A Novel Persistent Tetrodotoxin-Resistant Sodium Current In SNS-Null And Wild-Type Small Primary Sensory Neurons

Theodore R. Cummins,1,2 Sulayman D. Dib-Hajj,1,2 Joel A. Black,1,2 Armen N. Akopian,3 John N. Wood,3 and Stephen G. Waxman1,2

1Department of Neurology and PVA/EPVA Neuroscience Research Center, Yale Medical School, New Haven, Connecticut 06510, 2Rehabilitation Research Center, Veterans Administration Connecticut Healthcare Center, West Haven, Connecticut 06516, and 3Department of Biology, University College London, London WC1E 6BT, United Kingdom

TTX-resistant (TTX-R) sodium currents are preferentially expressed in small C-type dorsal root ganglion (DRG) neurons, which include nociceptive neurons. Two mRNAs that are predicted to encode TTX-R sodium channels, SNS and NaN, are preferentially expressed in C-type DRG cells. To determine whether there are multiple TTX-R currents in these cells, we used patch-clamp recordings to study sodium currents in SNS-null mice and found a novel persistent voltage-dependent sodium current in small DRG neurons of both SNS-null and wild-type mice. Like SNS currents, this current is highly resistant to TTX ($K_i = 39 \pm 9 \mu M$). In contrast to SNS currents, the threshold for activation of this current is near -70 mV, the midpoint of steady-state inactivation is -44 ± 1 mV, and the time constant for inactivation is 43 ± 4 msec at -20 mV. The presence of this current in SNS-null and wild-type mice demonstrates that a distinct sodium channel isoform, which we suggest to be NaN, underlies this persistent TTX-R current. Importantly, the hyperpolarized voltage-dependence of this current, the substantial overlap of its activation and steady-state inactivation curves and its persistent nature suggest that this current is active near resting potential, where it may play an important role in regulating excitability of primary sensory neurons.

Key words: sodium current; persistent current; dorsal root ganglion; excitability; tetrodotoxin; sensory neuron

Small dorsal root ganglion (DRG) neurons (which include nociceptive cells) are unusual in expressing tetrodotoxin-resistant (TTX-R) sodium currents, in addition to the TTX-sensitive (TTX-S) sodium currents that are present in many neurons (Kostyk et al., 1981). Because of their preferential expression in nociceptive neurons, the channels responsible for these TTX-R currents are of special interest. One TTX-R channel that has been cloned from DRG neurons, SNS (Akopian et al., 1996; Sangameswaran et al., 1996), produces a slowly inactivating sodium current ($t_{\text{inactivation}} \sim 5$ msec for the peak current) with relatively depolarized voltage dependence of activation and inactivation. A second sodium channel, NaN, with a sequence predicting a TTX resistance similar to that of SNS, is also preferentially expressed in small DRG neurons (Dib-Hajj et al., 1998, 1999; Tate et al., 1998).

A recent study on DRG neurons from SNS-null mutant mice demonstrated only TTX-S sodium currents (Akopian et al., 1999). These findings were unexpected in light of the presence of NaN transcript within these cells. The present study revisits this issue and shows that DRG neurons from SNS-null mice (Akopian et al., 1999) express a TTX-R sodium current with novel properties. We also demonstrate that this TTX-R current is present in small wild-type (WT) mouse DRG neurons. The relatively hyperpolarized voltage dependence of activation and inactivation of this current and its persistent nature suggest that it contributes to setting the firing properties of small DRG neurons by modulating their resting potentials and/or thresholds.

MATERIALS AND METHODS

Whole-cell patch-clamp recordings. DRG cultures from L4 and L5 ganglia of WT and SNS-null mice (Akopian et al., 1999) were established as previously described (Cummins and Waxman, 1997). Sodium currents were studied in small (18- to 27-μm-diameter) DRG neurons after short-term culture (6–24 hr); at this time in culture, neurites are not generally present. Whole-cell patch-clamp recordings were conducted at room temperature (-21°C) using an EPC-9 amplifier and the Pulse program (version 7.89). Fire-polished electrodes (0.8–1.5 MΩ) were fabricated from 1.7 mm capillary glass using a Sutter P-97 puller. The average cell capacitance was 21 ± 1 pF (mean ± SE; $n = 55$) for WT and 23 ± 1 pF ($n = 91$) for SNS-null cells. The average access resistance was 2.1 ± 0.1 MΩ for WT and 2.0 ± 0.1 MΩ for SNS-null cells. Voltage errors were minimized using 80% series resistance compensation. The maximum theoretical voltage error was 2 ± 1 mV for TTX-R sodium currents in SNS-null neurons; this and the spherical nature of the cells provided...
RESULTS

Whole-cell patch-clamp recordings demonstrate the presence of fast and slow inactivating voltage-dependent inward currents from the cultured DRG neurons of WT and SNS-null mice with a holding potential of \(-120\) mV (Fig. 1). In the presence of 250 nM TTX in the bathing solution, TTX-R inward currents were recorded from 77% of small WT neurons (24 of 31) and 74% of SNS-null neurons (37 of 50). However, the inward currents were strikingly different in the two groups of cells. The majority of WT neurons (18 of 31) showed slowly inactivating TTX-R currents (which activated between \(-40\) and \(-30\) mV and resemble currents in heterologously expressed SNS channels; see Akopian et al., 1996) together with persistent TTX-R currents (which did not inactivate during the 100 msec depolarization at negative test potentials). Consistent with the conclusion that SNS encodes a slowly inactivating channel (Akopian et al., 1996; Sangameswaran et al., 1996), SNS-null neurons did not express the slowly inactivating TTX-R currents. However, a persistent TTX-R current was clearly present in these cells (Fig. 1d), and the amplitude was as large as 11 nA. This persistent current activated between \(-60\) and \(-70\) mV and peaked at approximately \(-20\) mV (peak amplitude, \(5.0 \pm 0.6\) nA; peak density, \(235 \pm 77\) pA/pF; \(n = 22\)).

Because the persistent TTX-R current was recorded with cadmium in the bath and fluoride in the pipette solution, we suspected that it was a sodium current. Whole-cell recordings of SNS-null cells in the presence of low external calcium (10–50 \(\mu\)M) but high external sodium (140 mM) demonstrated large persistent inward currents in 15 of 25 cells. Increasing external calcium from 50 \(\mu\)M to 1 mM did not increase the size of the current (Fig. 2a; \(n = 4\)). Additionally, when the external medium contained high calcium (1 mM) but zero sodium we did not observe any inward currents activating at negative potentials (\(n = 15\)). We could often observe small inward currents that activated near \(-20\) mV if cadmium was not included in the external solution, but these high-voltage-activated currents could be blocked with 50–100 \(\mu\)M cadmium and appear to be \(L\)-type calcium currents. However, in four of six SNS-null cells tested, the low-voltage-activated (LVA) persistent inward current was revealed in the presence of cadmium when external sodium was increased from 0 to 50 mM (Fig. 2b). Based on these experiments, we conclude that the LVA persistent current that we observe in SNS-null neurons is indeed a sodium current.

The LVA persistent sodium current is only marginally inhibited by 1 \(\mu\)M TTX (6 \(\pm\) 5%; \(n = 6\)), and as shown in Figure 2c, 10 \(\mu\)M TTX inhibited this LVA sodium current in SNS-null neurons by \(<20\%\) (estimated \(K_i\) \(39 \pm 9\) \(\mu\)M; \(n = 5\)). Thus, the LVA current in DRG neurons is highly resistant to TTX, like SNS (\(K_i\) \(\sim60\) \(\mu\)M; Akopian et al., 1996) and unlike the cardiac TTX-R isoform (\(K_i\) \(\sim1–2\) \(\mu\)M; Satin et al., 1992).

Although the TTX resistance of the current in SNS-null DRG neurons is similar to that reported for SNS, its voltage dependence and kinetic properties are quite distinct. As seen in Figure 1d, the TTX-R currents in SNS-null neurons had extremely slow kinetics, with \(\tau_{\text{inactivation}} = 43 \pm 4\) msec at \(-20\) mV (\(n = 18\)). These currents activated at hyperpolarized potentials, with a threshold at approximately \(-70\) mV and a midpoint of activation of \(-47 \pm 1\) mV (\(n = 17\)). The overshoot in the activation curve (Fig. 2d) could be attributable to the presence of multiple TTX-R channels in SNS-null neurons. Alternatively, it could be attributable to a TTX-R channel with complex behavior, such as one that has multiple open states or an inactivated state from which

\[
\frac{\text{Ca}^{2+}}{\text{Ca}^{2+}} \text{inactivating component. A persistent current is expressed in both the WT and a sodium current. Whole-cell recordings of SNS-null cells in the presence of low external calcium (10–50 \(\mu\)M) but high external sodium (140 mM) demonstrated large persistent inward currents in 15 of 25 cells. Increasing external calcium from 50 \(\mu\)M to 1 mM did not increase the size of the current (Fig. 2a; \(n = 4\)). Additionally, when the external medium contained high calcium (1 mM) but zero sodium we did not observe any inward currents activating at negative potentials (\(n = 15\)). We could often observe small inward currents that activated near \(-20\) mV if cadmium was not included in the external solution, but these high-voltage-activated currents could be blocked with 50–100 \(\mu\)M cadmium and appear to be \(L\)-type calcium currents. However, in four of six SNS-null cells tested, the low-voltage-activated (LVA) persistent inward current was revealed in the presence of cadmium when external sodium was increased from 0 to 50 mM (Fig. 2b). Based on these experiments, we conclude that the LVA persistent current that we observe in SNS-null neurons is indeed a sodium current.

The LVA persistent sodium current is only marginally inhibited by 1 \(\mu\)M TTX (6 \(\pm\) 5%; \(n = 6\)), and as shown in Figure 2c, 10 \(\mu\)M TTX inhibited this LVA sodium current in SNS-null neurons by \(<20\%\) (estimated \(K_i\) \(39 \pm 9\) \(\mu\)M; \(n = 5\)). Thus, the LVA current in DRG neurons is highly resistant to TTX, like SNS (\(K_i\) \(\sim60\) \(\mu\)M; Akopian et al., 1996) and unlike the cardiac TTX-R isoform (\(K_i\) \(\sim1–2\) \(\mu\)M; Satin et al., 1992).

Although the TTX resistance of the current in SNS-null DRG neurons is similar to that reported for SNS, its voltage dependence and kinetic properties are quite distinct. As seen in Figure 1d, the TTX-R currents in SNS-null neurons had extremely slow kinetics, with \(\tau_{\text{inactivation}} = 43 \pm 4\) msec at \(-20\) mV (\(n = 18\)). These currents activated at hyperpolarized potentials, with a threshold at approximately \(-70\) mV and a midpoint of activation of \(-47 \pm 1\) mV (\(n = 17\)). The overshoot in the activation curve (Fig. 2d) could be attributable to the presence of multiple TTX-R channels in SNS-null neurons. Alternatively, it could be attributable to a TTX-R channel with complex behavior, such as one that has multiple open states or an inactivated state from which

\[
\frac{\text{Ca}^{2+}}{\text{Ca}^{2+}} \text{inactivating component. A persistent current is expressed in both the WT and a sodium current. Whole-cell recordings of SNS-null cells in the presence of low external calcium (10–50 \(\mu\)M) but high external sodium (140 mM) demonstrated large persistent inward currents in 15 of 25 cells. Increasing external calcium from 50 \(\mu\)M to 1 mM did not increase the size of the current (Fig. 2a; \(n = 4\)). Additionally, when the external medium contained high calcium (1 mM) but zero sodium we did not observe any inward currents activating at negative potentials (\(n = 15\)). We could often observe small inward currents that activated near \(-20\) mV if cadmium was not included in the external solution, but these high-voltage-activated currents could be blocked with 50–100 \(\mu\)M cadmium and appear to be \(L\)-type calcium currents. However, in four of six SNS-null cells tested, the low-voltage-activated (LVA) persistent inward current was revealed in the presence of cadmium when external sodium was increased from 0 to 50 mM (Fig. 2b). Based on these experiments, we conclude that the LVA persistent current that we observe in SNS-null neurons is indeed a sodium current.

The LVA persistent sodium current is only marginally inhibited by 1 \(\mu\)M TTX (6 \(\pm\) 5%; \(n = 6\)), and as shown in Figure 2c, 10 \(\mu\)M TTX inhibited this LVA sodium current in SNS-null neurons by \(<20\%\) (estimated \(K_i\) \(39 \pm 9\) \(\mu\)M; \(n = 5\)). Thus, the LVA current in DRG neurons is highly resistant to TTX, like SNS (\(K_i\) \(\sim60\) \(\mu\)M; Akopian et al., 1996) and unlike the cardiac TTX-R isoform (\(K_i\) \(\sim1–2\) \(\mu\)M; Satin et al., 1992).

Although the TTX resistance of the current in SNS-null DRG neurons is similar to that reported for SNS, its voltage dependence and kinetic properties are quite distinct. As seen in Figure 1d, the TTX-R currents in SNS-null neurons had extremely slow kinetics, with \(\tau_{\text{inactivation}} = 43 \pm 4\) msec at \(-20\) mV (\(n = 18\)). These currents activated at hyperpolarized potentials, with a threshold at approximately \(-70\) mV and a midpoint of activation of \(-47 \pm 1\) mV (\(n = 17\)). The overshoot in the activation curve (Fig. 2d) could be attributable to the presence of multiple TTX-R channels in SNS-null neurons. Alternatively, it could be attributable to a TTX-R channel with complex behavior, such as one that has multiple open states or an inactivated state from which
activation and steady-state inactivation curves (Fig. 2). Indeed, large persistent currents were observed in the neuron elicited with 2 sec step depolarizations to the voltage indicated. All recordings were made with 250 nM TTX, 100 nM TEA, and 50 mM sodium. V_{hold} was −80 mV, and currents were elicited after a 100 msec prepulse to −120 mV.

Figure 2. SNS-null neurons express a TTX-R sodium current. a. The current recorded from an SNS-null neuron in low calcium (50 µM) was not altered by increasing calcium to 1 mM, V_{peak} = −30 mV. b. In zero sodium (160 mM TEA) inward current is not elicited by a step depolarization to −30 mV. Addition of 50 mM sodium reveals the TTX-R current. c. The TTX-R current in SNS-null neurons is resistant to high concentrations of TTX (10 µM). V_{peak} = −40 mV. d. Activation and steady-state inactivation curves exhibit significant overlap for the TTX-R current in SNS-null neurons. The interpulse interval was 5 sec. Steady-state inactivation was measured with 500 msec prepulses. V_{test} was −30 mV. e. TTX-R persistent currents from an SNS-null neuron elicited with 2 sec step depolarizations to the voltage indicated. All recordings were made with 250 nM TTX, 100 µM cadmium, and V_{hold} = −120 mV.

The current recorded from an SNS-null neuron in low calcium (50 µM) was not altered by increasing calcium to 1 mM, V_{peak} = −30 mV. In zero sodium (160 mM TEA) inward current is not elicited by a step depolarization to −30 mV. Addition of 50 mM sodium reveals the TTX-R current. The TTX-R current in SNS-null neurons is resistant to high concentrations of TTX (10 µM). V_{peak} = −40 mV. Steady-state inactivation was measured with 500 msec prepulses. V_{test} was −30 mV. TTX-R persistent currents from an SNS-null neuron elicited with 2 sec step depolarizations to the voltage indicated. All recordings were made with 250 nM TTX, 100 µM cadmium, and V_{hold} = −120 mV.

Based on the midpoint of steady-state inactivation, it might be expected that large persistent TTX-R currents would also be readily observed from a V_{hold} of −60 mV; however, when the neurons were held at −60 mV and currents were elicited after a brief hyperpolarizing prepulse (100 msec at −120 mV), the persistent TTX-R current was not apparent in either WT (Fig. 1e) or SNS-null (Fig. 1f) neurons. Under these conditions, only the slowly inactivating TTX-R currents were observed in WT neurons and, as previously reported by Akopian et al. (1999), who studied cells with relatively depolarized holding potentials, there was no obvious TTX-R current in SNS-null neurons. Consistent with this, we found a prominent ultraslow inactivation of the LVA channels (τ_{recovery} = 16 ± 4 sec at −120 mV in SNS-null neurons; n = 5). For SNS-null neurons that expressed large TTX-R currents (peak amplitude = 8.0 ± 1.2 nA with V_{hold} of −120 mV), the peak amplitude elicited after a 100 msec prepulse to −120 mV from a V_{hold} of −60 mV was only 260 ± 57 pA (n = 6), indicating that ~95% of the LVA TTX-R currents are ultraslow-inactivated at −60 mV. We observed a similar ultraslow inactivation for the LVA TTX-R current in WT neurons.

Because of the ultraslow inactivation of the LVA TTX-R currents, subtraction of the slowly inactivating current recorded with V_{hold} = −60 mV from total TTX-R current would be expected to yield the persistent current in WT neurons. In fact, an LVA TTX-R current could be derived in this way in WT neurons (Fig. 1g) and closely matched the persistent current recorded in SNS-null DRG neurons (Fig. 1h).

Figure 3. RT-PCR products from DRG of WT (+/+) and SNS-null (−/−) mutant mice. SNS and NaN products were co-amplified from WT (lanes 1, 3), and SNS-null mutants (lanes 2, 4). Two primer pairs, Pr1 and Pr2, for SNS were previously described (Pr1, lanes 1, 2; Akopian et al., 1999; Pr2, lanes 3, 4; F1/R2; Dib-Hajj et al., 1998). The sizes of SNS products from WT tissue using Pr1 and Pr2 are consistent with the predicted lengths of 673 bp (nucleotides 100–772) and 482 bp (nucleotides 594–1075), respectively. The smaller SNS product (denoted by an asterisk in lane 2; 450 bp) from SNS-null tissue is consistent with splicing exon 3 to exon 6 (Akopian et al., 1999), whereas lack of SNS signal in lane 4 is attributable to the replacement of F1-containing sequence by the PGK-neo cassette in the null allele. Primers for mouse NaN amplify nucleotides 708–995 (288 bp; lanes 1, 2) and 626–995 (370 bp; lanes 3, 4) (Dib-Hajj et al., 1999). Comparative levels of glyceraldehyde-3-phosphate dehydrogenase were amplified from WT (lane 5) and SNS-null mutants (lane 6) using primers that were previously described (Dib-Hajj et al., 1998).
The molecular identity of the novel persistent TTX-R current cannot be positively determined at this time. However, transcripts for NaN, which is predicted to encode a TTX-R channel, are present in WT and SNS-null trigeminal ganglia (Fig. 3, lanes 1–4) and DRG neurons (data not shown). Residual SNS transcript in SNS-null ganglia lacks the sequence encoded by exons 4 and 5 (Fig. 3, lanes 1–4), which truncates the protein because of a reading frame shift in exon 6 (Akopian et al., 1999). Therefore, we suggest that NaN underlies this novel TTX-R persistent current.

DISCUSSION

In this study we have identified and characterized a novel persistent TTX-R sodium current in SNS-null and WT small-diameter DRG neurons. Although previous studies have suggested the presence of multiple TTX-R currents in DRG neurons, these currents have been either slowly inactivating, with time constants of 3–8 msec (Rizzolo et al., 1994; Rush et al., 1998), or rapidly inactivating (time constants <2 msec; Scholz et al., 1998). TTX-R persistent currents have not been previously identified. The persistent currents that have been reported in large sensory neurons (Baker and Bostock, 1997) and other neuronal cell types, e.g., cortical (Crill, 1996) and thalamocortical neurons (Parri and Crunelli, 1998), are TTX-S. The persistent TTX-R current in small sensory neurons thus appears to be a distinct sodium current, not present in other types of neurons.

The kinetic properties of the LVA TTX-R persistent current that we describe here are different from those of SNS currents. In contrast to SNS currents, which activate at approximately −30 mV, the TTX-R persistent current activated around resting potential (approximately −70 to −60 mV). This may have important functional implications, because there are few channels of any kind that are active near resting potential, so that even small persistent currents can have a significant influence on excitability (Crill, 1996). Although the LVA persistent current in SNS-null neurons was quite large when elicited from hyperpolarized holding potentials, suggesting a relatively high density of channels, it was greatly reduced near normal resting potential (approximately −60 mV for small DRG neurons) by an apparent ultraslow inactivation. Ultraslow inactivation decreased the amplitude of the LVA TTX-R persistent current by >95% with V_hold = −60 mV and should result in a low probability of opening of any single channel around resting potential. One possible advantage is that a large number of channels with a low open probability might produce a small yet more consistent current than a smaller number of channels with a higher probability of opening.

Based on the reduced amplitude observed when the cells are held near resting potential, it is expected that the LVA TTX-R persistent current will not play a prominent role in generating action potentials. On the other hand, the properties of this current suggest that it may contribute to setting the resting potential and to the modulation of neuronal excitability close to resting potential. Persistent sodium currents have been implicated in subthreshold oscillations (Kapoor et al., 1997), in amplification of depolarizing inputs (Schwindt and Crill, 1995), and in impulse initiation (Stafstrom et al., 1982). The LVA TTX-R persistent current that we describe here might similarly be expected to have important consequences on subthreshold electrogenesis in small DRG neurons.

A previous study on SNS-null neurons (Akopian et al., 1999) did not observe the persistent TTX-R currents that we describe here. Two methodological differences may account for the failure of Akopian et al. to detect this current: (1) Akopian et al. used depolarized holding potentials, at which the LVA TTX-R persistent current is slow-inactivated and thus not detectable; and (2) Akopian et al. studied SNS-null neurons after 1–5 d in culture. Although we observed large TTX-R currents in SNS-null neurons studied after <24 hr in culture, these currents were greatly reduced in amplitude at longer times in culture (data not shown).

DRG neurons are known to express at least six sodium channel transcripts (Black et al., 1996; Dib-Hajj et al., 1998). Only two of these, SNS and NaN, are predicted to encode TTX-R currents. DRG neurons do not express mRNA for the TTX-R cardiac channel (Donahue, 1995; Black et al., 1998; Akopian et al., 1999), and SNS-null neurons do not express functional SNS channels. Because NaN transcript is present in SNS-null DRG (Fig. 3) and is expressed preferentially in small sensory neurons (Dib-Hajj et al., 1998), we suggest that the LVA TTX-R persistent current that we describe here is produced by channels encoded by NaN. Although the molecular identity of the channel that produces the LVA TTX-R persistent current cannot be definitively established at this time, the hypothesis that NaN underlies the LVA TTX-R current in small DRG neurons is supported by data showing that the loss of persistent currents in rat small DRG neurons after axotomy (Cummins and Waxman, 1997) is accompanied by a decrease in NaN mRNA levels (Dib-Hajj et al., 1998; Tate et al., 1998).

Patch-clamp studies on HEK293T cells transfected with recombining NaN (also referred to as SNS) channels demonstrated a TTX-R sodium current with considerably faster kinetics (\(t_{\text{inactivation}} = 1.3 \text{ msec at approximately } -20 \text{ mV} \)) and a greater TTX sensitivity (\(K_c \sim 1 \mu \text{mol} \)) than SNS (Tate et al., 1998). This is surprising because sodium currents with a TTX \(K_c \) of 1–2 \(\mu \text{mol} \) have never been described in DRG neurons. Both SNS and NaN have a serine in the position (S356 in SNS and S355 in NaN) that has been shown (Chen et al., 1992; Satin et al., 1992) to be crucial for TTX resistance, and thus these two channels would be expected to have similar \(K_c \) values for TTX. Sivilotti et al. (1997) have demonstrated that mutation of SNS S356 to phenylalanine changes the TTX \(K_c \) to 8 nM, suggesting that this serine residue alone confers the high TTX resistance of SNS channels. Therefore, the high TTX resistance of the LVA persistent current in SNS-null neurons is consistent with a channel isoform that has a serine at the TTX binding site.

The difference between the currents recorded in SNS-null DRG neurons (this paper) and the HEK293T current ascribed to NaN by Tate et al. (1998) raises several possibilities. (1) NaN could be differentially processed or modulated in DRG and HEK293T cells. Skeletal muscle sodium (SkM1) channels expressed in Xenopus oocytes can have different kinetic properties from native SkM1 channels (Trimmer et al., 1989), and thus differences between HEK293T cells and DRG neurons might account for kinetic differences. However, SkM1, cardiac, and neuronal sodium channels (including SNS) have essentially the same TTX resistance in heterologous expression systems and native cells (Trimmer et al., 1989; Chen et al., 1992; Akopian et al., 1996). Therefore, it seems unlikely that NaN will have a different TTX resistance in DRG neurons and HEK293T cells. (2) NaN might not underlie the LVA persistent TTX-R current that is recorded in SNS-null and WT DRG neurons. If this were the case, it would be expected that TTX-R currents such as those described by Tate et al. (1998) should also be observed in the majority of small DRG neurons of SNS-null mice, because NaN transcript and protein are observed in the majority of small DRG neurons in SNS-null mice.
Our observations show that: (1) a distinct TTX-R sodium current is expressed at high densities in small DRG neurons from SNS-null mice; (2) this current has a hyperpolarized voltage dependence compared with SNS; (3) this current is persistent at negative potentials close to resting potential; and (4) this current is present in the majority of small WT DRG neurons. These results provide strong evidence for the presence of a distinct TTX-R sodium channel in addition to SNS, which produces this persistent current in small DRG neurons. Irrespective of the identity of the channel that produces it, it is likely that the low-threshold, persistent TTX-R sodium current that we have identified in SNS-null and WT neurons contributes to subthreshold electrogenesis in C-type primary sensory neurons and affects the excitability of these neurons.

REFERENCES

