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The Spectral Main Sequence of Human Saccades
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Despite the many models of saccadic eye movements, little
attention has been paid to the shape of saccade trajectories.
Some investigators have argued that saccades are driven by a
rectangular “bang-bang” neural control signal, whereas others
have emphasized the similarity to fast arm movement trajecto-
ries, such as the “minimum jerk” profile. However, models have
not been tested rigorously against empirical trajectories. We
examined the Fourier transforms of saccades and compared
them with theoretical models. Horizontal saccades were re-
corded from 10 healthy subjects. The Fourier transform of each
saccade was accurately computed using a padded fast Fourier
transform (FFT), and the frequencies of the first three minima
(M1, M2, M3) in each energy spectrum were measured to a
precision of 0.12 Hz. Each subject showed near-linear trends in
the relationships among M1, M2, and M3 and the reciprocal of
duration (1/7), which we call the “spectral main sequence.”

Extrapolation of plots did not pass through the origin, indicating
a subtle departure from self-similarity. Bivariate confidence
regions were established to allow for slope-intercept variability.
The nonharmonic relationships seen cannot arise from a rect-
angular saccadic pulse driving a linear ocular plant. The rela-
tionships are also incompatible with minimum acceleration,
minimum jerk, or higher-order minimum square derivative tra-
jectories. The best fits were made by trajectories that minimize
postmovement variance with signal-dependent noise (Harris
and Wolpert, 1998). It is concluded that the spectral main
sequence is exquisitely sensitive to the saccade trajectory and
should be used to test objectively all present and future models
of saccades.
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Saccades are the fastest type of eye movement, reaching hundreds
of degrees per second and are usually completed in tens of
milliseconds. Despite their speed, saccade trajectories tend to be
remarkably stereotyped both within and across individuals. The
duration, 7, and peak velocity, PV, of saccades increase mono-
tonically with amplitude, 4, of the movement in a more-or-less
consistent way, which has been called the “main sequence” (Ba-
hill et al., 1975b). Over the range of amplitudes typically made in
everyday viewing (<20°) (Bahill et al., 1975a), velocity profiles
tend to have a similar quasi-symmetric shape that appears to be
simply scaled in velocity and time according to the amplitude.
This self-similarity breaks down for larger saccades as velocity
trajectories become more asymmetrical with a protracted decel-
erating phase (Collewijn et al., 1988).

Despite the numerous models of the saccadic system, there has
been surprisingly little attention paid to the precise shape of
velocity profiles. Descriptively, Yarbus (1967) fitted them by a
symmetric truncated cosine for small saccades. Others have used
a gamma function, which has a skew parameter that allows larger
saccades to be fitted (Van Opstal and Van Gisbergen, 1987).

In terms of explanatory models, probably the most common
view is that trajectories are time-optimal by bringing the eye to its
final position in the shortest possible time (Clark and Stark, 1975;
Lehman and Stark, 1979; Enderle and Wolfe, 1987). For linear
systems this is achieved by “bang-bang” control (BB), in which the
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driving signal is switched between maximum permissible signal
levels. The trajectories generated by such models of the neural
driving signal are dependent on the dynamic response of the
extraocular muscles (the “ocular plant”), on which there is cur-
rently no consensus.

An alternative, kinematic approach to explain trajectories,
which consequently is independent of the choice of plant, can be
adopted. The similarity between the trajectories of saccades and
fast arm movements has been emphasized previously (Abrams et
al., 1989; Harris, 1998b), and for fast arm movements it has been
proposed that trajectories are selected to maximize smoothness,
for example by minimizing the square of jerk integrated over the
duration of the movement. This “minimum-jerk” profile (jerk =
rate of change of acceleration) fits arm trajectories well (Hogan,
1984; Flash and Hogan, 1985), although a minimum “snap” pro-
file may provide a better fit (snap = rate of change of jerk)
(Wiegner and Wierzbicka, 1992). These minimum square deriv-
ative (MSD) velocity profiles are self-similar and symmetrical.

Although temporal MSD profiles appear to fit saccades well,
why movements should be selected for smoothness is unclear.
Recently Harris and Wolpert (1998) have proposed that the
trajectories of saccades and arm movements may minimize end-
point variance in the presence of signal-dependent motoneuron
noise. For fast movements, minimum variance (M V) trajectories
tend to be similar to MSD profiles (Fig. 1), but a quantitative
comparison has not yet been made.

It is difficult to discriminate between these models by conven-
tional means because of the smoothness of movements, recording
noise and limited bandwidth, and the uncertain plant. Defining
trajectories with higher derivatives, such as acceleration, jerk, or
snap, becomes virtually impossible because of noise and the
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Figure 1. Similarities of MSD and MV model trajectories (see Materials

and Methods). Shown are velocity profiles of minimum acceleration, jerk
and snap (MA, MJ, MS), minimum variance second and third order
(MV2, M V3 with third time constant = 10 msec); the descriptive Yarbus
model (Y) is also shown for its similarity to MA. The time-origin is
centered at peak velocity, which has been normalized to unity. Trajecto-
ries have been scaled in time so that velocity is 0.25 at =0.5 time units,
except in MV3 where a slight asymmetry precluded the alignment at +0.5
time units. For clarity, the order with which the profiles reach zero
velocity has been mirrored in the legend. The MV profiles are based on
an amplitude of 5° and duration 38 msec.

distortion caused by the low-pass filtering of any eye movement
recording equipment.

In this study we compared actual saccade trajectories with
model trajectories using Fourier transforms. The Fourier energy
spectra of a primate saccade has a characteristic and distinctive
sequence of sharp local minima at frequencies that depend on the
duration and overall shape of the trajectory (Harris et al., 1990;
Harris, 1998a,b). For a linear plant, the frequencies of these
minima, M1, M2, M3 etc., should coincide with minima in the
frequency domain of the driving signal. Thus, the minima allow
us to compare models based purely on the neural control signal
(BB) or purely on the output (MSD), without reference to a
specific plant model. The minima do not define the trajectory
absolutely, but any plausible descriptive or explanatory model
must be able to at least reproduce these minima. For example, the
gamma function does not have any minima, and so we can reject
this model at the outset. The other model trajectories have energy
spectral minima at different frequencies (Fig. 2). They cannot all
be correct. In this study we sought to establish the empirical
relationship among saccade spectral minima and saccade dura-
tion, which we shall call the “spectral main sequence” (SMS), and
then to compare it with the predictions of the models.

MATERIALS AND METHODS

Horizontal eye movements were recorded using an infrared limbus
eye-tracker (IRIS, Skalar Medical, Delft, The Netherlands). This appa-
ratus has a horizontal linear range of =25° with an accuracy of 3 minarc.
The frequency response has a 3 dB attenuation at 100 Hz and can readily
detect the first three minima for saccades over 4°.

The experimental protocol was approved by the Institute of Child
Health Ethics Committee, and informed consent was obtained from all
volunteers. Saccades were recorded from 10 healthy adults (6 males, 4
females) with normal vision aged 25-35 years (mean = 29.3 years).
Subjects sat facing a white flat screen in dimmed room lighting (2 c¢d/m?);
their heads were supported in a chin rest and stabilized by a pair of ear
muffs. Only recordings from the left eye were analyzed.
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Figure 2. Fourier energy spectra of velocity profiles plotted on log,-
linear axis. Energy plots are shown for the models in Figure 1 and for the
rectangular pulse bang-bang model (BB). For clarity the sharpness of the
minima has been reduced, and the ordinates have been offset. The
minima frequencies and their ratios are summarized in Table 3.

The stimulus was a red (670 nm) laser circular spot with a diameter of
1 mm projected onto the screen via a galvanometer mirror, which was
under computer control. The screen was 89 cm from the subject, and the
spot subtended an angle of 4 minarc at the retina.

Each trial started with the target spot in the center, which after a
random time delay (1.1-2.5 sec) stepped to a peripheral position, where
it remained for 1.5 sec before returning to the center for the start of the
next trial. Each subject was presented with 100 trials, with 10 trials for
each of 10 different peripheral target positions: 2.5, 5, 10, 15, and 20° to
the left and right of the central fixation target. Trials were presented in
a fixed pseudorandom order. Only saccades to centrifugal target jumps
were recorded.

Before trials were presented, a calibration procedure was performed in

which the subject was asked to fixate the spot at 12 different predeter-
mined horizontal locations between +20° and —20°. A linear regression
was produced on-line, and if necessary, the apparatus was readjusted and
the calibration procedure repeated until a linear relationship between
eye position and target position was obtained.
Analysis. All saccades were previewed to exclude trials with anticipatory
saccades and blink artifacts. Eye position was sampled at 1 kHz. Eye
velocity and acceleration were estimated from the eye position using a
zero-phase low-pass digital filter (3 dB point = 64 Hz). The onset of a
saccade was defined as the first point at which the velocity was continu-
ously above 10°/sec for at least 10 msec. Similarly, the offset was defined
as the last point after the peak velocity to be above 10°sec. To ensure
that the saccade trajectory was always fully captured for Fourier analysis,
the extracted data segment went 5 msec beyond the identified start and
end points of the saccade.

The Fourier transform of a saccade was computed from the unfiltered
position signal using a standard fast Fourier transform (FFT). This
involved extending (“padding”) the extracted data segment at either end
to form a dataset comprising 8192 points, then multiplying by a cosine
window, and then applying the FFT. This avoided problems associated
with truncation and wrap-around (Harris, 1998a). The first three minima
in the energy spectra were measured to the resolution of 0.12 Hz.
Although most minima were sharply defined, occasionally this was not
the case. In these circumstances the energy spectra were multiplied by
w?, o ©° or 0® (equivalent to taking successive derivatives in the
time-domain; w = angular frequency), whereupon the minima became
readily detectable. It was found that the minima frequencies were highly



9100 J. Neurosci., October 15, 1999, 719(20):9098-9106

2.3 1
2.2
2.1
2.0 A
1.9 4

1.8 4

Regression Slope

Regression Intercept

Figure 3. Illustration of bivariate confidence regions. Ellipses show 95%
(inner) and 99% (outer) confidence regions for the estimate of the
population slope and intercept of the individual M1 versus 1/7 regressions
(O). The center, (%, y), is shown by the cross-hair.

variable for saccades below 4° in amplitude. This was because the minima
for short saccades occur at very high frequencies and become buried in
noise. Thus, only saccades above 4° were considered in this study.

SMS confidence regions. To study possible relationships among the four
variables (M1-M3 and reciprocal duration, 1/7'), linear regressions were
performed for each subject. Given the presence of unavoidable measure-
ment errors and biological variability in the frequencies and durations,
the best unbiased intrasubject estimate of the slopes and intercepts was
obtained by bivariate linear regressions of M1, M2, and M3 versus 1/7,
M2 and M3 versus M1, and M3 versus M2.

Sample differences in the linear regression will lead to covariance

between the individual samples of slope and intercept. The codepen-
dence can be seen in the example in Figure 3, where higher regression
slopes are associated with lower regression intercepts, and vice versa.
To obtain an overall estimate of the population intercept and slope,
bivariate confidence regions were constructed according to n(pu —
m)'S '(u—m) <F(p,n —p)pn — 1)/(n — p), where p and m are the
population and sample mean vectors of the two groups ( p = 2) slope and
intercept; n is the sample size (n = 10); S is the covariant of the n X p
matrix, with § " its inverse. Decomposing the vectors into slope (y =
uy, — y) and intercept (x = u, — X) components, we have for two
dimensions a region bounded by the ellipse of the form ay? + bxy + cx*
= d, centered on (¥, y). Using Hotelling’s T2, the 95 and 99% confidence
regions shown in Figure 3 indicate the probability of finding the popu-
lation intercept and slope within them.
Models. Eight models were considered: the descriptive Yarbus model
(Y); MSD profiles that minimize the square of acceleration (MA; a
parabola), the square of jerk (MJ), and the square of snap (MS); the
bang-bang rectangular pulse; and minimum variance profiles with
second-order and two with third-order ocular plants. The gamma func-
tion model was not considered because it has no local minima in its
energy spectrum.

The Fourier energy spectra of the Yarbus and MSD models can be
found analytically and are shown in Table 1. Each of these models
inherently assumes that velocity profiles of saccades for different ampli-
tudes have the same basic shape but differ only in velocity- and time-
scales. Such profiles are self-similar because it is possible to find individ-
ual scale factors in velocity and time so that the set of functions would
superimpose (for a given model) (Fig. 44). The Fourier transform
preserves self-similarity. Therefore, the ratios of the minima to each
other and to reciprocal duration (1/7") are invariant to changes in ampli-
tude, peak velocity, and duration of the trajectory. Linear plots of the
minima against each other or against 1/7 must yield straight lines passing
through the origin. This can be seen in Figure 4B, where scaling ampli-
tude scales the overall energy for a given duration but does not affect the
frequencies at which the minima occur; scaling duration has an inverse
relationship on the minima frequencies, but the ratios between the
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minima are constant, as demonstrated for M1 and M2 in the inset. In this
study only the ratios among M1, M2, and M3 and the relationship with
M1-M3 and 1/T were investigated.

Bang-bang control theory is the optimal strategy to reach the target in
the minimum time with the inherent assumption that the ocular plant is
linear. Bang-bang control has been proposed previously (Enderle and
Wolfe, 1987). To investigate whether bang-bang control is a tenable
model for the saccadic system, the model’s assumption of a linear plant
is accepted. Then, the energy spectrum of the output (i.e., eye position)
is the product of the energy spectrum of the input (aggregate neural
driving signal) and the energy transfer function of the ocular plant. If the
input energy spectrum goes to zero at some frequency, then the output
must also have zero energy at the same frequency. Even if energy does
not go to zero but has a moderately sharp minimum and the plant
characteristics are smooth, then energy minima are also virtually invari-
ant to linear plants (Harris, 1998a). Thus, the energy minima of position
or velocity will occur at frequencies very close to the minima of the pulse.
The simplest bang-bang control signal is a rectangular pulse, in which the
pulse height remains the same and increases in duration with saccade
amplitude. Thus, for this model the pulse shapes and their energy spectra
are self-similar (although eye velocity output profiles are not) (Fig.
5A,B). Thus, as for the MSD models, linear plots of the minima against
each other or against 1/7" must also yield straight lines passing through
the origin, and the slopes of these plots must be integral multiples of each
other (harmonics) as determined by the energy spectrum of a rectangle
(Table 1).

Minimum variance trajectories have velocity profiles that minimize the
position variance over a postmovement period, where the SD of the noise
on the control signal increases with the magnitude of the mean control
signal (signal-dependent noise). The optimal profiles were found numer-
ically, assuming that the SD of the noise was proportional to the mean of
the control signal, and using the same parameter values used by Harris
and Wolpert (1998), namely a postmovement period of 50 msec and a
second-order plant with time constants of 224 and 13 msec, or a third-
order plant with an additional time constant of 10 ms. Optimal profiles
with the third time constant set to 4 msec were also modeled. (Further
details of the numerical techniques used can be found at
www.hera.ucl.ac.uk.)

RESULTS

All subjects produced saccades with the typical temporal main
sequence (TMS) (Fig. 6) as described by many previous investi-
gators. In particular, duration was always a linearly increasing
function of amplitude for saccades over ~4°, and linear regres-
sion over the linear portion (4-20°) gave a slope (T-A slope)
range of 2.22-3.37 msec/° and an intercept (T-A incpt) range of
20.3-30.4 ms (Table 2). The ratio of peak velocity to mean
velocity, which we call O, tended to be roughly constant for
different amplitudes, with a value ranging from 1.54 to 1.80. These
temporal measures are similar to other reports (Becker, 1989).
Velocity trajectories of saccades showed the typical quasi-
symmetrical profile for amplitudes of 5-10°, with a subtle change
toward positively skewed profiles for large saccades (Fig. 7), as
reported by others (Collewijn et al., 1988). Thus, there was no
indication of any systematic deviations in our measures of velocity
profiles or duration from previously published data.

Fourier analysis showed energy spectra with usually clearly
defined minima occurring at nonharmonic frequencies, as shown
by the typical example in Figure 8. These energy spectra were
similar to those published previously (Harris et al., 1990; Harris,
1998a,b).

Plots between M1-M3 and the reciprocal of duration (1/7'), as
well as between M2-M3 and M1, and M3 and M2, revealed
approximately linear relationships, as seen in Figure 94,B for a
typical subject. To compare these results with model predictions,
the slope and intercept were estimated by bivariate linear regres-
sions (see Materials and Methods) and are summarized in Table
2. Subjects showed broadly similar results for each regression, but
to take account of intersubject variability in estimating the pop-
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Table 1. Model velocity formulae and their analytical Fourier energy spectra

Model Velocity Fourier energy spectrum
Yarbus (1967 Icos(m) ™ cos(w/2)
arbus ( ) 5 NCEy-a
3 2sin(w/2)  cos(w/2)7?
Minimum acceleration S [1— 4] 44 # — ¥
2 [0} [0}
15 12sin(w/2) 6 cos(w/2)  sin(w/2)7?
Minimum jerk §[1 — 477 14’400[ wgw ) _ af:” ) _ f:; )}
35 120 sin(w/2) 60 cos(w/2) 12sin(w/2) cos(w/2)
Minimum snap 16 [1—47P 2,822,400[ 5 — o — o + o

Rectangular pulse h(t) @ rect(T)

‘H(w)

, [Tsin(0T/2)7?
| w2

Equations of velocity trajectories and their Fourier energy spectra for Yarbus, MSD, and rectangular pulse models. Trajectories are normalized for unit amplitude and unit

duration with time origin at peak velocity.

ulation slope and intercept, bivariate confidence regions were
plotted (Fig. 10) (see Materials and Methods).

Comparison with bang-bang control

The simplest bang-bang control signal is the rectangular pulse,
which has energy minima at harmonics of the reciprocal of the
pulse duration (Fig. 9, solid lines; Fig. 10, squares). It was clear
from individual SMSs that there is no harmonic relationship
among the minima. The predicted rectangular pulse slopes and
intercepts consistently fell far outside the 99% confidence regions
and were rejected at the p < 0.001 level.

Comparison with MSD profiles

Inspection of MJ slopes alone suggests a close fit to the observed
means (Tables 2, 3). However, with the exception of MJ in Figure
10C (p = 0.065), and MJ and M A in Figure 10F (pyy = 0.037,
Pma = 0.34), all MSDs fell outside of the 99% confidence regions.
Moreover, the M3 versus M2 ratio seen in Figure 10F is the least
discriminating of the SMS relationships studied because all the
models predict very similar values (note scale in Fig. 10F). Al-
though M A provides a poor fit, it can be seen to fall closer than
MJ to the confidence regions in all but B and C in Figure 10,
which in turn was much closer to the confidence regions than MS.
The MS model was consistently rejected at the p < 0.001 level,
and higher-order MSD models diverge farther from the confi-
dence regions. It can be seen that the descriptive Yarbus model is
very close to MA. This is not surprising because the cosine
function in Table 1 can be quite well approximated by a parabola
(Fig. 1). Five out of six of the predicted slopes and intercepts for
MA, MJ, and Y models were rejected at the p < 0.05 level.

Comparison with MV profiles
MYV profiles depend on the type of signal-dependent noise in the
motoneuron signal and the specific dynamic response of the
ocular plant. We tested examples as described by Harris and
Wolpert (1998) (see Materials and Methods). It was found that
regressions of the MV minima did not pass through the origin but
showed intercepts that were similar to the empirical observations
(Tables 2, 3). The implication of the MV regression intercepts is
that MV profiles are not exactly self-similar. The change in shape
is subtle, as shown by the temporal velocity profiles [Fig. 7 and
Harris and Wolpert (1998)].

The sensitivity of the theoretical SMS can be seen particularly
clearly in Figure 10. A change in the plant model from second to
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Figure 4. Illustration of self-similarity using a parabola as an example. 4,
The basic temporal shape (curve a) remains the same with arbitrary
scaling in time (curve b) or in velocity (curve c) or both (curve d). B, The
Fourier transform of the curves in A. Scaling in velocity amplitude scales
the overall energy without affecting the frequency at which the minima
occur, whereas scaling in time has an inverse relationship on the minima
frequencies. The ratios between the minima are unaffected by the time or
amplitude scaling for a given shape, as shown in the inset for the first two
minima (see Materials and Methods).
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Figure 5. Illustration of bang-bang control with a second-order ocular
plant. 4, Simplest control is a rectangular pulse in which maximum
agonist signal is maintained. Different amplitudes are achieved by chang-
ing the duration of the rectangle (dotted line); hence pulses are self-similar
(see Materials and Methods). B, Velocity trajectories resulting from A4 are
not self-similar.
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Figure 6. Time-domain analysis of saccades showing typical temporal
main sequence relationships. 4, Peak velocity versus amplitude. B, Dura-
tion versus amplitude. C, Peak velocity X duration versus amplitude.
Regression line constrained through origin gives the ratio of peak velocity
to mean velocity, Q.

third order with a time constant of just 4 msec had a substantial
effect on predicted slope and intercept. Increasing the third time
constant to 10 ms had a further significant effect on how well the
observed SMS was fitted. The second-order model fell within the
95% confidence bounds for all the interminima ratios but was
rejected at p < 0.01 for all the minima against 1/7. The interme-
diate plant provided a good fit of all the observed SMSs, being
within the 95% confidence regions and close to the sample mean.
The third model showed varying agreement with the empirical
data. It was just outside the 99% confidence regions for half of the
relationships, but was never far from the mean slope and
intercept.

DISCUSSION

All subjects showed systematic relationships among the frequen-
cies of the energy minima and the reciprocal of the duration of
the saccade (1/7). We have called these empirical relationships
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the SMS, which is quite distinct from the traditional TMS that
relates peak velocity and duration to amplitude (Bahill et al.,
1975b). The SMS is based purely on temporal measures (duration
and frequency) and is independent of the amplitude or peak
velocity of a movement. Consequently, there is no trivial reason
why the SMS should depend on the TMS. The SMS arises from
the whole shape of the trajectory (Harris 1998a).

Explanatory models of the neural pulse

The saccadic pulse has often been assumed to be rectangular in
shape, reflecting the belief that it is the optimal bang-bang control
signal (Enderle and Wolfe, 1987). The energy spectrum of a
rectangular pulse has zeroes at harmonic frequencies of the
reciprocal of the pulse duration (Table 1). Importantly, we have
shown that M2 and M3 are not harmonics of either M1 or 1/T.
This demonstrates conclusively that saccades cannot result from a
rectangular pulse driving any linear ocular plant.

In the theory of optimal control of saturated linear systems,
bang-bang control may require more elaborate driving signals,
where one or more switches occur between maximum agonist
activity and maximum antagonist activity during the movement
(Bryson and Ho, 1975). After a rectangular driving pulse (no
switches), the next simplest bang-bang control signal has one
switch, where the driving signal is switched from its maximum
agonist value to its maximum antagonist value at some optimal
switching time to brake the movement. Small “braking pulses” at
the end of saccades have been observed in abducens motoneuron
discharges (Van Gisbergen et al., 1981) and in muscle fibers
(Sindermann et al., 1978), but the magnitude of these braking
pulses are far less than the peak antagonist activity. There is no
evidence of two or more switches during saccades, so we conclude
that saccades are not driven by any kind of bang-bang control.
However, this does not mean that saccades are not time-optimal
because bang-bang optimal control applies only to linear systems
with simple saturating control signals.

Explanatory kinematic models

Kinematic models assume that a movement trajectory optimizes
some trajectory parameter rather than being constrained by the
driving signal or muscle dynamics. On the basis of the smoothness
and symmetry of fast arm movement trajectories, Hogan (1984)
proposed that the kinematic goal was to maximize smoothness by
minimizing the integrated square of jerk. This MJ constraint
provided a good fit to the observed symmetric velocity profiles. In
view of the similarity of saccade velocity profiles to wrist move-
ments (Abrams et al., 1989), the possibility that saccades may also
be governed by the same kinematic constraint has been raised
(Harris, 1998b). However, the minima of the MJ model fall
outside the 95% confidence region for all but one of the six
relationships investigated (Fig. 10). Minimizing the integrated
square of acceleration also produces a smooth parabolic symmet-
rical trajectory and is similar to the descriptive truncated cosine
profile originally proposed by Yarbus (1967). Again, both of these
models fall outside the 95% confidence bounds on all but one
measure and cannot account for velocity asymmetries and SMS
non-zero intercepts.

Wiegner and Wierzbicka (1992) reported that arm movement
trajectories were better fit by a minimum snap profile, which is
similar to but slightly smoother than the MJ profile (Fig. 1). From
Figure 10, we see that the minima ratios for the MS profile are
even farther away from the confidence regions than those of the
MIJ profile. Saccades cannot be described by higher-order MSD
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Table 2. Summary of individual temporal and spectral main sequence parameters

T-A M1-1T M2-1T M3-1T M2-M1 M3-M1 M3-M2

ID n Incpt Slope r Q Incpt Slope r Incpt  Slope r Incpt  Slope r Incpt  Slope r Incpt Slope r Incpt Slope r

1 70 283 337 091 1.80 —7.29 2.02 093 -7.76 324 090 -155 482 0.86 390 1.60 091 416 230 086 —099 1.42 094
2 77 205 315 095 1.71 —9.40 212 0.98 552 246 095 0.62 3.69 092 164 116 09 172 173 095 -7.73 1.50 0.95
3 70 235 222 096 161 -9.58 2.04 097 -697 3.05 088 -—134 451 083 760 152 088 840 224 085 —2.74 147 0.90
4 73 216 300 095 1.60 —0.19 156 091 0.89 2.72  0.89 1.34 3.77  0.82 1.03 1.75 089 476 233 086 3.18 133  0.87
5 71 203 283 098 1.64 —-253 1.70 0.9 179 264 097 137 3.14 090 5.68 1.55 096 184 183 090 11.8 1.18 093
6 73 295 254 091 1.64 —725 199 097 033 2.67 093 —555 1.09 088 102 134 094 108 2.00 090 —413 149 093
7 79 207 242 096 160 —1.12 1.60 0.97 1.08 2.71 097 177 310 092 292 1.70 096 198 193 091 16.6 1.14 0.94
8 57 280 271 090 154 -236 155 096 —-168 354 088 —-162 472 086 —11.3 228 088 —8.64 3.02 087 622 133 093
9 80 304 266 096 1.60 —947 218 098 —3.02 293 0.87 241 355 087 100 132 087 186 160 086 648 1.21  0.90
10 78 242 314 091 172 -7.05 195 098 —348 283 096 —6.11 405 091 6.74 145 096 876 206 091 —0.77 142 092
Mean 72.8 247 2.80 1.65 —5.62 1.87 —2.84 2.88 —2.11 3.94 5.32 1.57 102 2.11 2.78 1.35

Regressions of duration—amplitude main sequence (T-A) intercept (incpt) and slope, the ratio of peak to mean velocity Q, and the spectral main sequence bivariate regressions
(see Materials and Methods) are shown along with the respective correlation coefficients and number of saccades scored for each subject (n).
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Figure 7. Typical velocity trajectories of saccades with superimposed
MYV trajectory. Shown is near symmetry for low amplitudes, becoming
more skewed for large amplitudes. Plots were aligned approximately with
peak velocity, and amplitudes were 5.4° (H), 10.3° (A), and 20.0° (@). The
lines show the MV (with third time constant of 4 msec) profiles for
matched amplitudes and durations.

profiles, because higher-order MSD profiles have minima at even
higher frequencies. We conclude that MSDs do not give a good
description of saccade trajectories in the frequency domain. Con-
sequently, if fast arm movements truly minimize jerk or snap,
saccades and fast arm movements do not minimize the same
kinematic quantity. Spectral analysis of arm movements would
confirm this.

Explanatory MV models

Apart from the poor fit to the SMS, a serious conceptual problem
with the above MSD models (whether for arm or saccadic move-
ments) is their assumption that “smoothness” is the fundamental
kinematic goal of the movement. Although both fast arm and eye
movements do indeed appear to be smooth, it is not obvious why
smoothness should be so important, and it can hardly be consid-
ered to be an “explanation.” Instead, we have argued that
smoothness would arise if the goal of the movement were to
minimize position variance at the end of the movement of a given
duration in the presence of signal-dependent noise (Harris,
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Figure 8. Typical energy spectrum of the velocity profile of a saccade
(inset) with amplitude 9.5°, duration T = 47 msec (1/T ~ 21 Hz). Log
energy is plotted against linear frequency. Only the first three minima are
shown.

1998b; Harris and Wolpert 1998). MV profiles depend on the
duration of the movement, the dynamics of the plant, and the type
of signal dependency of the noise, and in principle there are many
MYV profiles. Clearly, unlike bang-bang control or kinematic
control, the minima of MV trajectories are dependent on the
plant model, especially the order of the plant. Here we have
examined only simple models as described by Harris and Wolpert
(1998).

Although the MV profiles appear similar to MSD profiles (Fig.
1), they become increasingly asymmetric with duration (Harris
and Wolpert, 1998), as seen in the real data (Fig. 7). In the
frequency domain, the subtle lack of self-similarity in the MV
profiles appears as regression lines among minima that do not
pass through the origin. Minor alterations in the simple plant
dynamics are sufficient to capture all of the details found in the
SMS. In particular, the third-order model with a 4 msec time
constant fits the observed SMS quite well, being within the 95%
confidence region for all tested relationships (Fig. 10).

We emphasize that the good fit of this MV trajectory does not
prove that saccades follow this MV trajectory; rather, we have
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Figure 9. Typical SMS for an individual subject. A, Plots of minima frequencies M1, M2, and M3 versus reciprocal duration of saccade (1/T) for the
same subject as in Figure 6. B, Plots of M2 and M3 versus M1, and M3 versus M2. Note near-linear relationships in all plots. Dotted lines show bivariate
linear regressions. Solid lines indicate predicted harmonic relationships for the rectangular bang-bang control pulse.

failed to reject this model on the basis of the SMS. Other models
may fit the data as well. We also emphasize that the SMS char-
acterizes the shape of trajectories and not how they are gener-
ated. One could doubtless conceive of an internal feedback con-
troller to realize MV trajectories, but this remains to be explored.

In addition, there are two important caveats to be aware of.
First, by constructing a confidence region we are in effect “aver-
aging” across individuals and hence generating a composite SMS.
Individual differences in saccade trajectories could reflect optimal
trajectories with different constraints (e.g., slightly different
plants), but they could also reflect failure to find the precise
optimum. Indeed, we have argued that some variability around
the optimum would be essential to allow the optimum to be
reached on average (Harris, 1998b). Thus, examining how and
why trajectories differ among individuals may be a more fruitful
line of enquiry than producing ever narrower confidence regions
by increasing sample size.

Second, our ultimate goal is to understand and model not only
saccade trajectories but also their neural commands. In principle,
if we have a potentially good model of trajectories we can ask
what neural command would give rise to such a trajectory. Thus,
Figure 11 shows the aggregate neural command for a second- and

third-order MV model. Unfortunately, even for these relatively
simple lumped linear models, there are serious difficulties. First,
we do not know the time course of the aggregate neural command
during a saccade, because it depends on all active excitatory and
inhibitory burst units and how they are delivered by the agonist
and antagonist motoneurons to their respective extra-ocular mus-
cles. A single motoneuron burst signal may give the impression of
a bang-bang control signal, but averaging across burst units has
revealed the presence of a small braking pulse (Van Gisbergen et
al., 1981), which is similar to but not as sharp as the theoretical
second-order MV command in Figure 11 (Harris and Wolpert,
1998). It is also highly questionable whether the CNS can deliver
very sharp aggregate neural commands as seen in the braking
pulse of the theoretical second- or third-order MV profiles in
Figure 11. We have placed no limits on the control signals for
these models, and no attempt has been made to model the tonic
step component. A more complex nonlinear plant is probably
required for realistic modeling of the very end of the pulse signal.

Summary

In summary, we have shown that the Fourier energy spectra of
human horizontal saccades in the range of 4-20° in amplitude
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Figure 10. Comparison of SMS confidence regions with models. Ellipses show 95% (inner) and 99% (outer) confidence regions for the group SMS (see
Materials and Methods). Predicted rectangular BB model (square), MSD models (circles, size in increasing order of derivative: acceleration, jerk, snap),
Yarbus model (cross-hair), and MV models (triangles, size in increasing order of third time constant: ¢; = 0, 4, 10 msec) are plotted. The equations for
the 95% (d = 1.004) and 99% (d = 1.946) ellipses are also shown. All model slopes and intercepts are summarized in Table 3.

have minima at frequencies that depend nearly linearly on the
reciprocal of saccade duration, which we call the SMS. Unlike the
traditional temporal main sequence (Bahill et al., 1975b), the SMS
depends on the whole shape of the saccade trajectory. The SMS
allows us to confidently reject the bang-bang control model of
saccades as well as the possibility that saccades have minimum
jerk or snap profiles, as proposed for fast arm movements. The
original trigonometric model (Yarbus, 1967) or the minimum

acceleration profile (parabola) are also rejected. Among the mod-
els considered, the minimum variance model with a third-order
plant provides the best fit that also captures the subtle lack of
self-similarity seen in actual data. However, it must be recognized
that the SMS does not uniquely define the shape of saccade
trajectories, and in principle, there could be other velocity profiles
that fit the SMS at least as well. The SMS provides a stringent and
essential test for all models of saccade trajectories.
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Table 3. Comparison of model regressions

Minimum variance

T, = 0 msec T; = 4 msec T5 = 10 msec

Minimum Yarbus Minimum Minimum
Rectangle acceleration model jerk snap Incpt Slope Incpt Slope Incpt Slope
M1 versus 1/T 1.00 1.44 1.50 1.84 2.24 -1.97 144 —-4.66 181 —-384 1.89
M2 versus 1/T 2.00 2.46 2.50 2.90 3.32 -152 248 -410 292 -283 295
M3 versus 1/T 3.00 3.48 3.50 3.94 4.38 -1.21 349 —343 395 =219 397
M2 versus M1 2.00 1.71 1.67 1.58 1.48 187 172 342 1.61 3.15 1.56
M3 versus M1 3.00 2.42 2.33 2.14 1.96 357 243 6.77 218 587 210
M3 versus M2 1.50 1.41 1.40 1.36 1.32 093 141 212 1.36 1.63 135

The predicted regression slopes and intercepts (incpt) are summarized for all eight models. Only the MV models have non-zero intercepts. The zero intercepts for the other

models are not shown.
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Figure 11.  Neural control signals for MV models. Predicted combined

agonist and antagonist motoneuronal firing rate for the second-order MV
(solid lines) and third-order MV (dotted lines, t; = 4 msec) models.
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