived
using approaches described below.

For models 1 and 3, it was possible to compute the gains that
represent the effects of learning on single targets ( ga and gb) from
the responses to single-target stimuli that were embedded in the
two-target experiments. For each cardinal direction, gain was
computed as the magnitude of postlearning eye acceleration for
single-target motion in that direction divided by the magnitude of
the prelearning response. For model 2, it was not possible to
compute the gain ( gab) directly from the responses to single
targets in two-target experiments, because the vector-averaged
response was almost always in a noncardinal direction. Instead,
we interpolated based on the results of the separate experiments
on the direction generalization of learning for single target (Fig.
10) to estimate the prelearning and postlearning eye accelerations
for the direction of the vector-averaged response. We then com-
puted gab as the postlearning response divided by the prelearning
response. As mentioned previously, one monkey (monkey N)
completed both direction generalization and two-target tests in
the same experiments. Thus the values of g used for the data of
this monkey were taken from the same experiments for all three
models.

For each model, appropriate values of w, g, and single-target
accelerations (A and B) were plugged in to the equations to
predict postlearning responses to two-target stimuli. However,
these procedures incorporated only the specific effects of learn-
ing. To make a valid comparison with the data, it was also
necessary to estimate and include nonspecific effects. We esti-
mated the nonspecific effects exactly as we had from the data: we
computed the average difference between the output of each
equation and the actual data for orthogonal two-target stimuli
that included target motion in the control direction. We then
added the estimated nonspecific effects to the predictions for all
orthogonal two-target stimuli. This yielded perfect fits for control
quadrants and enabled a valid test of how well the model fitted
data from two-target stimuli that included the learning direction.
We chose to compute the nonspecific effects from the predictions
of the models because they included estimates of both the actual
shifts and any additional nonspecific error that may have arisen in
the estimation of weights from prelearning data. We obtained
essentially the same final model predictions by adding the non-
specific effects measured from the data, although the results were
noisier for two-target pairs that were relatively ill fit in prelearn-
ing data.
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