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Information in neuronal networks may be represented by the
spatiotemporal patterns of spikes. Here we examined the tem-
poral coordination of pyramidal cell spikes in the rat hippocam-
pus during slow-wave sleep. In addition, rats were trained to
run in a defined position in space (running wheel) to activate a
selected group of pyramidal cells. A template-matching method
and a joint probability map method were used for sequence
search. Repeating spike sequences in excess of chance occur-
rence were examined by comparing the number of repeating
sequences in the original spike trains and in surrogate trains
after Monte Carlo shuffling of the spikes. Four different shuffling
procedures were used to control for the population dynamics of

hippocampal neurons. Repeating spike sequences in the re-
corded cell assemblies were present in both the awake and
sleeping animal in excess of what might be predicted by ran-
dom variations. Spike sequences observed during wheel run-
ning were “replayed” at a faster timescale during single sharp-
wave bursts of slow-wave sleep. We hypothesize that the
endogenously expressed spike sequences during sleep reflect
reactivation of the circuitry modified by previous experience.
Reactivation of acquired sequences may serve to consolidate
information.
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Although it is a widely accepted notion that information is
distributed in cell assemblies rather than encoded by single cells,
the nature of coding in cell assembly has remained a major
challenge for neuroscience research. Several explanations have
been proposed on theoretical grounds, including frequency cod-
ing (Sherrington, 1906; Eccles, 1957; Barlow, 1972; Georgopoulos
et al., 1982), temporal coincidence coding (von der Malsburg and
Bienenstock, 1986; Singer, 1993), temporal delay of spikes
(O’Keefe and Recce, 1993; Buzsáki and Chrobak, 1995; Hopfield,
1995; Lisman and Idiart, 1995; Skaggs et al., 1996), and spatio-
temporal spike sequence coding (Buzsáki, 1989; Abeles, 1991). If
spatiotemporal patterns of neural activities serve to code and/or
decode information, one could look for evidence in the temporal
structure of activity within neuronal ensembles. Temporal coor-
dination of spike sequences, in relation to stimulus presentation,
has been described in various invertebrate (Dayhoff and Gerstein,
1983; Laurent et al., 1996; Marder and Calabrese, 1996) and
vertebrate (Strehler and Lestienne, 1986; Ts’o et al., 1986; Vaadia
and Abeles, 1987; Eckhorn et al., 1988; Gray and Singer, 1989;
Frostig et al., 1990b; Aertsen et al., 1991; Abeles et al., 1993;
Riehle et al., 1997) brains.

Because hippocampal pyramidal neurons discharge selectively
at certain spatial locations [“place” cells (O’Keefe and Nadel,
1978)], it is expected that they are activated sequentially while the

animal moves about in a structured environment (Wilson and
McNaughton, 1994; Skaggs and McNaughton, 1996; Brown et al.,
1998; Zhang et al., 1998). During sleep, on the other hand, there
is no external perceptual reference or motor behavior to drive
hippocampal cells. Therefore, if recurring spike sequences are
present during sleep, they are likely to be internally generated. In
a previous study, Pavlides and Winson (1989) examined pairs of
putative pyramidal cells recorded by the same single wire. When
one of the neurons in the pair was activated by confining the rat
to the spatial field of the unit, the firing rate of the neuron during
the subsequent sleep epoch increased relative to that of its pair. A
more recent study, however, failed to confirm the relationship
between firing rates in the awake and sleeping rat (Wilson and
McNaughton, 1994). On the other hand, neuron pairs, which
represented similar parts of the environment in the awake rat and
therefore fired together during exploration, showed an increased
correlation in their firing during the subsequent slow-wave sleep
episode compared with the preceding sleep episode (Wilson and
McNaughton, 1994; Skaggs and McNaughton, 1996). Pairwise
cross-correlograms, however, are not sufficient to analyze the
exact temporal structure of more than two cells (Hampson et al.,
1996; McNaughton et al., 1996; Moore et al., 1996; Quirk and
Wilson, 1998).

Here we examined the spatiotemporal firing patterns of hip-
pocampal CA1 principal neurons in awake and sleeping rats.
Spatiotemporal sequences of spike patterns were detected either
by a template-matching method or by the joint probability map-
ping of spikes. The results indicate that repeating spike sequences
are present in both the awake and sleeping animal in excess of
what is predicted by random coincidences. Furthermore, the spike
sequences observed in the behaving rat were “replayed” at a
faster timescale during sharp-wave bursts of slow-wave sleep.

Parts of this paper have been published previously (Nadasdy et
al., 1996, 1997, 1998).
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MATERIALS AND METHODS
The surgical procedures, electrode implantation, and spike sorting have
been described in detail previously (Csicsvari et al., 1999). Briefly, wire
tetrodes or silicon electrode arrays were implanted in the CA1 pyramidal
layer of 18 Sprague Dawley rats. Electrical activity was recorded while
the rat was in its home cage followed by exploration. Six rats were trained
to run in a wheel for a water reward (Czurko et al., 1999). The apparatus
was a 30 3 40 3 35 cm box with a glass front wall. The running wheel
(10 cm wide; 29.5 cm in diameter) was attached to the side of the box. A
drinking tube protruded from the back wall of the box 5 cm above the
floor. Five to 20 turns of the wheel triggered an acoustic “go” signal,
which indicated the availability of the water reward (Czurko et al., 1999).
After the task is learned, the behavior is stereotypic: running in the
wheel, approaching the waterspout, drinking, and returning to the wheel.
In the trained rats, electrical activity was recorded during sleep in the
home cage (session 1), followed by wheel running in an identical wheel-
running apparatus but in a different spatial location of the room (session
2) and a second recording session during sleep (session 3). Units were
separated on the basis of their spike amplitude and waveform using
principal component analysis and spatial clustering (Wilson and Mc-
Naughton, 1994; Nádasdy et al., 1998; Csicsvari et al., 1999). Only
pyramidal cells with clear cluster boundaries and .2 msec refractory
periods were included in the analyses (Fig. 1). For the extraction of
sharp-wave (SPW) ripple events during sleep, the wide-band recorded data
were bandpass filtered digitally (150–250 Hz). The power (root mean

square) of the filtered signal was calculated, and the beginning, peak, and
end of individual ripple episodes were determined. The threshold for ripple
detection was set to 7 SDs above the background mean power (Csicsvari et
al., 1999). u epochs were detected by calculating the ratio of the u (5–10 Hz)
and d (2–4 Hz) frequency bands in 2.0 sec windows. A Hamming window
was used during the power spectra calculations.

Neuronal spike times of simultaneously recorded neurons are referred
to as the “parallel spike train.” For the detection of invariant temporal
structures of spikes from parallel spike trains, two different methods were
used: (1) the template-matching method and (2) the joint probability map
method. Complex-spike bursts [,6 msec interspike intervals (Ranck,
1973)] were regarded as single events, represented by the time of the first
spike.

The template-matching method
The template-matching method was a modified version of the “sliding-
sweeps” algorithm introduced by Gerstein and colleagues (Dayhoff and
Gerstein, 1983; Abeles and Gerstein, 1988; Frostig et al., 1990a). The
search for repeating spike sequences was performed within a specific
time window, denoted as the template window w (Fig. 1d). The 0 point
of a w time window was assigned to a spike of the selected reference
neuron. The temporal positions of c spikes, detected from the spike train,
within the w time window were considered as a template. The T template
was represented by a temporal vector of p neurons and t spike positions
relative to the t(0) reference spike and the c 2 1 co-occurring spikes from

Figure 1. Spike sequence extraction methods. Panel a, Unit activity was recorded simultaneously from multiple tetrodes. Filtered recordings from a
single tetrode are shown (Ch1–Ch4 ). Panel c, Spike sorting resulted in 4–8 neurons/tetrode. Panel b, Superimposed waveforms of a single cell are shown.
Panel d, The parallel spike train (vertical tics; cells 0–4) was analyzed by a sequence-search algorithm for repeating spike sequences. All possible
sequences were considered as a template. The duration of the template window (w) was typically 200 msec. The tolerance of spike match (spike window;
dt) was 10 or 20 msec. Neur, Neuron. Panel e, Spike sequences of neurons a–d are represented as spatiotemporal vectors. For graphical illustrations,
repeating sequences are superimposed in subsequent figures. Panel f, The significance of sequence repetition was tested by Monte Carlo statistics. Panel
g, Spike triplets were also detected by the JPM method. The distribution of spike triplets (a, b, c; Dtab, Dtac) within the w time window was investigated
by constructing a joint peri-event time histogram. A difference map (Dij) was created by subtracting chance combinations, as predicted by the
corresponding spike doublets, from the joint peri-event time histogram. The pixels of the difference map (JPM) represent the probability of observing
a given triplet.
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the other spike trains: T 5 ( pi; tj). Here pdenotes the different cells as
p 5 ( pi, . . . , pn), where n is the number of parallel-recorded cells, and
t 5 (Dtj, . . . , Dtc21) denotes the corresponding intervals between the
initial spike and subsequent spikes where Dtc21 # w. Next, the template
was shifted to successive spikes of the reference neuron throughout the
recording session, and recurrences of the T template were counted.
During the search, each spike sequence was considered as an exemplar
and compared with the T template sequence. A match between the
template and the exemplar was counted when spikes occurred within a
predetermined time window dT (or spike jitter; Fig. 1d). The spike time
window (dT ) was set at 10 or 20 msec in most searches because in
preliminary experiments the best separation between the real spike train
and shuffled spike trains was observed using 10–20 msec spike windows
(dT was varied between 2.5 and 20 msec; n 5 2 rats). In each search, the
template window (w) and the spike window (dT ) were set by the exper-
imenter. The template window was typically set to 200 msec (Fig. 1d).
The dependent variables of the search were the number of spikes in a
given template (sequence complexity), the number of different sequences
(m), and the number of repetitions of a given sequence (r). During the
search, every spike was considered as a part of a template sequence of c
complexity, each template occurred at least once, and the entire spike
train was searched exhaustively by templates. The sequences were visu-
alized as temporal vectors (Fig. 1e).

The statistical significance of the observed repetition of spike se-
quences was assessed by comparing the repetition of the original se-
quences (rorig) with the repetition of the pseudorandom sequences (rrnd)
generated by spike shuffling. The null hypothesis was that the statistical
distribution of rorig is equal to that of rrnd. We reasoned that if rrnd of
every possible sequence in 100 simulated spike trains is smaller than the
rorig, the null hypothesis can be rejected with p , 0.01 probability (Fig.
1f ). In these comparisons, we assumed that in a shuffled parallel spike
train with the same first-order statistics (firing rate and population
covariance) as the original spike train, the number of repeating spike
sequences should reflect chance occurrences. Spike shuffling thus served
to eliminate the temporal correlation generated by an assumed biological
mechanism. Four randomization procedures were applied.

Within-spike-train random shuffling. Interspike intervals, derived from
the original spike trains, were exchanged between two pseudorandomly
selected positions from the first to the last interspike interval, and this
procedure was iterated (Fig. 2b). Within-spike-train shuffling preserves
the average firing rates of individual cells. However, it can eliminate
population synchrony among the simultaneously recorded spike trains,
present during u and sharp-wave patterns.

Temporal displacement of spikes. This procedure is similar, in principle,
to the within-spike-train shuffling. However, in this procedure spikes
were displaced temporally by adding a pseudorandom interval from 0 to
50 msec. This range was used because this temporal displacement was
small enough to preserve population synchrony during both u and sharp
waves (Fig. 2c).

Across-spike-train shuffling. Each spike of the spike trains was assigned
to a pseudorandomly selected cell (Fig. 2d). As a result, the population
level modulation of the firing rate in the surrogate spike trains remained
the same as in the original spike train. A caveat of this procedure is that
the differences in discharge frequencies of individual spike trains, which
may be present in the original spike trains, are reduced as a result of
spike shuffling across trains.

u phase-invariant shuffling. This procedure preserved the periodic mod-
ulation of discharge frequency both within and across the spike trains
(see Fig. 5a). First, the peaks of the field u waves were identified. Second,
the spike times were converted to phases of the u cycle (Csicsvari et al.,
1999). Third, the phase-encoded spikes within a given u cycle were
exchanged with other pseudorandomly selected cycles within the same
spike train.

Joint probability map method
Repeating spike triplets were detected by the joint peri-event time
histogram method (JPTH) (Aertsen et al., 1989). The construction of a
joint peri-event time histogram was restricted to spike triplets co-
occurring within a w time window. The histogram displayed the repeti-
tion of the same triplet at all interspike intervals. First, all possible
n!/(n 2 3)! variations of temporal orders of triplets were determined,
where n is the number of parallel spike trains. All triplets T 5 ( p1, p2, p3;
Dt1, Dt2) with Dt1 , Dt2 and w $ Dt2 were registered and represented as
pixels in a two-dimensional coordinate system at Dt1 and Dt2 as x and y
coordinates, respectively. For the estimation of the spurious occurrence

of triplets, the cross products of the (neuron1 neuron2), (neuron1 neu-
ron3), and the (neuron2 neuron3) cross-correlograms were constructed
and normalized by the total number of observed triplets (Fig. 1g). The
histogram of expected triplets was subtracted from the histogram of
observed triplets, resulting in a histogram of unexpected triplets [differ-
ence map or joint probability map (JPM)]. Each pixel of the JPM was
tested with the Fisher’s exact probability test (Frostig et al., 1990a,b). To
reduce the error inherent in repeated comparisons, the exact probability
was multiplied by the number of pixels of the JPTH. The difference map
is referred to as the JPM. Similar JPMs were constructed also from all
shuffled surrogate trains. In the next step, the incidences of significant
pixels in the JPM of the original and shuffled trains were compared
statistically. Again, we assumed that if the number of significant triplets
in 100 simulated spike trains is smaller than the observed number of
triplets in the original spike train, the null hypothesis can be rejected
with p , 0.01 probability. Because of the behavior-dependent time
compression of spike sequences (see Results), the temporal information
between spikes was discarded for this analysis.

Clustering artifacts
The reliable identification of spikes with individual neurons is a prereq-
uisite for sequence detection. False clustering can cause the dispersion of
single-unit activity to different clusters, and the spike train will be
erroneously decomposed to different spike trains. A potential source of
false clustering is the amplitude variation of extracellular units (Quirk
and Wilson, 1998). As a consequence, temporal regularities of action
potentials of a single neuron would lead to spuriously recurring multiple-
unit spike sequences in parallel spike trains. The potential contribution
of such an artifactual cause of the repeating spike sequences was tested
by dividing the original clusters into small-amplitude and large-
amplitude subclusters. As a result, the firing rate was reduced by 50% in
each of the newly created trains. According to the formula of Abeles and
Gerstein (1988), the number of spurious spike sequences should decrease
exponentially as a function of spike count. In contrast, we found that the
number of different sequences and the number of recurring sequences
decreased only slightly less than one-half, indicating that spike amplitude
variation cannot account for the repeating spike sequences. It is impor-
tant to emphasize that only well-identified spike clusters with clear
boundaries and refractory periods (Csicsvari et al., 1999) were included

Figure 2. Spike-shuffling methods. Panel a, Original parallel spike train.
Three repetitions of the same spike sequence (0, 1, 2, 3) are shown. Panel
b, Elimination of temporal correlation between the spikes by shuffling the
interspike intervals (ISI ) within each spike train. Gray tics indicate the
original spikes. Panel c, Spike displacement. Spikes of the original spike
train ( gray tics) are randomly shifted in time by 0–50 msec (Dt; black tics).
Although the interspike intervals may change somewhat by this method,
the field modulation of the neurons is better preserved. Panel d, Shuffling
of spikes across spike trains. This method preserves population modula-
tion of spike timing but may reduce firing-rate differences between the
original spike trains. A fourth method (phase-invariant spike shuffling) is
illustrated below (see Fig. 5).
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in this study. In another approach, spikes that were part of the detected
spikes sequences were highlighted in the original unit clusters. The
rationale of this approach was that if spike sequences result as a conse-
quence of poor clustering, spikes of the detected sequences should either
reside near the cluster borders or coincide with small-amplitude spikes.
This backprojection method, however, clearly revealed that spikes that
were part of sequences were evenly distributed in the cluster clouds of
spikes.

Computation
The sequence search, spike train shuffling, and the Monte Carlo statistics
were run on an IBM SP2 scalable parallel computer with six nodes of
RS/6000, 120 MHz P2SC processors (IBM, White Plains, NY), on a
Silicon Graphics Onix2 with a 120 MHz MIPS R10000 processor (Silicon
Graphics, Mountain View, CA), and on a Sun Enterprise with two
UltraSPARC processors (Sun Microsystems, Palo Alto, CA). Identifica-
tion of repeating spike sequences in a 10-min-long file, containing five
parallel spike trains, typically required 175 min (Onix2) or 12.5 hr (SP2)
of central processing unit time. The complete hypothesis testing of a
single data set, including the generation of 100 surrogates and the
sequence search, required 175 3 101 5 17,675 min (294.6 hr or ;12 d)
on the Onix2.

RESULTS
The most prominent slow-wave sleep pattern in the hippocampus
is an irregularly occurring population burst of pyramidal cells,
associated with an SPW in the stratum radiatum and fast (150–
200 Hz) field oscillation in the pyramidal layer of the CA1 region.
Population activity of pyramidal cells between SPW events is
relatively quiescent (Csicsvari et al., 1999). The long-term firing
rates of pyramidal cells were similar during u (1.4 3 0.10 Hz) and
non-u (1.4 3 0.09 Hz) behaviors. However, during SPW events,
the firing rates of pyramidal cells increased by sevenfold (Csics-
vari et al., 1999).

First, we examined whether participation of pyramidal neurons
in SPW bursts is stochastic. On average, a pyramidal cell partic-
ipated in 15% of successive SPWs. The probability of participa-
tion of individual neurons, however, varied extensively (2–40%;
Fig. 3A). In other words, some pyramidal cells discharged consis-
tently more reliably during SPW bursts than did others. The
participation probability of a pyramidal neuron during SPW could
be predicted from the firing rate of the cell during u activity in
rapid-eye-movement (REM) sleep (r 5 0.59; p , 0.0001; Fig. 3B).
These findings indicated that participation of pyramidal cells in
the SPW event is not random and that the probability of their
discharge in SPW correlates with the discharge frequency during
u behaviors.

Spike sequences in the awake and sleeping animal
The database for spike sequence analysis consisted of 10 sets of
parallel-recorded spike trains of physiologically identified pyra-
midal neurons (n 5 4–13 cells) from six rats. Repetition of spike
sequences was observed in every animal investigated (Fig. 4).
Sequences were detected from neurons recorded from both a
single tetrode and neighboring tetrodes. Spike trains of larger
numbers of simultaneously recorded cells yielded more se-
quences, but spike sequences could be identified reliably in
records containing as few as four neurons. As expected, a large
number of repeating spike patterns were observed in the wheel-
running behavioral task, especially when two or more of the
recorded pyramidal cells were selectively activated in the wheel
(Czurko et al., 1999) (Fig. 4b). Importantly, repeating spike
sequences were also present during sleep, when no external
reference or motor behavior was available to generate repeating
discharge sequences (Fig. 4a). The fraction of repeating spike
sequences (r $ 2) and single (nonrepeating) patterns varied from

8 to 56%. The exact percentage depended on the choice of
sequence-search parameters (time window and spike jitter).

The number of repeating spike sequences detected also de-
pended on the reference (sequence “initiator”) neuron (Fig. 4).
The inequality of the number of repeating sequences for different
initiator neurons indicated that the sequences may reflect biolog-
ical mechanisms because, in a random parallel spike train, spikes
of a given neuron are expected to precede and follow spikes of
other neurons with equal probability regardless of the firing rates.
To examine further whether the repeating spike sequences re-
flected cellular interactions or simply Poisson coincidences of
random events (Abeles and Gerstein, 1988), we compared the
original spike trains with their shuffled surrogates.

Figure 3. Relationship between the firing rate during u behavior and the
probability of spike participation in SPW. A, Probability of discharge of
single pyramidal neurons in SPW events. Note that the majority of
pyramidal neurons discharge ,15% of all recorded SPWs. B, Relation-
ship between the firing rate during u and the probability of discharge
during SPW events. Note that increased discharge rate during u predicts
a higher incidence of participation in SPWs.
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The incidence of repeating spike sequences during wheel run-
ning was compared with surrogate trains obtained by each of the
four shuffling methods (n 5 1 rat). The number of repeating
sequences extracted from the original spike train exceeded the
number of repeating sequences present in each of the 100 surro-
gate trains. Comparison between the original spike train and its u
phase-corrected shuffled surrogates (see u phase-invariant shuf-
fling in Materials and Methods) is illustrated in Figure 5. The u
phase-corrected shuffling procedure preserved the phase relation-
ship between u and the individual spikes, therefore reproducing
the population dynamics of the parallel spike train as revealed by
the identical u phase-locked modulation and the similar cross-
correlograms of both original and shuffled spikes (Fig. 5b,c). This
procedure also preserved the within-spike-train dynamics of sin-
gle neurons, as indicated by the similar autocorrelograms of the
original and shuffled spike trains (Fig. 5d). Comparison of repeat-

ing spike sequences indicated that the number of repeating spike
sequences (r) was less for all sequences (m) in any of the 133
shuffled surrogates compared with the original spike train (Fig.
5e). Of the various shuffling methods, across-spike-train shuffling
resulted in the most spike sequence repetitions; therefore it may
be regarded as the most rigorous test. Figure 6 illustrates the
difference between repeating spike sequences obtained from
the original parallel spike trains recorded from five rats and the
Monte Carlo surrogates of those recordings (100 shuffled trains in
each case). Shuffling was performed across spike trains for these
tests because the spike trains contained both u and non-u epochs
(see Across-spike-train shuffling; Fig. 2). For a given spike se-
quence (c), the number of spike sequences (m) that recurred at
least rmin number of times was determined, and the average of the
actual repetitions (r1, r2, r3, . . . , rn) was calculated. In all five
cases, the number of repeating spike sequences in the surrogates
was less than that in the original parallel spike trains ( p , 0.01)
in the entire range of ms–s.

A second method used for the evaluation of repeating spike
sequences was the JPM. In contrast to the template-matching
method, the complexity of the spike sequence was limited to three
in this analysis. On the other hand, the JPM detected all se-

Figure 4. Examples of the spike sequences during sleep ( a) and running
( b) sessions, detected by the template-matching method. Only spike
sequences of neurons, recorded by a single tetrode, are shown. The sleep
session preceded the run session. The sequence initiator neuron is indi-
cated by arrows. Recordings during sleep and running sessions were
obtained from a single rat. The spike window (dt) was set to 10 msec in
these searches. Different colors indicate different patterns. The gray lines
in b, top, indicate all nonrepeating (single) sequences for comparison. Cell
numbers refer to the same cells within the same behavioral category. m,
Number of different sequences; r, number of repetitions of a given
sequence. Also see: FTP://speedy2.md.huji.ac.il /pub/neuron.mid.

Figure 5. Comparison of repeating spike sequences in a parallel spike
train, recorded during wheel running, with its shuffled surrogates. a, Peaks
of u oscillation were taken as a reference point, and the spike timing was
converted to phase values within the u cycle. During shuffling, sets of
spikes within a given u cycle were transposed randomly (arrows). b,
Phase-normalized spike density histograms during the u cycle are shown.
c, Cross-correlogram between the negative peaks of local u and unit
discharges is shown. d, Spike autocorrelograms of units are shown. Note
the similar spike dynamics in the original and shuffled spike trains. e,
Repetition curves of spike sequences in the original spike train and in its
shuffled surrogates are shown.
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quences of spike triplets within a predefined time window (w),
regardless of the specific temporal position of spikes (Fig. 1g). The
distribution of repeating spike triplets was visualized as cumula-
tive values in the bins of a joint peri-event histogram (Fig. 7a).
Cross-correlation histograms for spike doublets were also calcu-
lated (Fig. 7b), and the expected co-occurrences of the corre-
sponding spike doublets (i.e., random triplets) were subtracted
from the observed distribution of triplets, resulting in a histogram
of unexpected triplets (JPM, Fig. 7c; see Materials and Methods).
The statistical significance of the difference between the observed
and expected spike triplets was calculated by the Fisher’s exact

probability test. In the example shown in Figure 7a–d, a high
incidence of triplets occurred at the temporal positions between x
values of 50 and 80 msec and y values of 150 and 190 msec (e.g.,
3, 2, 0; 50, 180 msec). The Fisher’s exact probability test indicated
three significant ( p , 0.02) triplet positions in the corresponding
pixels [(3, 2, 0; 50, 182 msec), (3, 2, 0; 64, 173 msec), and (3, 2, 0;
72, 154 msec)]. Importantly, these time patterns were similar to
the repeating spike sequences detected independently by the
template-matching method from the same data set (Fig. 7d).

To examine the null hypothesis that significant spike triplets
are generated by random coincidences, 100 JPMs were created
from the shuffled surrogates and compared with the original data
sets shown in Figure 6. In these shuffling tests, the temporal-
displacement-of-spikes procedure was used to ensure that shuf-
fled spike trains have the same average firing rates and the same
joint probability as the original data. Spikes were displaced in
time by adding random intervals from 0 to 50 msec (see Temporal
displacement of spikes; Fig. 2). For each of the original and the
corresponding surrogate trains (total of 505 data sets), three
separate JPMs were created, using 5, 6.7, and 10 msec bins. The
number of repeating spike triplets in the original data sets was
significantly larger than that in the shuffled correlates in every rat
at the 6.7 and 10 msec bins (Fig. 7e). At 5 msec, more spike
triplets were detected from the shuffled spike trains in two ani-
mals than in the original spike trains ( j0-08 and k9-02). However,
the differences were not significant for either of the two animals.

Behavioral modification of spike sequences
Next, we addressed the issue whether behaviorally imposed se-
quences can modify the probability of occurrence of those same
sequences during subsequent slow-wave sleep. In two rats, stable
recordings from the same neurons were obtained during Sleep1,
Run, and Sleep2 sessions (Fig. 8). The similarity of spike se-
quence structure between any two states was tested in two steps.
First, the significant triplets at all possible temporal positions
were identified by the JPM method in each state. Second, the
number of shared repeating spike sequences in different states
was calculated, regardless of the exact temporal position of the
spikes. For example, if the sequence 2;1;4 had significant pixels at
any interspike intervals during the Run but not during the Sleep1
session, then it was not a common triplet between Run and
Sleep1. However, if the triplet 2;1;4 was significant at 3 and 15
different temporal positions (pixels) during Run and Sleep2 ses-
sions, respectively, then it was a common triplet. In the first rat, 13
pyramidal cells were recorded (Fig. 8). Only 87 of the 1716
possible triplets (5%) were common to both Sleep1 and Run
sessions (Fig. 8a). In contrast, 160 triplets (9%) were observed in
both Run and Sleep2 sessions (Fig. 8b; x2 5 21.58; p , 0.01). In
addition, the number of significant pixels of common triplets
correlated significantly between Run and Sleep2 sessions (Pear-
son r 5 0.737; p , 0.001). In contrast, during the Run session,
triplet incidences during Sleep1 were independent from those in
Run and Sleep2 sessions (Pearson r 5 0.393; r 5 0.326; p . 0.05).
In the second rat four pyramidal cells were recorded in all three
sessions. In this animal, statistically significant spike triplets com-
mon to two testing conditions were detected only between Run
and Sleep2 sessions (Pearson r 5 0.679; p , 0.001).

Both the template-matching and the JPM methods indicated
that the majority of spike sequences were either ,50 or .100
msec. In general, short sequences dominated in slow-wave sleep,
whereas the longer sequences occurred in the awake animal or
REM sleep (e.g., Fig. 4a,b). To quantify this observation, we

Figure 6. Comparison of repeating spike sequences in real spike trains
(original) and their shuffled surrogates. a–e, Data from five different rats.
The y-axis indicates the number of different sequences (m), and the x-axis
indicates the average number of repeating sequences ( r); e.g, 50 different
sequences were repeated 16 times on average in rat k12-30 ( panel c). Note
that the repetition rate in the original spike train is higher than that in any
of the 100 shuffled surrogates ( p , 5 0.01). In these comparisons,
shuffling was done across spike trains. Rats are identified in each top right
corner.
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Figure 7. Spike triplets detected by the JPM method. a, The JPTH of a spike triplet (3, 2, 0). Summed pixels in the x- and y-axes are also shown. b,
“Expected” JPTH, constructed on the assumption that triplets are random coincidences of spike doublets (see Materials and Methods). c, The excess
number of triplets expressed as the difference between the observed and expected JPTHs. Significant pixels (Fisher’s exact probability test) are f ramed
in boxes. d, Vector representation of 3, 2, 0 sequences extracted by the template-matching method. Note that the latencies of the triplets match the
significant pixels in the JPM. e, JPM maps constructed using three different pixel sizes (5, 6.7, and 10 msec) from the original and 100 shuffled surrogates
(same original data sets shown in Fig. 6). The number of significant pixels in the surrogate JPMs is expressed as a percentage of the significant pixels
in the original JPM. Color bars, Number of events.
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examined the EEG correlates of repeating spike sequences. The
independent variable in these tests was the length of the spike
sequences, irrespective of the behavioral state of the rat. Spike
sequences of the same pyramidal cells and temporal order were
selected and subdivided into two groups, one with sequence
termination ,50 msec and one with termination .100 msec, and
the power spectra of their associated background field activity
were compared. Two different epochs were extracted from the
EEG. The shorter epochs (204.8 msec before the first spike of the
sequence) provided a more precise estimate of the exact EEG
state, whereas the longer ones (2819.2 to 2457.6 msec) were used
to assess the EEG power at lower frequencies. For these compar-
isons, spike sequences common to u and SPW states were used.
Power spectra, calculated from the short and long EEG epochs
(0–300 and 0–20 Hz, respectively), revealed that short spike
sequences were associated with a significant peak at 140–200 Hz
(Fig. 9b), corresponding to field “ripples” in the EEG (Buzsbki et
al., 1992). Conversely, the long spike sequences were associated

with increased power at u frequency (Fig. 9a). These findings
suggested that sequences associated with u behavior were re-
played during SPW-associated ripples in a time-compressed
manner.

DISCUSSION
Quantification of repeating spike sequences
The template method and the JPM detected similar spike se-
quences. Nevertheless, a critical issue that must be addressed is
whether the repeating spike sequences were generated by biolog-
ical mechanisms or emerged simply as a result of random coinci-
dences of spike trains. The reliability of the Monte Carlo test

Figure 8. Spike sequences during sleep are influenced by previous wheel-
running behavior. Histograms of significant triplets common to Sleep1
and Run sessions ( a), to Run and Sleep2 sessions ( b), and to Sleep1 and
Sleep2 sessions ( c). A sequence was considered to be “common” if it was
significant by the JPM method (Fig. 7) in both behavior sessions regard-
less of the interspike intervals (e.g., 4-1-2 at 50 and 80 msec and at 5 and
8 msec). Individual triplets are listed on the x-axis. The upward and
downward bars at any given location on the x-axis indicate the number of
significant pixels of the JPM of a common triplet in the two sessions,
respectively. Note that there were almost twice as many triplets common
to Run and Sleep2 sessions than to Sleep1 and Run sessions. The r values
(Pearson’s product moment correlation coefficient) indicate the correla-
tion of the number of common triplets between the respective two
sessions.

Figure 9. Long and short repeating spike sequences are associated with
u and ripple field activity, respectively. The power spectra of background
field activity, associated with short and long sequences, were compared.
The first spike of the same long (termination . 100 msec; n 5 47) or short
(termination , 50 msec; n 5 78) spike sequences was regarded as the
reference event for extracting field EEG information. a, EEG power in
the low-frequency band surrounding long (solid line) and short (interrupt-
ed line) repeating spike sequences. Note the increased u power during
long sequences. b, EEG power in the ripple frequency band (100–200 Hz)
surrounding long and short repeating spike sequences. Note the large
power peak at 160 Hz during short sequences. Insets, Long (in a) and
short (in b) sequences of the same neurons. Note the difference in
timescale; short sequences are shown at an enhanced timescale.

9504 J. Neurosci., November 1, 1999, 19(21):9497–9507 Nádasdy et al. • Spike Sequences in the Hippocampus in vivo



depends critically on the choice of the proper shuffling method.
The ideal shuffling protocol should maintain the discharge fre-
quency of individual spike trains and should not alter the popu-
lation dynamics of the parallel-recorded neurons. Because none
of the known shuffling methods are universally applicable in all
situations, we used four different shuffling protocols.

If the dynamics of cortical neurons could be described by a
Poisson process (Bair and Koch, 1996; Shadlen and Newsome,
1998), then within-spike-train randomization of spike occur-
rences would be appropriate because this procedure does not
alter the average firing rate of the individual neurons. Unfortu-
nately, random shuffling within the same spike train (see Within-
spike-train random shuffling) may alter the population dynamics
of the parallel spike trains. This issue is very important, because
population synchrony of hippocampal pyramidal cells varies with
behavior and their dynamics do not follow simple Poisson statis-
tics (Csicsvari et al., 1999). Random shuffling across spike trains
(see Across-spike-train shuffling) preserved the population dy-
namics. However, this method tends to equalize the firing-rate
differences of individual neurons relative to the original spike
trains. This may be important because the number of repeating
spike sequences in random spike trains varies with discharge
frequency (Abeles and Gerstein, 1988). To retain both population
behavior and firing-rate changes, two additional shuffling proto-
cols were used. The temporal displacement method (see Tempo-
ral displacement of spikes) shifted spikes randomly within a 50
msec time window with the goal of retaining the population
synchrony across spike trains during both u waves and SPWs. The
phase-invariant shuffling method (see u phase-invariant shuffling)
preserved spike dynamics both within and across spike trains.
Regardless of the shuffling method used, excessively repeating
spike sequences were found in each of the parallel-recorded spike
trains. Furthermore, the number of different sequences, the num-
ber of repeating spike sequences, and the number of spikes within
a given sequence (complexity) varied even within the same data
set depending on the neuron that served as a sequence initiator.
Finally, the discharge probability of pyramidal cells in SPW
varied substantially from cell to cell. Together, these observations
indicate that the observed spike sequences cannot be accounted
for fully by random coincidences of neuronal discharges of hip-
pocampal cells.

Externally controlled and internally generated
recurring spike sequences
Spike sequences were observed in both the awake and sleeping
animal. The spatially distributed pattern of temporally precise
single pyramidal neuron spikes during sleep could be a conse-
quence of some hard wiring (Hampson et al., 1996) or may reflect
synaptic changes as a result of learning in the awake animal
(Wilson and McNaughton, 1994; Mehta et al., 1997). We hypoth-
esized previously that the behavior-dependent electrical changes
in the hippocampal formation (u- and SPW-associated states)
might subserve a two-stage process of information storage
(Buzsáki, 1989). Mnemonic information is assumed to be en-
coded in the recurrent and Schaffer collateral synapses of CA3
pyramidal cells during u-associated learning behavior. When the
network state of the CA3 matrix switches to SPW bursts during
consummatory behaviors and slow-wave sleep, synaptic connec-
tions that were active during the learning state are spontaneously
reactivated. Rapid reinstatement of the spatiotemporal patterns
of pyramidal cell activity in the CA3–CA1 regions and deep
layers of the entorhinal cortex (Chrobak and Buzsaki, 1994, 1996)

is hypothesized to transfer the stored representations in the
hippocampus to neocortical networks (Buzsáki, 1989; Wilson and
McNaughton, 1994; McClelland et al., 1995; Siapas and Wilson,
1998). Consistent with this speculation, the probability of SPW-
associated discharge of pyramidal neurons correlated with the
discharge frequency of these neurons during u behavior. In addi-
tion, spike sequences that were observed in the wheel-running
task were observed in the subsequent slow-wave sleep episode at
a higher probability than during sleep before the wheel-running
session. These findings support and extend observations by Wil-
son and McNaughton (1994) and Skaggs and McNaughton (1996)
[but see also Hampson et al. (1996); McNaughton et al. (1996);
Moore et al. (1996)], who found that cell pairs with overlapping
place fields had an increased correlation during subsequent sleep.
Our findings also demonstrate that sleep-associated replay of the
sequences observed during u behavior are mainly confined to
SPW bursts. It was demonstrated previously that the correlation
between cell pairs is significantly increased during SPW (Wilson
and McNaughton, 1994). However, such increased correlation
may be a spurious consequence of an increased firing rate during
SPW (Csicsvari et al., 1999). In the present study, the SPW-
associated time compression of spike sequences was demon-
strated by the correlation between the occurrence of short se-
quences and increased power at the ripple frequency. The effect
of increased discharge rate on the probability of sequences during
SPW was reduced or eliminated by shuffling across spike trains.
These observations support the suggestion that time-compressed
neuronal patterns during SPW bursts are generated within the
hippocampus and are a consequence of firing patterns in the wake
brain (Buzsáki, 1989; Chrobak and Buzsaki, 1994; Bibbig et al.,
1995; Hinton et al., 1995; McClelland et al., 1995; Skaggs and
McNaughton, 1996; Wallenstein and Hasselmo, 1997; Menschik
and Finkel, 1998; August and Levy, 1999). It may be argued that
both the slow and fast sequences were imposed onto the hip-
pocampal circuitry by the entorhinal input; thus the hippocampus
does not play an active role in generating endogenous repeating
spike sequences. This possibility is not likely because during sleep
SPW bursts are initiated in the CA3 region of the hippocampus
(Buzsáki, 1989). In fact, the incidence of SPWs increases dramat-
ically after entorhinal cortex lesion (Bragin et al., 1995).

Physiological role of spike sequence replay
What is the physiological importance of the recurring spike se-
quences (Lisman, 1998)? In a weaker formulation of the replay
hypothesis, the exact sequence of neuronal firing is not critical.
What is important is that neurons, which discharge in a tempo-
rally discontiguous manner during u behavior and possibly en-
code different representations, are brought together during SPW
on the timescale of the time constant of NMDA receptors. From
this perspective, the function played by the time-compressed
replay of the active neurons in the awake animal is to ensure
Hebbian modification among pyramidal cells, which did not dis-
charge together within the critical time window of synaptic plas-
ticity during learning but nevertheless carry related information.
For example, during spatial behavior, various place cells are
activated as the animal explores its environment (O’Keefe and
Nadel, 1978). Because the same spatial position can be ap-
proached from various directions, hence associated by the activa-
tion of different neuronal sequences, most neurons do not dis-
charge together in time. During SPW bursts, these same neuron
sets may be endogenously reactivated within the time constant of
the NMDA receptors, providing an opportunity for Hebbian
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synaptic modification of the recurrent and Schaffer synapses of
the CA3 pyramidal cells.

Alternatively, one can argue that the replay of spike sequences
is critical for the activation of relevant target neurons downstream
from the hippocampus (Chrobak and Buzsáki, 1996; Siapas and
Wilson, 1998). This model assumes the existence of neuronal
mechanisms for decoding spike sequences with ripple frequency
(5 msec) resolution both within the hippocampus and in its
targets. Recent works on individual pyramidal neurons and their
network interactions suggest that pyramidal cells are equipped
with intrinsic oscillatory properties (Llinás, 1988; Leung and
Yim, 1991; Kamondi et al., 1998) and are embedded in an
oscillatory network of interneurons (Buzsáki and Chrobak, 1995;
Whittington et al., 1995). Within these oscillatory patterns, the
ratio of excitation and inhibition can vary substantially (Rudell et
al., 1980; Buzsáki et al., 1981; Csicsvari et al., 1999). We hypoth-
esize that the oscillatory network of neuronal assemblies may
provide “temporal windows of opportunity” to ignore or enhance
selectively the effectiveness of presynaptic activity. As a result,
individual spikes of a given spike sequence, as shown here, could
exert a differential impact on their postsynaptic targets, depend-
ing on the relationship between the spike and network activity.

Finally, it should be emphasized that the time-compression
effect is caused by the population dynamics of the hippocampal
network and that its mechanism is orthogonal to the formation of
spike sequences. During SPW bursts, the discharge probability of
pyramidal neurons increases several-fold (Csicsvari et al., 1999),
independent of whether a neuron is part of an observed spatio-
temporal spike sequence or not. Nevertheless, temporal coactiva-
tion of neurons, brought about by SPW bursts, is expected to
strengthen their synaptic weights. Direct demonstration of SPW-
induced synaptic changes, however, remains a future challenge.

Note added in proof. While this manuscript was under review, a
paper with relevant content has been published [Barnes CA,
McNaughton BL (1999) Reactivation of hippocampal cell assem-
blies: effects of behavioral state, experience, and EEG dynamics.
J Neurosci 19:4090–4101].
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Kamondi A, Acsády L, Wang X-J, Buzsáki G (1998) Theta oscillations in
somata and dendrites of hippocampal pyramidal cells in vivo: activity
dependent phase-precession of action potentials. Hippocampus
8:244–261.

Laurent G, Wehr M, Davidowitz H (1996) Temporal representations of
odors in an olfactory network. J Neurosci 16:3837–3847.

Leung LS, Yim CY (1991) Intrinsic membrane potential oscillations in
hippocampal neurons in vitro. Brain Res 553:261–274.

Lisman JE (1998) What makes the brain’s tickers tock. Nature
394:132–133.

Lisman JE, Idiart MA (1995) Storage of 7 6 2 short-term memories in
oscillatory subcycles. Science 267:1512–1515.

Llinás RR (1988) The intrinsic electrophysiological properties of mam-
malian neurons: insights into central nervous system function. Science
242:1654–1664.

Marder E, Calabrese RL (1996) Principles of rhythmic motor pattern
generation. Physiol Rev 76:687–717.

McClelland JL, McNaughton BL, O’Reilly RC (1995) Why there are
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Nadasdy Z, Bragin A, Buzsáki G (1996) Repeating spatio-temporal pat-
terns of neuronal activity in the hippocampus during sleep. Soc Neu-
rosci Abstr 22:445.11.

Nadasdy Z, Bragin A, Csicsvari J, Hirase H, Moore K, Buzsáki G (1997)
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