Dopamine D₁ Receptors Synergize with D₂, But Not D₃ or D₄, Receptors in the Striatum without the Involvement of Action Potentials

Gerald J. LaHoste,¹ Brook L. Henry,² and John F. Marshall²

¹Department of Psychology, University of New Orleans, New Orleans, Louisiana 70148, and ²Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697

The widespread biological actions of the neurotransmitter dopamine (DA) are mediated by two classes of receptor, the D₁ class (D₁ and D₅) and the D₂ class (D₂, D₃, and D₄), which interact synergistically in many paradigms, such as DA agonist-stimulated motor behavior and striatal c-fos expression. Understanding the mechanism(s) of this interaction has been impeded by a controversy regarding the cellular localization of D₁ and D₂ class receptors. To address this issue from a functional point of view, we elicited striatal Fos by combined administration of a D₁ class and a D₂ class agonist either in the presence or absence of the fast sodium channel blocker tetrodotoxin (TTX). Striatal Fos elicited by direct D₁/D₂ stimulation was not reduced by TTX. By contrast, TTX greatly attenuated the Fos response evoked by cocaine or GBR 12909. In separate experiments using antagonists that distinguish among members of the D₂ class of receptors, amphetamine-stimulated Fos and motor behavior were attenuated dose-dependently by the selective D₂ antagonist L-741,626, but not by the selective D₁ antagonist U99194A or the D₃-selective antagonist L-745,870. Because Fos expression in the paradigms that were used occurs in enkephalin-negative striatonigral neurons, which show limited coexpression of D₁ and D₂ receptors, the present findings taken together suggest the intriguing possibility that D₁/D₂ synergism may be mediated by D₁ and D₂ receptors residing on separate striatal neurons and interacting in a manner that is not dependent on action potentials.

Key words: D₁ receptors; D₂ receptors; D₁/D₂ synergism; D₃ receptors; D₄ receptors; tetrodotoxin; amphetamine; motor behavior; Fos; striatum

The widespread biological actions of the neurotransmitter dopamine (DA) are mediated by two classes of receptor, the D₁ class and the D₂ class, which can be distinguished on the basis of second messenger coupling and ligand binding (Kebabian and Calne, 1979; Stoof and Kebabian, 1981). Further molecular distinctions yield five DA receptors that are subsumed into these two classes: the D₁ class, composed of the D₁ and D₅ receptors, and the D₂ class, composed of the D₂, D₃, and D₄ receptors (Sibley and Monsma, 1992).

A remarkable feature of normal dopaminergic transmission is that for many behavioral, electrophysiological, and gene-activating influences of DA the concomitant stimulation of D₁ class and D₂ class receptors is required (Gershnik et al., 1983; Lewis et al., 1983; Braun and Chase, 1986; Walters et al., 1987; LaHoste et al., 1993), a phenomenon we refer to as requisite D₁/D₂ synergism. For example, activation of the immediate-early gene c-fos in the striatum occurs after combined administration of direct-acting D₁ class and D₂ class agonists, but not after either agonist alone (LaHoste et al., 1993). In addition, amphetamine-induced Fos expression in striatum can be blocked by either a D₁ class or a D₂ class antagonist (Ruskin and Marshall, 1994). In cases of DA agonist-stimulated Fos in striatum, it is specifically the enkephalin-negative striatonigral neurons that are activated (Berretta et al., 1992; Cenci et al., 1992; Ruskin and Marshall, 1994). Similar results indicative of D₁/D₂ synergism are obtained when agonist-stimulated stereotyped motor behavior is observed (Walters et al., 1987) (for review, see LaHoste and Marshall, 1996). These conclusions regarding D₁/D₂ synergism are drawn from experiments using pharmacological agents that distinguish well between the D₁ and D₂ classes, but not among members within a class. Thus, it is not clear which member or members of the D₁ class interact synergistically with which member or members of the D₂ class.

Progress toward elucidating the cellular and molecular mechanisms of D₁/D₂ synergism has been impeded by controversy regarding the cellular localization of D₁ and D₂ class receptors. In the striatum, where DA acts to stimulate motor behavior and Fos expression, >90% of neurons are projection neurons comprising the striatonigral and the striatopallidal pathways (Gerfen, 1992). In general, striatonigral neurons, which are the ones that express Fos after DA agonist administration, have been found to express D₁ receptor mRNA, whereas striatopallidal neurons have been found to express D₂ receptor mRNA. Double in situ hybridization studies of single striatal rat brain sections show segregation of D₁ and D₂ mRNA-expressing neurons (Gerfen et al., 1990; Gerfen, 1992), and localization of D₁ and D₂ receptor protein using immunohistochemistry at the electron microscope level also shows no colocalization (Hersch et al., 1995). By contrast, immunohistochemistry at the light microscope level (Ariano et al., 1995), in situ hybridization of adjacent brain sections (Meador-Woodruff et al., 1991; Lester et al., 1993), and single-cell reverse-transcription PCR (RT-PCR) of dissociated striatal neurons in vitro (Surmeier et al., 1992) provide evidence for at least some cellular colocalization of D₁ and D₂ mRNA and protein. A partial reconciliation of these discrepancies is provided by more recent single-cell RT-PCR studies indicating that D₁/D₂ colocalization, at least in enkephalin-negative striatonigral neurons, may be represented more by coexpression of D₁ receptor mRNA with D₃ or D₄ mRNA rather than with D₂ mRNA per se (Surmeier et al., 1996).

We have addressed the issue of D₁/D₂ localization from the perspective of understanding the functional synergism between these two receptor classes. In two series of experiments we have used cellular and behavioral models to address the issue of whether synergistically interacting D₁ and D₂ class receptors reside on the same or on separate neurons.
Table 1. Ki (nm) values at cloned receptors

<table>
<thead>
<tr>
<th>Drug</th>
<th>D2</th>
<th>D3</th>
<th>D1</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-741,626</td>
<td>2.4</td>
<td>100</td>
<td>22</td>
</tr>
<tr>
<td>U-99194A</td>
<td>1572</td>
<td>78</td>
<td>>200</td>
</tr>
<tr>
<td>L-745,870</td>
<td>960</td>
<td>2300</td>
<td>0.43</td>
</tr>
</tbody>
</table>

Receptor selectivity based on in vitro Ki (nm) at cloned dopamine D2, D3, and D4 receptors for L-741,626 (Kulagowski et al., 1996), U-99194A (Waters et al., 1993), and L-745,870 (Kulagowski et al., 1996).

MATERIALS AND METHODS

To assess the role of action potentials in the manifestation of D1/D2 synergism, we performed the following experiment. Adult male Sprague Dawley rats (125–175 gm) were used. Rats were placed in 40 × 40 cm Plexiglas observation chambers for 1 hr on each of 2 d and virtually no affinity for D4 receptors (Waters et al., 1993). L-745,870 (Kulagowski et al., 1996).

When infused intrastriatally, neither saline nor TTX produced appreciable Fos expression in the striatum (Fig. 1C). By contrast, all DA agonist treatments induced significant Fos expression (Figs. 1A,B–D; 2A–C). Striatal Fos induced by the direct D1/D2 agonist treatments (either intracerebral quinpirole plus SKF 82526 or intraperitoneal quinpirole plus SKF 82958) was not significantly different from previous TTX infusion into the striatum (Figs. 1A,B, 2A,A′,B,B′). However, striatal Fos induced by the DA reuptake inhibitors GBR 12909 or cocaine was attenuated greatly by TTX (Figs. 1D,E, 2B,B′).

Amphetamine-induced Fos was blocked partially by TTX (Fig. 1F). ANOVA revealed significant hemispheric differences (i.e., indicative of TTX-induced Fos inhibition) for GBR 12909 (F1,4 = 12.85; p < 0.025), cocaine (F1,4 = 52.94; p < 0.005), and amphetamine (F1,6 = 20.78; p < 0.004), but not for the direct agonists (p > 0.05 in both cases).

Selective D2 antagonist administration

As shown many times, amphetamine injection induced pronounced Fos expression in the striatum. This effect was attenuated by the selective D2 antagonist L-741,626 in a dose-dependent manner (Figs. 2D, 3). By contrast, neither the selective D1 antagonist U-99194A nor the selective D4 antagonist L-745,870 reduced amphetamine-induced Fos in striatum (Fig. 3). A two-factor ANOVA (antagonist pretreatment × agonist treatment) yielded significant main effects for antagonist pretreatment (F5,46 = 3.07; p < 0.05) and agonist treatment (F1,46 = 137; p < 0.001) as well as a significant interaction (F5,46,2 = 3.30; p < 0.05). Post hoc comparisons of amphetamine-treated animals using Dunnett’s test revealed that pretreatment with 10 mg/kg of L-741,626 significantly inhibited Fos as compared with vehicle (p < 0.01), U-99194A (p < 0.001), or 1 mg/kg of L-745,870 (p < 0.01), but not compared with 3.2 mg/kg of L-741,626 or 10 mg/kg of L-745,870 (p > 0.05). As previously reported (Merchant et al., 1996), U-99194A alone induced significant Fos expression in the infralimbic/ventral prefrontal cortex as compared with vehicle controls (p < 0.05; Fig. 4), demonstrating the neurobiological efficacy of this dose of U-99194A in the present study.

In agreement with the Fos data, L-741,626 greatly attenuated amphetamine-stimulated sniffing behavior (Fig. 5) and induced catalepsy on its own (data not shown). Neither U-99194A nor L-745,870 had these effects, although the latter appeared to induce some hindlimb ataxia at the higher dose. A two-factor ANOVA (agonist pretreatment × agonist treatment) yielded significant main effects for antagonist pretreatment (F5,46 = 10.66; p < 0.001) and agonist treatment (F1,46 = 634; p < 0.001) as well as a significant interaction (F5,46,2 = 4.76; p < 0.01). Post hoc comparisons of amphetamine-treated animals using Dunnett’s test revealed that rats pretreated with 10 mg/kg of L-741,626 displayed significantly less sniffing than any other antagonist pretreatment group (p < 0.05). This dose of L-741,626 also significantly inhibited spontaneous sniffing in saline-treated (i.e., nonamphetamine-treated) animals.
treated) animals as compared with vehicle pretreatment ($p < 0.05$), whereas none of the other pretreatments was effective in this regard.

Rearing data were highly variable and therefore were analyzed with the nonparametric Mann–Whitney U test. The results show that amphetamine-induced rearing was decreased significantly only in rats pretreated with 10 mg/kg of L-741,626 ($p < 0.05$; Fig. 6). U-99194A pretreatment significantly increased amphetamine-induced rearing ($p < 0.05$), similar to what has been reported earlier for this agent (Waters et al., 1993, 1994).

DISCUSSION

The two main findings of the research presented here are that D$_1$/D$_2$ synergism with respect to motor behavior and striatal immediate-early gene expression (1) occurs even under conditions in which action potentials are prevented and (2) depends on agonist stimulation of D$_2$, but not D$_3$ or D$_4$, receptors. Taken together, these findings suggest the intriguing possibility that D$_1$ and D$_2$ receptors reside on separate striatal neurons and interact in a manner that is not dependent on action potentials.

Nondependence on action potentials is demonstrated by the consistent failure of intrastriatal TTX to influence the synergistic actions of combined D$_1$/D$_2$ agonism at the cellular level. This is true regardless of the D$_1$ class agonist that is used or the route of administration. The ineffectiveness of TTX cannot be attributed to nonspecific Fos expression caused by mechanical stimulation during the injection procedure nor to TTX itself because neither saline nor TTX alone induced significant Fos expression. The neurobiological effectiveness of the TTX in blocking action potentials is demonstrated by the appearance of rotation toward the inactivated hemisphere after D$_1$/D$_2$ agonist treatment, similar to that occurring after a unilateral striatal lesion (Barone et al., 1986). Further demonstration of the neurobiological efficacy of TTX is provided by experiments that use DA reuptake inhibitors, for which the effects on synaptic DA are dependent on nigrostriatal action potentials. TTX, which reduces striatal extracellular DA to undetectable levels (Keefe et al., 1993), potently inhibited striatal Fos expression induced by cocaine or GBR 12909. The effect of amphetamine on synaptic DA at the dose that was used is likely to be partially dependent on action potentials and partially independent, because high doses of amphetamine release DA from both vesicular and cytoplasmic stores (Heeringa and Abercrombie, 1995). In the present experiments, amphetamine-induced Fos expression in the

Figure 1. Striatal Fos expression is induced by direct DA agonists (A, B), saline (C), or various indirect DA agonists (D–F) in vehicle- or TTX-injected hemispheres (see Materials and Methods). Fos immunoreactivity refers to the number of Fos-positive cells per mm2. Statistically significant (*) Fos inhibition by TTX was observed only for the DA reuptake inhibitors cocaine (D) or GBR 12909 (E).

Figure 2. Reverse-image photomicrographs of Fos-like immunoreactivity in TTX- or VEH-treated striata of rats injected systematically with SKF 82526 plus quinpirole (VEH, A; TTX, A') or cocaine (VEH, B; TTX, B') and Fos-like immunoreactivity in striata of rats injected systematically with saline plus amphetamine (C) or L-741,626 (10 mg/kg) plus amphetamine (D).
striatum was attenuated partially by TTX, presumably because of reduction of the extracellular DA component contributed by vesicular release.

It is possible that, whereas the absolute number of Fos-positive neurons after TTX was not altered significantly in response to direct D1/D2 agonists, there was a change in the phenotype of the neurons expressing Fos immunoreactivity. We have not examined the phenotype of the neurons expressing Fos under normal and TTX conditions.

Most D2 class agonists, including quinpirole, do not distinguish among the D2, D3, and D4 receptors. To determine which of these receptors contributes to the D1/D2 synergism with respect to striatal immediate-early gene expression and motor behavior, we used new antagonists with selectivities for D2, D3, and D4 receptors. In the present experiments the D2-selective antagonist L-741,626 blocked amphetamine-induced motor behavior, blocked amphetamine-induced Fos expression in the striatum, and induced catalepsy when given alone. None of these effects was seen with either the D3 or the D4 antagonists at receptor-selective doses (see below). The probability that L-741,626 exerted its effects by nonselectively blocking D2 or D4 receptors is low, given that high receptor–occupancy doses of antagonists selective for these receptors did not produce an effect. Furthermore, the lower dose of L-741,626 is unlikely to have occupied more than a very small proportion of D3 or D4 sites.

The present findings using antagonists are consistent with results from studies on gene knock-out mice. D2 knock-out mice are profoundly akinetic (Baik et al., 1995), whereas D3 or D4 knock-out mice show relatively normal motor activity (Accili et al., 1996; Rubinstein et al., 1997). When D1/D2 synergism was tested directly in D3 knock-out mice, the mutants were found to be no different from wild types in this regard (Xu et al., 1997). The present data are also consistent with recent findings that the disruptive effects of amphetamine on prepulse inhibition require D2, but not D3 or D4, receptors (Ralph et al., 1999).

It should be noted that the higher dose of the selective D4 antagonist L-745,870 partially attenuated amphetamine-induced motor behavior and striatal Fos expression. This dose, which is estimated to block ~98% of D4 receptors, also can be expected to occupy ~22% of D2 receptors (Patel et al., 1997). Because no
ampetamine-blocking effect was observed at a lower dose of L-745,870 that is estimated to block 97% of D₄ receptors but only 2.6% of D₂ receptors, it appears likely that this D₂ occupancy contributes to the amphetamine-blocking effects at this high dose of L-745,870.

Although both direct and indirect DA agonists were used in the TTX experiments, only amphetamine was used in the selective antagonist experiments. There is an abundance of behavioral, electrophysiological, and immediate-early gene studies in the literature to support the conclusion that the rules of requisite D₁/D₂ synergism apply equally to direct and indirect DA agonists. We cite here only two directly relevant references from our laboratories. Ruskin and Marshall (1994) showed that the concomitant stimulation of D₁ and D₂ class receptors was required for amphetamine-induced Fos in the striatum of neurologically intact rats. LaHoste and colleagues (1993) showed the same effect for striatal Fos elicited by the direct-acting D₁ and D₂ class agonists SKF 38393 and quinpirole, respectively.

Additionally, although several other studies have reported region-specific Fos expression in the striatum after injection of a nonselective D₂ class antagonist, such as haloperidol (Dragunow et al., 1990; Miller, 1990; Nguyen et al., 1992; Robertson et al., 1992), no striatal Fos expression was observed in the present experiment by using a selective D₂ antagonist at a cataleptogenic dose. This holds true for all striatal regions, not just the 1 mm² region specified in Materials and Methods (data not shown). The possible contribution of D₁ and/or D₃ antagonism to the effects on c-fos of nonselective D₂ class antagonists may warrant further investigation, although it is possible that the doses of L-741,626 used in the present experiment were not maximal.

Because the D₁/D₂ synergism in the present studies was not blocked by TTX, one tentative conclusion that could be drawn from the above data is that synergism occurs at the single-cell level via agonist stimulation of D₁ class and D₂ class receptors residing on the same postsynaptic neuron. With respect to DA-stimulated Fos expression in striatum, the manifestation of D₁/D₂ synergism is restricted to enkephalin-negative striatonigral neurons (Berretta et al., 1992; Cenci et al., 1992; Ruskin and Marshall, 1994). Although virtually all neurons in this subpopulation express abundant levels of D₁ mRNA, conventional RT-PCR on single cells showed no colocalization of D₂ mRNA (Surmeier et al., 1996). When a second round of PCR was performed, the incidence of D₁/D₂ colocalization increased from 0 to 19% (Surmeier et al., 1996). Thus, among the striatal neurons that express Fos in response to DA agonists, the percentage of neurons with abundant levels of both D₁ and D₂ mRNA is low [D₂ colocalization with D₅ receptors, which could be stimulated by nonselective D₁ class agonists, does not occur in this subpopulation of neurons (Surmeier et al., 1996)].

An alternative possibility is that D₁/D₂ synergism occurs at the single-cell level but requires interneuronal communication for its manifestation. A subpopulation of striatal neurons expresses both enkephalin and substance P. Estimates of the relative size of this subpopulation vary between laboratories from 1–2 to 30% (see Surmeier et al., 1996). Using single-cell RT-PCR, Surmeier et al. (1996) found this subpopulation to comprise 17% of striatal neurons. Of importance for the present discussion is that 22–25% of these neurons coexpressed D₁ and D₂ mRNA after conventional PCR, and 70–80% showed colocalization after a second round of PCR. Thus, these D₁/D₂-positive striatal neurons may comprise 4–12% of striatal neurons. Because they are enkephalin-positive, it is unlikely that these neurons express Fos after DA stimulation (Berretta et al., 1992). However, it is possible that synergism occurs within these neurons but requires interneuronal communication to be manifested. According to the results of the present experiments, this communication would have to be independent of action potentials.

Although there are several examples of synaptic communication in the striatum that do not require action potentials, none of these withstand the constraints required to serve as a putative mechanism of D₁/D₂ synergism. An alternative hypothesis to explain TTX-insensitive D₁/D₂ synergism invokes the concept of direct electrical coupling between adjacent neurons. Electrotone coupling is believed to occur between medium spiny neurons of the adult rat striatum and to be regulated dynamically by dopaminergic agents (Cepeda et al., 1989; O'Donnell and Grace, 1993; Onn and Grace, 1994). Most of the evidence supporting this view is based on dye coupling, an indirect measure that has been shown to be a good indicator of electrotone coupling (for a discussion of this point, see Onn and Grace, 1994). Of particular importance to the present discussion is the finding that dye coupling is regulated by DA receptor stimulation. For example, under basal conditions 17% of medium spiny neurons showed coupling to another medium spiny neuron (Onn and Grace, 1994). After concomitant D₁/D₂ stimulation, the incidence of electrotonic coupling between the medium spiny neurons showed coupling. When a given neuron was coupled, the number of other medium spiny neurons to which it was coupled increased from one, under basal conditions, to three to seven neurons after apomorphine. In addition, the neuronal gap junction protein connexin32 is expressed in rat striatal neurons (Micevych and Abelson, 1991). Moreover, glial cells, which express connexin43 in abundance in adulthood and for which the expression in striatum is modulated by DA (Reuss and Unsicker, 1999), can mediate communication between adjacent neurons via electrotone coupling (Andrade-Rosental et al., 1999; Ishimatsu and Akasu, 1999). Thus, direct or indirect electrotone coupling between separate D₁- and D₂-containing medium spiny neurons could provide a TTX-insensitive mechanism for D₁/D₂ synergism.

In summary, one can conclude from the TTX experiments that action potentials are not necessary for D₁/D₂ synergism in the striatum. One also can conclude from the selective antagonist experiments that only D₂ receptors interact with striatonigral D₁ receptors to give rise to D₁/D₂ synergism. From previous work on DA receptor colocalization one can conclude that, among the striatal neurons that express Fos in response to DA agonists, the percentage of neurons with abundant levels of both D₁ and D₂ mRNA is low. Thus, with respect to motor behavior and immediate-early gene expression, D₁/D₂ synergism in the striatum may be mediated via nonclassical interneuronal communication.

REFERENCES

LaHoste et al. • Action Potential-Independent D1/D2 Synergism

Gerfen CR (1992) The neostriatal mosaic: multiple levels of compartmental organization in the basal ganglia. Annu Rev Neurosci 15:285–320.

