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Ictal Epileptiform Activity Is Facilitated by Hippocampal GABA,

Receptor-Mediated Oscillations
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The cellular and network mechanisms of the transition of brief
interictal discharges to prolonged seizures are a crucial issue in
epilepsy. Here we used hippocampal slices exposed to ACSF
containing 0 Mg?* to explore mechanisms for the transition to
prolonged (3-42 sec) seizure-like (“ictal”) discharges. Epilepti-
form activity, evoked by Shaffer collateral stimulation, triggered
prolonged bursts in CA1, in 50-60% of slices, from both adult
and young (postnatal day 13-21) rats. In these cases the first
component of the CA1 epileptiform burst was followed by a train
of population spikes at frequencies in the y band and above
(80-120 Hz, reminiscent of tetanically evoked vy oscillations). The
v burst in turn could be followed by slower repetitive “tertiary”
bursts. Intracellular recordings from CA1 during the y phase

revealed long depolarizations, action potentials rising from brief
apparent hyperpolarizations, and a drop of input resistance. The
CA1 yrhythm was completely blocked by bicuculline (10-50 um),
by ethoxyzolamide (100 um), and strongly attenuated in hyper-
osmolar perfusate (50 mm sucrose). Subsequent tertiary bursts
were also blocked by bicuculline, ethoxyzolamide, and in hy-
perosmolar perfusate. In all these cases intracellular record-
ings from CA3 revealed only short depolarizations. We con-
clude that under epileptogenic conditions, y band oscillations
arise from GABA,ergic depolarizations and that this activity
may lead to the generation of ictal discharges.
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Cellular and network mechanisms of epileptiform discharges last-
ing a few hundred milliseconds, resembling interictal discharges,
are understood in detail, largely because of experiments in vitro
(Traub and Wong, 1982; Hablitz, 1987; Mody et al., 1987; Tancredi
et al, 1990; Kohling et al., 1994; Gloveli et al., 1995). In the
hippocampus they result from the interplay of intrinsic currents and
synaptic interconnections in CA3 (Traub and Wong, 1982; Miles
and Wong, 1986; Traub et al., 1994, 1996a). Prolonged seizure-like
(>2 sec; ictal) activity rarely occurs in adult slices (Anderson et al.,
1986; Rafiq et al., 1993; Stasheff et al., 1993a; Traub et al., 1996a;
Borck and Jefferys, 1999), but more often in juvenile tissue (Ha-
blitz, 1987; Swann et al., 1993; Gloveli et al., 1995). Most reports on
ictal activity in slices implicate prolonged, glutamatergic depolar-
izations variously depending on NMDA receptors [0 Mg?" and
electrographic “seizures” (Rafiq et al., 1993; Stasheff et al., 1993b;
Traub et al., 1994)], AMPA receptors [4-aminopyridine (Traub et
al., 1995)], or combined AMPA, NMDA and metabotropic gluta-
mate receptors (mGluRs) [GABA, antagonists (Swann et al.,
1993; Traub et al., 1996a; Merlin, 1999; Borck and Jefferys, 1999))].

Epileptic activity is often attributed to imbalanced glutamatergic
excitation and GABAergic inhibition. However, GABAergic trans-
mission remains effective in some epilepsy models and in epilep-
togenic human tissue (Prince and Wilder, 1967; Elger and Speck-
mann, 1983; Tancredi et al., 1990; Michelson and Lothman, 1992;
Benardo, 1993; Westerhoff et al., 1995b; Esclapez et al., 1997,
Kohling et al., 1998a). Functional GABAergic transmission does
not necessarily mean inhibition. GABA can depolarize under te-
tanic stimulation, neuronal trauma, GABA uptake block, 4-amino-
pyridine, and during ontogenesis (Ben-Ari et al., 1989; Perreault
and Avoli, 1992; Grover et al., 1993; Van den Pol et al., 1996; Kaila
et al., 1997; Davies and Shakesby, 1999). This helps explain the
susceptibility of juvenile tissue to ictal activity (Luhmann and
Prince, 1991; Swann et al., 1992; Sutor and Luhmann, 1995), until
close to maturity (Kohling et al., 1998b). Given that GABA can
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excite, the question is whether it does so under pathological, epilep-
togenic, conditions (Perreault and Avoli, 1992; Stasheff et al., 1993b;
Higashima et al., 1996; Perkins and Wong, 1996).

v frequency (30-100 Hz) oscillations are associated with cogni-
tion (Traub et al., 1999; Singer, 1999). One experimental form of vy
oscillation is triggered in hippocampal slices, especially in CA1, by
tetanic stimulation (Traub et al., 1996b). The main source of the
prolonged depolarization during this <y oscillation was initially
identified as mGluRs (Whittington et al., 1997), but several studies
now implicate GABAergic depolarization (Grover et al., 1993;
Kaila et al., 1997; Bracci et al., 1999; Cobb et al., 1999; Vreugdenhil
et al., 1999). Ephaptic (field) effects provide the tight synchroniza-
tion of neuronal firing into population spikes (Bracci et al., 1999).
Here we put forward the hypotheses that similar discharges occur
on the tail of epileptiform bursts induced by Mg?* withdrawal, and
we explore the possibility that such oscillations support the transi-
tion to ictal activity in adult and juvenile hippocampal slices.

MATERIALS AND METHODS

Transverse hippocampal slices (450 um, n = 89) were prepared from adult
(>30 d postnatal; 90-350 gm; n = 34) and juvenile (9-21 d postnatal;
21-63 gm; n = 31) male Wistar or Sprague Dawley rats (anesthetized with
ketamine and medetomidine). No strain differences were found in this
study, so experiments from both strains were pooled. Slices were main-
tained in an interface-type chamber at 32-34°C in gassed (5% CO, and
95% O,) artificial CSF (ACSF) containing (in mM): NaCl 125, NaHCO;
26, CaCl, 2, KCI 3, NaH,PO, 1.25, MgCl, 1, and glucose 10.

Field and membrane potential recordings were obtained from CA3 and
CAIl strata pyramidalia with blunt glass micropipettes (1-2 M{)) filled with
ACSF placed onto the slice surface and sharp microelectrodes (50-80
MQ) filled with 2 M potassium methylsulphate, using a DC-coupled
custom-made field potential amplifier and an Axoclamp 2B amplifier in
bridge mode, respectively. In some experiments, three extracellular field
potential electrodes were placed along the CAl stratum pyramidale (in-
terelectrode distances 300-400 wm) to investigate the spatial extent of
oscillations within this subfield. Intracellular recordings were accepted
provided the resting membrane potential was at, or negative to, —55 mV;
mean resting levels were —67.2 = 1.1 and —73.7 = 3.7 mV (adult CA1l and
CA3,n = 5each), and —65.5 = 2.1 and —64.5 = 0.5 mV (juvenile CA1 and
CA3, n = 11 and 5, respectively). A bipolar Nichrome wire stimulating
electrode was used to stimulate Schaffer collaterals. Its position was ap-
proximately equidistant (400-500 um) from both field potential recording
electrodes. Stimulation intensity was set at 2X the intensity required to
yield maximal population spikes (range, 30-100 V for 0.2 msec duration
stimuli). Single or double (100 msec interstimulus interval) stimuli were
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delivered at fixed intervals of 10 min; 30 min for those slices in which
spreading depression occurred. Before drug application, at least four of
such stimulations were made to ensure that the response was uniform and
stable. In some experiments, tetanic stimuli (20 at 100 Hz) were applied
under control conditions to test whether slices generated oscillatory
behavior.

Epileptogenic conditions were established by omitting Mg?* from the
perfusate. Instantaneous frequency of oscillations was calculated from the
interval between the negative peaks of consecutive population spikes at
different times after the stimulus. Drugs used were the GABA, receptor
antagonist bicuculline (50 uMm); the membrane-permeable carbonic anhy-
drase blocker ethoxyzolamide (EZA; 100 uM) (Autere et al., 1999), and
gap junction blockers (Perez-Velazquez et al., 1994; Ishimatsu and Wil-
liams, 1996; Draguhn et al., 1998) halothane (10 mm) and carbenoxolone
(100 uM; added from stock solution dissolved in DMSO to yield a final
concentration of 0.1%). Whenever DMSO was used as solvent, 0.1%
DMSO was added as a control and had no effect on the activity. Osmolality
changes were induced by addition of sucrose (50 mm) or distilled water
(10%) to ACSF. All values are expressed as means *= SE.

RESULTS

Oscillations in the y frequency range occur in the wake
of epileptiform field potentials

Withdrawal of Mg?" from the perfusate resulted in typical spon-
taneous epileptiform field potentials in adult hippocampal slices,
consisting of a primary burst often followed by two to nine after-
discharges or secondary bursts, both in CA3 and CALl, as previously
described by several groups (Traub et al., 1994; Whittington et al.,
1995). In 9 of 25 slices, an additional field potential discharge could
be observed in the wake of these epileptiform bursts, which was
restricted to the CAl subfield (Fig. 14). This discharge consisted
of a barrage of population spikes reminiscent of vy oscillations
elicited by tetanic stimulation (Fig. 1 B; Bracci et al., 1999). Pooling
data from nine slices from different animals, ranging in age from
P35 to P55, the instantaneous frequency of this oscillation was ~70
Hz, rising to ~90 Hz and then tailing off to ~60 Hz (Fig. 1C), thus
lying in the vy frequency band (30-100 Hz; Bracci et al., 1999). In
one slice, such oscillations also appeared spontaneously and inde-
pendently of epileptiform field potentials (data not shown). The
oscillations typically lasted for >1 sec (1.6 = 0.3 sec, n = 9),
generally far outlasting the epileptiform burst in CA3 (Fig. 1).
Intracellular recordings from CA1 pyramidal neurons revealed that
they were associated with prolonged depolarizations of 10-25 mV,
lasting 1-2 sec (n = 4; Fig. 1). These were sometimes sufficient to
trigger action potentials synchronized with the population spikes,
rising without any visible EPSP (Fig. 1). Pyramidal neurons in CA3
remained unaffected by these phenomena (data not shown).

v oscillations can precede seizure-like discharges

The prolonged depolarization observed in the wake of spontane-
ous epileptiform bursts in CA1l should provide an additional exci-
tatory drive to CAl neurons, and could, in principle, promote the
transition from interictal burst to ictaform or seizure-like dis-
charges (Swann et al., 1993; Traub et al., 1996a). This prompted us
to search for a possible link between these two phenomena. For
this purpose, we used single or paired electrical stimuli to the
Schaffer collaterals which induced vy oscillations reliably in low
Mg>" (Fig. 2). In adult slices, evoked 1 oscillations had an average
duration of 1.9 = 0.18 sec and average population spike amplitude
of 242 = 0.51 mV (n = 18). The evoked oscillations again were
always restricted to CAl and were accompanied by prolonged
(6.3 = 2.3 sec; n = 3) neuronal depolarizations in CAl, but only
short paroxysmal depolarization shifts lasting <1 sec in CA3 (Fig.
2A). Spontaneous interictal epileptiform field potentials usually
were interrupted by a long interval after each prolonged oscillatory
discharge (Fig. 242). Most importantly, however, in 45% of the
slices, prolonged afterdischarges or seizure-like bursts ensued after
the oscillations (see also tetanically evoked vy in Traub et al., 1999,
their Fig. 9.4). In adult rats the vy field potential oscillations and the
seizure-like bursts both were always restricted to CAl.

Juvenile tissue is known to be more susceptible to ictaform
activity (Hablitz, 1987; Swann et al., 1993; Gloveli et al., 1995), so
we extended our study to slices from neonatal rats of postnatal days
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Figure 1. vy frequency oscillations occur spontaneously under epilepto-
genic conditions in the CAl subfield. 4, Epileptiform field discharge in-
duced by Mg?* withdrawal in an adult hippocampal slice. Field potential
(fp) and membrane potential (ic) recordings from CA1l and CA3 strata
pyramidale. In those 9 of 25 slices with <y oscillations on the tail of
spontaneous epileptic bursts, y occurred every second or third event, one of
which is shown here. B, Same recording as in 4 on an expanded time scale
and taken from the trace as defined by the dot. C, Plot of instantaneous
frequency of oscillations obtained from nine slices. Data from a single
representative oscillation are included for each slice.

9-21 (P9-P21). Surprisingly, in slices from animals younger than
P13 (n = 12), no vy oscillations could be elicited at all, either under
epileptogenic conditions or with tetanic stimulation under control
conditions. A recent report describes vy and high-frequency rhythms
in relatively thick, submerged neonatal slices (Palva et al., 2000),
but probably it is a different rhythm from the present in that it was
spontaneous rather than evoked and was much weaker. Spontane-
ous interictal discharges did occur in juvenile tissue of all age
groups, albeit more rarely than in adult tissue (25% of the slices).
In preparations from P13 onward, however, single or paired stimuli
evoked oscillations in all slices (n = 41), with features similar to
those found in adult preparations (Fig. 2B). Moreover, in 60% of
the >P13 slices, seizure-like discharges could be observed in CAl,
73% of which, unlike adult preparations, also extended into CA3
(Fig. 2B2). Apart from these seizure-like discharges, spreading
depressions occurred in some slices. These could either start after
the oscillations, or more frequently, after a seizure-like event.
Spreading depression could occur in one hippocampal subfield
independently of the other; it appeared in CA3 in 35% of the slices,
and in CA1 in only 21% of the cases (compare Figs. 9, 10).

A typical field potential oscillation in a juvenile slice preparation
is shown in more detail in Figure 3. After a double stimulus, the
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Figure 2. Stimulus-induced vy frequency

oscillations can precede seizure-like
events under epileptogenic conditions.
Field potential (fp) and membrane po-
tential (ic) recordings from CA1l and CA3
strata pyramidale. 4, Adult hippocampal
slices reveal typical oscillation induced by
paired stimuli (insets) in CAl, but not in
CA3. Al, The oscillation is associated
with a prolonged depolarization of a CA1
neuron, and, in this example, with pro-
longed afterdischarges or a seizure-like
event in CAl, but not CA3. The region in
the dashed box is expanded below, into the
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large dashed box, to show the early y com-
ponent and the onset of the epileptiform
afterdischarges (*; action potentials are
truncated on the ic trace). 42, CA3 neu-
rons only show short depolarizations dur-
ing the CAl v oscillation. In this experi-
ment, no ictal activity followed the
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oscillation, although interictal bursts were
present (calibrations same as A47). B, Ju-
venile hippocampal slices reveal typical
oscillation (insets) in CA1, which is again
not apparent in CA3. B1, The oscillation
(from a P21 rat) is associated with a pro-
longed depolarization of a CAl neuron
and with prolonged afterdischarges or a
seizure-like event in CAl, but not CA3.
B2, CA3 neurons only show short depo-
larizations during vy oscillation in CAl, in
spite of their involvement in the later ictal
activity (from a P16 rat; calibrations same
as BI). Note that ictal activity followed
the oscillation in both CA1 and CA3 only
in juvenile slices.
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oscillation started 50-100 msec after the population spike (Fig.
34). In CA3, only antidromic population spikes (Fig. 34) or an
epileptiform field potential (Fig. 4) could be observed. The oscil-
lation typically lasted 1-2 sec (1.60 = 0.32 sec; n = 41) and usually
consisted of negative-going population spikes with an average
amplitude of 4.6 = 0.5 mV (Fig. 34). In Figure 3C, the average
instantaneous frequency of the oscillation is plotted against time.
As the graph demonstrates, the oscillations initially were in the vy
frequency band (30-120 Hz) and then slowed to the 8 band (10-30
Hz), as previously described for tetanically evoked vy oscillations
(Bracci et al., 1999). During these responses CA1 pyramidal cells
experienced prolonged depolarizations, which usually outlasted the
field oscillation. On average, this lasted 3.3 = 1.6 sec (n = 5) in
cases when no ictaform activity or spreading depressions followed.
Action potentials synchronous with the population spikes were
observed in five of eight neurons (Fig. 3B). Brief negative deflec-
tions often preceded the action potentials; in both tetanically in-
duced oscillations and low-Ca*" field bursts such deflections have
been interpreted as evidence of field or ephaptic effects, because
when the local extracellular field was subtracted they were revealed
as net transmembrane depolarizations (Fig. 3B; Haas and Jefferys,
1984; Taylor and Dudek, 1984; Bracci et al., 1999). Such negativi-
ties could be observed, synchronous with the field potential deflec-
tions, and independently of action potentials in six of eight neurons;
frequent synaptic potentials also occurred. A 50-70% drop in
input resistance could be observed, which waned within 2-4 sec,

ZE

4s — CA3ic

in parallel with the prolonged depolarization (Fig. 4). Reduction
of input resistance was a key factor in the identification of
depolarizing GABA, rather than mGluRs, as the source of
tetanically evoked depolarization (Kaila et al., 1997; Taira et al.,
1997; Bracci et al., 1999; Cobb et al., 1999; Smirnov et al., 1999;
Vreugdenhil et al., 1999).

Prolonged depolarizations develop gradually with
Mg?2* washout

Several changes in synaptic activity occur after washout of Mg?*.
NMDA receptor-mediated currents increase (Traub et al., 1994)
because of removal of the well documented voltage-dependent
block of the receptor by Mg?" (Mayer et al., 1984; Nowak et al.,
1984). In addition GABA, receptor-mediated inhibition erodes
gradually (Whittington et al., 1995). In view of these findings, we
investigated the temporal development of membrane potential
changes with paired stimuli and progressive washout of Mg" in a
cohort of P13-P21 rats.

CA1 neurons typically showed a 0.5-2 sec hyperpolarization
after evoked EPSPs and action potentials (Fig. 54). After 30 min of
washing out Mg?*, the hyperpolarization evoked by the first stim-
ulus became smaller and, after the second, converted to a depolar-
ization (Fig. 54), a sequence of events found in all neurons after 45
min washout (Fig. 5B). In the illustrated neuron no hyperpolariza-
tion remained after 60 min washout; it was replaced by a prolonged
depolarization, which was associated with prominent vy oscillations
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Figure 3. vy frequency population spikes are associated with transient
membrane potential negativities in CAl. 4, This cell, in a slice from a
juvenile (P15) rat, fired infrequently during the evoked <y oscillation in
Mg?*-free ACSF [field potential ( fp) and membrane potential (ic) record-
ings from CA1l and CA3 strata pyramidale]. B, Same recording as in 4 on
an expanded time scale and taken from the trace as defined by the dot
reveals transient intracellular negativities during each population spike and
preceding the one action potential shown. C, Plot of instantaneous fre-
quency of oscillations obtained from 41 slices. Data from a single repre-
sentative oscillation were included for each slice.

in the field potential (Fig. 54). This effect was even more pro-
nounced after 120 min washout, when the maximal depolarization
typically reached 15-20 mV (Fig. 5B). Qualitatively and quantita-
tively similar findings were also seen in adult preparations (>P21;
data not shown). CA3 neurons under these conditions only show
membrane potential changes comparable with those found for CA1
neurons in control ACSF (data not shown). The development of
the prolonged depolarization correlated with the occurrence of
ictaform activity. After <90 min washout of Mg?>", seizure-like
discharges could be observed in only 22% of cases; after >90 min
washout, ictal activity occurred in 60% of cases.

The gradual development of vy oscillations under epileptogenic
conditions is also mirrored in a spatial spread of oscillatory field
discharges. In three experiments, the spatial extent of oscillations
within CA1 was judged with three field potential electrodes posi-
tioned at either end and in the middle of the CA1 region. In normal
ACSF, double stimuli elicited no oscillation. Tetanic stimuli, how-
ever, led to vy oscillations of nearly equal amplitude at all three
locations (Fig. 6). Single population spikes appeared to be initiated
first at the site closest to the stimulation electrode (Fig. 6). By
contrast, after 60 min Mg?" withdrawal, a paired stimulus now
generated large-amplitude oscillations, which were typically absent
at the site closest to the stimulation electrode and were initiated at
the subicular end of CAl (Fig. 6).
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Figure 4. Neuronal input resistance drops during prolonged depolariza-
tion associated with field oscillation in CAl. Field potential (fp) and
membrane potential (ic) recordings from CAl and CA3 strata pyramidale.
Input resistance of a CA1 neuron determined by —0.3 nA current injection
(200 msec, 3 Hz).

Role of field effect (ephaptic) interactions

Small negative membrane potential fluctuations, coinciding exactly
with the negative peaks of oscillatory field potentials (Fig. 3), have
been interpreted as a sign of ephaptic interactions and were found
to be of critical importance for the generation of synchronous
tetanically evoked v oscillations (Bracci et al., 1999). Such field
effects are most prominent when the extracellular resistance is
relatively high (Korn and Faber, 1980; Jefferys, 1995; Vigmond et
al., 1997). Consequently, field effects can be manipulated by chang-
ing the osmolality of the extracellular fluid. Hyperosmolar solu-
tions make cells shrink and widen the extracellular space and thus
decrease its resistance; conversely, hypo-osmolar solutions induce
cell swelling and an increase of extracellular resistance. Hyperos-
molar ACSF reversibly blocked all oscillatory activity and subse-
quent epileptiform afterdischarges (n = 3; Fig. 7), as already
reported for tetanically induced oscillations and nonsynaptically
mediated 0 Ca*" epilepsy (Dudek et al., 1990; Bracci et al., 1999).
The neuronal depolarization, as demonstrated in the neuron
shown in Figure 7, was still present, but had a much shorter
duration (~200 msec) than the prolonged depolarization before
the manipulation of osmolality. Hypo-osmolar ACSF increased the
amplitude of oscillations and prolonged the ictal discharges (data
not shown; n = 1).

Oscillations and prolonged depolarizations are GABA
mediated and provide a possible mechanism for the
generation of seizure-like events

We tested whether the vy oscillations observed under epileptogenic
conditions depend on GABA, similarly to tetanically induced y
oscillations (Bracci et al., 1999), and whether the associated ictal
events were affected by manipulation of the inhibitory system.
Blockade by bicuculline and ethoxyzolamide provided evidence
that the ~15-20 mV, >3 sec depolarization evoked by tetanic
stimulation resulted from a massive release of GABA (Kaila et al.,
1997; Taira et al., 1997; Bracci et al., 1999; Cobb et al., 1999;
Smirnov et al., 1999; Vreugdenhil et al., 1999).

The membrane-permeable carbonic anhydrase blocker EZA,
leads to a drop of HCO;  availability, and hence reduces its
contribution to the depolarizing GABA, response (Kaila et al.,
1997; Taira et al., 1997; Autere et al., 1999). In the present study,
application of EZA (100 um; n = 3) for 30 min greatly decreased
the vy oscillation and blocked seizure-like events (Fig. 8).
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Figure 5. Prolonged depolarization associated with vy oscillations develops
gradually with Mg?" washout. 4, Typical membrane potential changes of a
juvenile CA1 neuron in response to paired (100 msec interstimulus interval)
electrical stimuli to Schaffer collaterals in control ACSF (black line), after
30 min (dark gray line), and 60 min Mg *-withdrawal (light gray line). Field
(fp) and membrane potential (ic; action potentials are truncated) record-
ings in CA1 and CA3 strata pyramidale. B, Membrane potential changes at
different time points of juvenile CAl neurons (n = 162) in response to paired
stimuli in control ACSF, after 45 and 120 min Mg*" withdrawal. Time 0
msec denotes the end of the second stimulus.

Blockade of GABA, receptors by bicuculline (10-50 um; 30
min; n = 7) in this study had one of two distinct consequences. In
four cases, all from P13-P21, in which CA3 was involved in the ictal
activity, this activity persisted, whereas vy oscillations in CA1 were
blocked. In these cases the ictal bursts were shorter and had a
morphology different from those in the absence of bicuculline (Fig.
9A). In the three other P13-P21 cases, ictal activity was restricted
to CAl, and vy oscillations again were blocked, but in these cases the
seizure-like events were abolished, whereas interictal-type dis-
charges persisted (Fig. 9B). An experiment on an adult slice rep-
licated the latter result; y oscillations and ictal activity within CA1
were both blocked by bicuculline. These results suggest that icto-
genesis depends on differential mechanisms in CAl and CA3. In
cases in which spreading depressions occurred after the ictal dis-
charges, these were abolished by bicuculline (Fig. 9).

Gap junctional coupling has been implicated in shaping pro-
longed low-Mg?" discharges that originate in CA3 (K&hling et al.,
1999). Here we used the gap junction blockers halothane (10 mwm;
n = 5) and carbenoxolone (100 um; n = 2) to determine whether
they selectively affected either (1) oscillations or (2) seizure-like
events. Again, the effect of halothane depended on which region
generated ictal events. If CA1 alone showed prolonged discharges,
halothane had no influence either on the vy oscillations or on the
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Figure 6. -y oscillations are initiated at the subicular end of CAl under
epileptogenic conditions. Field potential recordings from CA1. Typical y
oscillation in CAl induced by tetanic stimulation (100 Hz, 200 msec) of
Schaffer collaterals (black line) in a juvenile (P17) hippocampal slice.
Oscillations of nearly equal amplitude occur in the CA1 area most proximal
to the stimulation electrode (CAI c) at the border of CA1 and CA2, in the
middle of the CA1 subfield (CAI b), and at its subicular end (CA1I a). Single
splkes ﬁrst arise at CAl c. By contrast, paired stimulus-induced y oscillation
in Mg?*-free ACSF in the same slice is generated only in CA1 a and b, and
is initiated at the subicular end (gray line).

seizure-like event (n = 2; Fig. 10A4). In contrast, in slices with ictal
activity in both subfields, both halothane and carbenoxolone
blocked this activity but did not influence the appearance of vy
oscillations (n = 3 and 2, respectively; Fig. 10B).

CA1 and CAS3 both can initiate seizure-like events

These pharmacological manipulations suggest that CAl and CA3
possess different mechanisms for the generation of seizure-like
discharges, which in CAl depend on GABAergic depolarization,
and in CA3 on gap junctions, presumably in conjunction with
recurrent excitation (Traub et al., 1994). If this were so, one would
expect that either region can initiate discharges and that the sub-
fields should compete for the leading or pacemaking role in this
process. We therefore analyzed all experiments (at P13-P21) in
which both subfields showed ictal events for any indication of such
“competition” by evaluating the time lag between each afterdis-
charge in the CAl and CA3 recordings. Figure 11 gives a typical
example of such a discharge. The expanded insets of Figure 11B
show that, in this example, it is the CA1 region that led for the first
19 afterdischarges, with very variable latencies ranging from 5 to 36
msec with respect to CA3 (Fig. 11C). Only from the 20th afterdis-
charge on, CA3 consistently led with a less variable time lag of 5-8
msec (Fig. 11C). Such a behavior, i.e., an initial lead of CA1 with
subsequent lead of CA3, was seen in 31% of the slices. In 57% of
the preparations, CA3 always led, and in 12% there was a contin-
uous change of lead between CA1 and CA3.

DISCUSSION

Processes governing vy oscillations under

epileptogenic conditions

The central observation here is that trains of population spikes at
v frequencies, in CA1, prolong 0 Mg?* interictal events previously
shown to be initiated in CA3 (Mody et al., 1987; Colom and
Saggau, 1994; Kohling et al., 1994; Kohling et al., 1999). These vy
trains closely resemble tetanically induced vy oscillations in hip-
pocampal slices (Whittington et al., 1997). Our current view is that
depolarizing actions of GABA play a major role, particularly in the
vicinity of the stimulation electrode (Kaila et al., 1997; Bracci et al.,
1999; Vreugdenhil et al., 1999). Several lines of evidence suggest
that under epileptogenic conditions of the present study the vy
oscillations and concomitant neuronal depolarizations observed
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were also mediated by a massive, depolarizing release of GABA.
(1) The oscillations observed here appeared solely in CAl and
showed the same frequency dynamics as the tetanically induced
oscillations, starting in the y band and then shifting to the 8 band.
(2) They were associated with a reduction of neuronal input resis-
tance. In this context, experiments showing no vy oscillations at
recording sites very close to the stimulating electrode (Fig. 6) can
be interpreted as being attributable to the highest GABA levels
causing neurons to fail to fire because of a massive loss of resis-
tance, as proposed for tetanically induced oscillations (Vreugdenhil
et al.,, 1999). (3) vy oscillations under epileptogenic conditions, and
accompanying depolarizations, were blocked by bicuculline and
severely attenuated by ethoxyzolamide.

The synchronizing drive, which provides for neuronal firing and
the generation of oscillatory population spikes, appeared to be
ephaptic under epileptogenic conditions. Relevant observations in
the present paper parallel those for tetanically induced oscillations
(Bracci et al., 1999). (1) Membrane potential negativities appeared
in precise synchrony with the field population spikes. (2) Action
potentials sometimes arose from these negativities, not all cells
generated spikes, and some produced partial spikes (compare Figs.
3 and 4). (3) Manipulations of osmolality changed the activity in
the predicted manner. The role of ephaptic interactions is further
emphasized by the fact that in preparations younger than P13, no y
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Figure 8. vy frequency oscillations and seizure-like events are abolished by
permeable carbonic anhydrase blocker ethoxyzolamide (100 um). Typical y
oscillation and subsequent ictal discharge, evoked by paired stimuli, in
Mg?*-free ACSF in a juvenile (P15) hippocampal slice before and after
perfusion with ethoxyzolamide. Field potential recordings ( fp) from CA1l
and CA3 strata pyramidale.

Figure 7. vy frequency oscillations and seizure-like
events are abolished by expansion of the extracellu-
lar space. 4, vy oscillation and subsequent ictal dis-
charge, evoked by paired stimuli, in Mg?*-free
ACSF in a juvenile (P17) hippocampal slice before
and after perfusion with hyperosmolar (30 mM su-
crose added) ACSF. Field potential ( fp) and mem-
brane potential (ic) recordings from CA1l and CA3
1 strata pyramidale. B, Same recording as in 4 on an
. expanded time scale and taken from the trace as
defined by the dotted rectangle during the vy
oscillation.

oscillations can be elicited. In juvenile tissue, the extracellular
space is known to be wide, and thus field effects are less likely
(Lehmenkiihler et al., 1993).

Why do vy oscillations arise under

epileptogenic conditions?

Here we show that under epileptogenic conditions, brief epilepti-
form bursts, either evoked by single or paired electrical stimuli, or
in some cases spontaneous, were sufficient to evoke vy oscillations.
In control ACSF, single or paired stimuli never suffice to elicit
oscillations, and instead tetanic stimulation is necessary. The drive
for the initiation of an oscillation thus appears to be synchronous,
synaptically mediated activity, either evoked or spontaneous. The
increase in neuronal excitability because of Mg?" withdrawal cer-
tainly plays an important role. As others have pointed out, it is
probably brought about by: loss of surface charge (not an essential
requirement; Jefferys and Traub, 1998), increased NMDA-
mediated synaptic currents, and reduced activity of the Mg?*
dependent Na*/K* ATPase (Anderson et al., 1986; Mody et al.,
1987; Tancredi et al., 1990; Traub et al., 1994). Synchronous burst-
ing under these conditions is facilitated and spreads rapidly within
the neuronal population via recurrent excitation (Traub et al.,
1996a). Presumably the epileptiform burst replaces the external
tetanic stimulus in driving GABAergic interneurons (Bracci et al.,
1999) and activates interneurons by local circuits (Knowles and
Schwartzkroin, 1981; Esclapez et al., 1997). The prolonged pres-
ence of GABA then causes a depolarizing shift of the GABA,
receptor reversal potential because of one or more of: accumula-
tion of [C17];, accumulation of [K™],, or spillover of GABA to
receptors with a greater HCO; ~ permeability (Kaila et al., 1997;
Taira et al., 1997; Perkins, 1999; Smirnov et al., 1999; Staley and
Proctor, 1999).

The increased excitability under epileptogenic conditions also
involves interneurons, which should thus fire more readily than
under normal circumstances (Domann et al., 1991). There are
reports that inhibition is weakened in 0 Mg>*. Whittington et al.
(1995) report an “erosion of inhibition” measured in CA3. LeBeau
and Alger (1998) found a transient reduction in IPSPs in CAl,
although the relative contributions of CI~ and HCO; ~ to IPSPs in
these Cl -loaded neurons may be consistent with the results re-
ported here. Others found substantial inhibition in this model.
Tancredi et al. (1990) showed that neuronal GABA-mediated post-
burst hyperpolarizations occur and that IPSPs could be elicited
during the generation of epileptiform bursts in hippocampal slices.
Westerhoff et al. (1995b) reported that, even after single 0 Mg?*-
induced epileptiform bursts, GABA-mediated Cl~ currents oc-
curred with average durations of 500 msec, considerably longer
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pocampal slices before and after perfusion
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activity is generated in B and that spreading
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Figure 10. v frequency oscillations re-
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are abolished by gap junction blockade if Halothane 5 mﬂ Halothane 5 mﬂ
generated in CA3 but persist if they are

generated in CAl only. Field potential ~CA3 2s CA3 2s
recordings from CA1l and CA3 strata py- I
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induced vy oscillation and subsequent ictal 10 mv W“"V"‘W‘ 2mv]
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both in CAl and CA3 (B, P19 rat) in CA1 N mv| A

Mg?*-free ACSF in a juvenile hippocam-
pal slice before and after perfusion with
halothane (10 mm).

than normal. Thus, we think that a widespread release of GABA
occurs under epileptogenic conditions, triggered by synaptic mech-
anisms during the initial epileptiform burst. This is likely to be
exacerbated by the ability of prolonged Mg?* omission to cause
downregulation of the KCC2 K*/C1~ cotransporter selectively in
CA1 (Rivera et al., 1999), an effect that is particularly remarkable
because low Mg?>" allosterically stimulates K*/Cl~ cotransport
(Jennings, 1999).

GABA as a possible ictogenic mechanism

One question that remains is why GABA in some instances can be
ictogenic and why ictal activity was even blocked by bicuculline, a
widely used epileptogenic substance. For the appearance of
seizure-like events, a prolonged neuronal excitation, extending
beyond the primary epileptiform discharge, is required (Swann et
al., 1993; Traub et al., 1996a; Borck and Jefferys, 1999). This
prolonged excitation is generally attributed to enhanced glutama-
tergic transmission of various kinds: local synaptic networks, direct
actions of the epileptogenic manipulation, potentiation of mGluRs,
or indirectly by GABAg-mediated reduction of inhibition (Ander-
son et al., 1986; Rafiq et al., 1993; Stasheff et al., 1993b; Swann et
al., 1993; Traub et al., 1994, 1995; Merlin and Wong, 1997; Merlin,
1999; Motalli et al., 1999). Three reports, dealing with electro-

graphic discharges in vitro, have speculated that actions of GABA
may play a role in seizure generation in hippocampus, without,
however, providing evidence for prolonged depolarizations
(Stasheff et al., 1993a,b; Higashima et al., 1996).

How does the GABA-mediated depolarization initiate a seizure-
like event in CA1? In some instances, ictal discharges remained
restricted to CA1; indeed, Tancredi et al. (1990) reported that the
isolated CA1 subfield can sustain 0 Mg?* seizure-like activity when
triggered by a brief single stimulus. Several processes may lead to
ictogenesis in CALl. (1) Prolonged exposure to low-Mg?* can cause
downregulation of the KCC2 K*/C1~ cotransporter protein in
CAl, resulting in a depolarizing shift of the GABA, receptor
reversal potential in CA1 (Rivera et al., 1999). However, epileptic
bursts have also been reported in CA1 after y-frequency discharges
evoked by tetanic stimulation (I. M. Stanford and J. G. R. Jefferys,
unpublished observations, reported in Fig. 9.4 of Traub et al,
1999); these epileptic bursts occurred in normal Mg?", which
argues that the downregulation of KCC2 is not a necessary require-
ment. (2) A rise in extracellular K* during the v oscillation would
increase excitability for some time after the oscillation terminated
(Vreugdenhil et al., 1999). (3) Ephaptic interactions, which syn-
chronize population spikes, are more powerful in CAl than in



Kohling et al. « y Oscillations and Ictal Activity

A

CA1fp

a b

J. Neurosci., September 15, 2000, 20(18):6820-6829 6827

c

CA3 fp
2mv ‘

CA3ic

B

CA1fp a

- N
o (=]
| t

50 mv|

2s

1mV|

S A ]
M\/‘
[

Figure 11.  Seizure-like discharges can be
initiated in either CA3 or CAl subfields.
A, Typical paired stimulus-induced vy os-
. cillation and consecutive seizure-like dis-
charge in Mg?*-free ACSF in a juvenile
(P16) hippocampal slice. Field potential
(fp) and membrane potential (ic) record-
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in A at time points corresponding to the
fourth (a), fifth (), and 102nd (c) after-
discharge. Dotted lines indicate onset of
afterdischarge, revealing that CAl leads
in a and b, whereas CA3 leads in c. C, Plot
of the time lag between onset of field
potential afterdischarges between CAl
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CA3, because of the relatively small extracellular space (McBain et
al., 1990). (4) Fi-nally, the repetitive, synchronous firing of CAl
pyramidal cells may lead to posttetanic and long-term potentiation
of the excitatory synapses between them (Traub et al., 1998), thus
setting up a network prone to repetitive epileptic bursts through
mechanisms analogous to those identified in CA3 (Traub and
Wong, 1982; Traub et al., 1987, 1993, 1994). Long-lasting GABA -
dependent depolarizations have been described in the entorhinal
cortex exposed to 4-aminopyridine (Avoli et al., 1996; Lopantsev
and Avoli, 1998); however, they did not produce the rhythmic vy
band population spikes, found in CA1 in 0 Mg?", which set the
scene for the transition to final, prolonged component of the ictal
discharges reported here.

Seizure-like events also occurred in CA3, either initially or
secondary to CAl. The latter case could be because of antidromic,
ectopic spikes generated in CA3 axons, as reported for another
model by Stasheff et al. (1993a). Subsequently, recurrent excitation,
already well described in CA3 (Traub and Wong, 1982; Traub et al.,
1987, 1993, 1994; Knowles et al., 1987), may be potentiated and
enable CA3 to lead ictal discharges by itself (Fig. 11B,C).

In summary, we propose that at least two distinct mechanisms
of ictogenesis coexist in hippocampal slices under epileptogenic
conditions: (1) recurrent excitation in CA3 (Traub et al., 1994),
possibly involving gap junctional coupling (Kohling et al., 1999),
and (2) GABAergic depolarizations in CAl. The coexistence of
these mechanisms can account for the diverging results with appli-
cation of bicuculline. In the former, GABA has antiepileptic prop-
erties, and hence bicuculline prolongs discharges (Tancredi et al.,
1990; Traub et al., 1994), in the latter, GABA is proepileptic and
hence bicuculline blocks bursts. These findings may explain why
some antiepileptic, putatively GABA-promoting drugs, have occa-
sionally been found to be proconvulsant in clinical cases (Schapel
and Chadwick, 1996; Elger et al., 1998).

and CA3; negative values indicate CAl is
leading. Each dot represents an afterdis-
charge of the event shown in A.

80 100
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