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We explore a synaptic plasticity model that incorporates recent
findings that potentiation and depression can be induced by
precisely timed pairs of synaptic events and postsynaptic spikes.
In addition we include the observation that strong synapses
undergo relatively less potentiation than weak synapses,
whereas depression is independent of synaptic strength. After
random stimulation, the synaptic weights reach an equilibrium
distribution which is stable, unimodal, and has positive skew.
This weight distribution compares favorably to the distributions
of quantal amplitudes and of receptor number observed exper-
imentally in central neurons and contrasts to the distribution
found in plasticity models without size-dependent potentiation.
Also in contrast to those models, which show strong competition

between the synapses, stable plasticity is achieved with little
competition. Instead, competition can be introduced by including
a separate mechanism that scales synaptic strengths multiplica-
tively as a function of postsynaptic activity. In this model, syn-
aptic weights change in proportion to how correlated they are
with other inputs onto the same postsynaptic neuron. These
results indicate that stable correlation-based plasticity can be
achieved without introducing competition, suggesting that plas-
ticity and competition need not coexist in all circuits or at all
developmental stages.
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Changes in the synaptic connections between neurons are widely
believed to contribute to memory storage, and the activity-
dependent development of neuronal networks. These changes are
thought to occur through correlation-based, or Hebbian, plasticity,
but the precise plasticity rules remain unclear. In general, such
learning rules should allow synaptic inputs to change in strength,
depending on their correlation with postsynaptic firing or with the
activity of other inputs (Sejnowksi, 1977). Second, they should
generate a stable distribution of synaptic weights. Finally, to ac-
count for activity-dependent development, they should generate
competition between the inputs of a neuron, so that strengthening
some inputs weakens others (Shatz, 1990; Miller, 1996).

Unconstrained Hebbian plasticity does not generate a stable
weight distribution, because once an input is strengthened its
correlation with the postsynaptic activity increases. This leads to
further potentiation and the synaptic weights grow to infinitely
large values. Analogously, once depressed, synapses decrease to
zero. These problems are usually fixed by constraining the learning
rules, for instance by keeping the sum of weights constant. Alter-
natively, the postsynaptic activity can be used to adjust the thresh-
old for potentiation (Bienenstock et al., 1982; Kirkwood et al.,
1996), to regulate neuronal excitability (Desai et al., 1999), or to
scale all of a neuron’s synaptic weights (Turrigiano et al., 1998). All
these mechanisms stabilize postsynaptic activity and introduce
competition, but the choice of constraint influences strongly the
behavior of the model (Miller and MacKay, 1994).

Recently, plasticity known as spike timing-dependent plasticity
(STDP) has been observed (Bell et al., 1997; Markram et al., 1997;
Bi and Poo, 1998). If a synaptic event precedes the postsynaptic
spike, the synapse is potentiated. If it follows the postsynaptic
spike, the synapse is depressed. STDP rules have been imple-
mented in several modeling studies (Blum and Abbott, 1996; Ger-

stner et al., 1996; Eurich et al., 1999; Kistler and van Hemmen,
2000). Interestingly, because of strong competition between inputs,
the postsynaptic firing rate in these models is independent of
synaptic input rate (Song and Abbott, 2000). However, as com-
monly implemented, these learning rules are unstable and require
hard bounds on the synaptic weights. The synaptic weights are
driven to these bounds and obtain a bimodal distribution, which is
unlikely to reflect the weight distribution in biological neurons.

Here we present an intrinsically stable STDP learning rule. It
incorporates the experimental observation that potentiation is
weaker for strong synapses (Debanne et al., 1996, 1999; Bi and Poo,
1998). This learning rule generates a stable, unimodal, positively
skewed distribution of synaptic weights that closely resembles the
distribution of quantal amplitudes measured from central neurons
(Bekkers et al., 1990; Turrigiano et al., 1998). The weights depend
on their correlation with other inputs, so that learning occurs
through cooperation between inputs. Finally, competition is almost
absent, and must be introduced independently by implementing
activity-dependent synaptic scaling (Turrigiano et al., 1998;
O’Brien et al., 1998; Turrigiano, 1999). The scaling does not
change the shape or the stability of the weight distribution.

MATERIALS AND METHODS
Experimental foundation of the plasticity rules. In this section we extract the
parameters of the model from the experimental data presented in Bi and
Poo (1998). Synapses can be potentiated and depressed by pairing a
synaptic event with a postsynaptic spike. If the synaptic event occurs before
the postsynaptic spike, the synapse will be potentiated; if the postsynaptic
spike precedes the synaptic event the synapse will be depressed (Markram
et al., 1997; Zhang et al., 1998; Bi and Poo, 1998). The amount of
conductance change decreases approximately exponentially with the time
difference between the synaptic event and the postsynaptic spike, dt. Such
a synaptic modification window is illustrated in Figure 1. Although in Bi
and Poo (1998) the time window was slightly asymmetric (the time con-
stant for the exponential function was 34 6 13 msec for depression and
17 6 9 msec for potentiation), this asymmetry is not essential, and we use in
our model the same time constant for depression and potentiation, tSTDP 5
20 msec.

There is experimental evidence that the amount of change also depends
on the initial synaptic size (Debanne et al., 1996, 1999; Bi and Poo, 1998).
The relative amount of depression is independent of synaptic weight,
whereas the relative amount of potentiation decreases for stronger syn-
apses (Figs. 1B, 2A). We describe this by assuming that the amount of
potentiation is inversely proportional to the weight (Kistler and van
Hemmen, 2000).

In the data of Bi and Poo (1998), synaptic events and postsynaptic spikes

Received July 12, 2000; revised Sept. 5, 2000; accepted Sept. 14, 2000.
This work was supported by National Institutes of Health Grants R01 NS 36853

(G.G.T.), K02 NS01893 (G.G.T.), and National Research Service Award NS 10967
(G.B.). M.v.R. was supported by the Sloan foundation. G.G.T. is a Sloan Foundation
Fellow. We gratefully acknowledge discussions with Larry Abbott, Sacha Nelson, and
Sen Song, and G.B. gratefully acknowledges discussions with Mu-ming Poo.

Correspondence should be addressed to Mark C. W. van Rossum, Department of
Biology, MS 008, Brandeis University, 415 South Street, Waltham, MA 02454-9110.
E-mail: vrossum@brandeis.edu.
Copyright © 2000 Society for Neuroscience 0270-6474/00/208812-10$15.00/0

The Journal of Neuroscience, December 1, 2000, 20(23):8812–8821



were paired 60 times. To deduce how much the synapse changes after one
single pairing, we divide the weight change by 60, implicitly assuming
independence between the pairing events. Denoting with w the synaptic
conductance in Siemens, we describe potentiation as w 3 w 1 wp , and
depression as w 3 w 1 wd. The plasticity rules are:

wp 5 cpe2dt/tSTDP

wd 5 2cdwedt/tSTDP,

where cd is the average amount of relative depression after one pairing,
cd 5 0.003; and cp is the average amount of potentiation after one pairing,
cp 5 7 pS.

It will turn out that fluctuations in the amount of depression and
potentiation are important. That is, the amount of conductance change is
a noisy quantity. To describe this, we first tried an additive noise model in
which a random conductance value was added to the weights after every
pairing. For this model, weak synapses show strong fluctuations, and strong
synapses show small fluctuations (Fig. 2B). Because this does not seem to
correspond to the data, we rejected this model. Rather, the fluctuations in
the relative change seem roughly constant, which implies that the fluctu-
ations are multiplicative (Fig. 2C). We thus arrive at the following plas-
ticity rules:

wp 5 ~cp 1 nw!e2dt/tSTDP (1)

wd 5 ~2cdw 1 nw!edt/tSTDP, (2)

where n is a Gaussian random variable with zero mean, its SD, s, is
extracted from the data. Assuming that no other noise sources were
present in the measurement of the conductance changes, we find s 5 0.015.
Equations 1 and 2 are the basis for this study.

The experimental data on the size dependence of the potentiation can
also be fitted with a straight line in Figure 2A as was done in Bi and Poo
(1998). That is, wp 5 2c9p w log(w/wmax), where wmax is the conductance
above which a potentiation protocol actually leads to depression of the
synapse. For this plasticity rule runaway learning toward infinite weights is
surely impossible. The equilibrium distribution that results from these
rules looks similar to the one in Figure 3A in the central region, but a
smaller second peak appears in the distribution around w 5 0. It is not
clear whether this has a biological analog. On the one hand it could be an
artifact caused by our limited experimental knowledge of Equation 1 at
small w. Alternatively, it might be a useful biological mechanism corre-
sponding to silent synapses or weak synapses that can be pruned.

Simulation details. To analyze the consequences of the above plasticity
rules we simulate a single cell receiving random inputs. We use a leaky
integrate and fire neuron with: 100 MV input resistance, 20 msec time
constant, 260 mV resting potential, and 250 mV firing threshold. After
firing the membrane potential resets to the resting potential. The neuron
receives input from 25 inhibitory and 100 excitatory synapses. The inhib-
itory synapses have a reversal potential of 270 mV, and a time constant of
5 msec. The inhibitory synapses are not plastic but are fixed at a conduc-
tance of 2000 pS and are stimulated with Poisson trains of 20 Hz. The
excitatory synapses have a reversal potential of 0 mV and a time constant
of 5 msec. The excitatory synapses also receive Poisson input. In some
cases correlation across synaptic inputs is introduced. Correlation is im-
plemented by randomly distributing N Poisson trains among the inputs.
Every time step the Poisson trains are redistributed (Destexhe and Paré,
1999). For every synaptic event there is a chance 1/N, that it is shared by
another synapse. This yields a cross-correlation coefficient between trains
of C(Dt) 5 1/Nd(Dt).

Plasticity was implemented as follows: when a synaptic event occurs after
a postsynaptic spike, the synapse is depressed according to Equation 2. We
assume that all plasticity events are independent, but one also needs to
specify the behavior when there are multiple synaptic events at the same
input. We assume that at a given synapse, only the first synaptic event after
a given spike depresses the synapse; subsequent synaptic events do not
depress the synapse further before another postsynaptic spike occurs.
Potentiation was implemented analogously: only the first postsynaptic
spike after the synaptic event leads to potentiation of the synapse, accord-
ing to Equation 1. In the simulations we use cp 5 1 pS.

Alternatively, one can assume that all pairing events cause depression
and potentiation, as was assumed in most other studies (Kempter et al.,
1999; Song et al., 2000). For Poisson trains one can show that this only
changes the rate of change, the equilibrium state is the same in both
implementations. We choose our implementation because it is consistent
with the calculations presented in the appendix.

The plasticity rules are independent of the presynaptic frequency, which
is likely to be an over-simplification (Markram et al., 1997). However, this
assumption is not essential for our argument: frequency-dependent poten-
tiation or depression would shift the mean synaptic weight depending on
stimulation frequency, but stability and competition would not be altered.

The parameters used in the simulation reflect a typical cultured neuron;
such neurons have few synapses with large conductances. In slice or in vivo
the number of inputs runs in the thousands, and we expect that the
plasticity rules will yield synapses with correspondingly smaller mean
weights, indeed, such scaling could be accomplished by activity-dependent
scaling (see below) and does not qualitatively change our results.

Activity-dependent scaling. Here we show how activity-dependent scaling
is incorporated in the model. As the precise mechanism behind activity-
dependent scaling is not known, we present only a possible implementa-
tion. Activity-dependent scaling is a mechanism that adjusts the synaptic
weights to regulate the postsynaptic activity. The postsynaptic activity is
measured with a slow-varying sensor, a(t). It increases with every postsyn-
aptic spike, and decays exponentially between spikes:

t
da~t!

dt
5 2a~t! 1 O

i

d~t 2 ti!,

where ti are the spike times. The biological time constant of the activity
sensor t is unknown, but is expected to be slow, we use t 5 100 sec.
Activity-dependent scaling scales the weights to prevent too low or too high
activity levels. The scaling is thought to be multiplicative and independent
of presynaptic activity (Turrigiano et al., 1998; Turrigiano, 1999). A simple
implementation would be to update the weights every time step according to:

dw~t!
dt

5 bw~t!@agoal 2 a~t!#,

where agoal is the desired postsynaptic activity, set to 20 Hz, and b is a
constant determining the strength of the scaling. This mechanism scales
the synapses towards the activity goal, but because the plasticity rules
Equations 1 and 2 also pull on the weights, in the end a residual deviation
between the actual activity and its goal value remains. Such errors are
prevented by using an “integral controller”, (Riggs, 1970),

dw~t!
dt

5 bw~t!@agoal 2 a~t!# 1 gw~t!E
0

t

dt9@agoal 2 a~t9!#, (3)

where g is another constant. As the second term accumulates the error,
this term will in the long run be dominant if the goal value is not reached.
As a result the steady-state activity level will eventually become equal to its
goal value.

As with any feedback system, oscillations readily occur. These oscilla-
tions can arise as follows: when the activity does not have the desired
value, the weights are slowly adjusted, and the activity moves back to its
desired value. However, as the activity sensor has a delay, the weights can
be overcompensated and overshoot. This leads to oscillations in the activ-
ity. Because such oscillation are not known to occur, the parameters were
adjusted to prevent them. Suitable parameter values can be calculated from
control theory (Riggs, 1970). The parameters do not require a sensitive
adjustment. In our simulations we use a strength b 5 4 3 10 25/sec/Hz and
g is 10 27/sec 2/Hz. These values give slow scaling without oscillations. Our
arguments would not change if oscillations would occur, because we are
interested in the equilibrium.

The scaling can be incorporated into the weight evolution equation (see
Appendix). The scaling shifts the point where potentiation and depression
are balanced, thus adjusting the mean weight while approximately preserv-
ing the shape of the distribution, consistent with experimental observa-
tions (see Discussion).

RESULTS
Experimental foundation
We base our model on two experimental observations. The first is
STDP: it has been observed that synapses can be potentiated and
depressed by pairing a synaptic event with a postsynaptic spike. If
the synaptic event occurs ;50 msec or less before the postsynaptic
spike, the synapse will be potentiated; if the spike precedes the
synaptic event, the synapse will be depressed (Markram et al., 1997;
Bi and Poo, 1998). The amount of weight change is approximately
exponential in the time between the synaptic event and the
postsynaptic spike. The resulting synaptic modification window is
plotted in Figure 1.

The second essential ingredient is that the amount of synaptic
change depends on the synaptic size. For STDP protocols it was
observed that the relative amount of depression is independent of
the initial synaptic size, whereas relatively potentiation is larger for
weak synapses than strong synapses. In Figure 2A we plot such data
from experiments on cultured neurons (Bi and Poo, 1998). A
similar observation was made in hippocampal slices (Debanne et
al., 1996, 1999). Possibly closely related to this, it has been observed
that the amount of potentiation and depression depends on the
history of synaptic stimulation (Yang and Faber, 1991; Ngezahayo
et al., 2000). Including the weight dependence in the plasticity rules
has drastic consequences for the weight distribution, the stability of
the plasticity, and synaptic competition.
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Synaptic weight distribution after prolonged
random stimulation
We ask how the synaptic weights of a neuron evolve when they are
subject to the plasticity rules sketched in Figure 1. We first study
the case when the neuron receives random synaptic input. Consider
the distribution of synaptic weights, P(w). A single bin in this
distribution describes the probability that synapses have a weight w.
The synapses in this bin are continuously potentiated and de-
pressed because of ongoing coincidences of presynaptic and
postsynaptic spikes. Because of the size dependence of the plastic-
ity, strong synapses experience a net depression, whereas weak
synapses experience a net potentiation. This confines the synaptic
weights. After a while the distribution reaches an equilibrium, at
which the individual synapses still change, but the distribution is
stationary.

The above picture turns out to be correct in simulations. We
simulate an integrate and fire neuron receiving random synaptic
input. The presynaptic signal is provided by 100 excitatory synapses
stimulated with independent Poisson trains. The synapses are
subject to the plasticity rules sketched in Figure 1 and given in
Equations 1 and 2. The parameters of the plasticity rules are based
on physiological data (see Materials and Methods). As fluctuations
in the amount of synaptic change induced by potentiation and
depression are important for the shape of the resulting weight
distribution, a multiplicative noise model is part of the plasticity
rules.

The distribution of synaptic weights after prolonged stimulation
is shown in Figure 3A. The analysis in the Appendix shows explic-
itly that this equilibrium distribution is independent of the initial
distribution. The resulting distribution is very stable and does not
require any fine tuning of parameters. The distribution is unimodal
and has a positive skew. This is similar to the distribution found in
quantal synaptic current measurements and synaptic staining stud-
ies (O’Brien et al., 1998; Turrigiano et al., 1998). For comparison
we plot in Figure 3B a distribution of quantal amplitudes, as
observed from a single cultured cortical pyramidal neuron held at
270 mV (Turrigiano et al., 1998). In the Discussion, we expand on
their similarity.

In the equilibrium state, the synaptic weights continuously make
small random jumps, but their movement is confined. The mean

synaptic weight is approximately located where the confining force
vanishes, and the weight experiences no net depression or poten-
tiation. There are two contributions to the confining force: (1) the
probability to cause a postsynaptic spike increases linearly with the
weight of the synapse. Strong synapses therefore have a larger
probability of being potentiated, whereas the probability for being
depressed is independent of synaptic strength (see Appendix).
Thus, once potentiated, strong synapses have an even higher
chance for subsequent potentiation. This is a destabilizing force,
and if this were the only force present, weights would run off to
infinity. (2) However, stronger synapses experience a smaller con-
ductance change when potentiated. This constitutes the second
force. Because potentiation decreases with increasing weight, but
depression does not, this force is stabilizing. When the two forces
are combined, the stabilizing force wins, and the stable distribution
shown in Figure 3A results.

The analytical treatment presented in the Appendix gives an
accurate description of the distribution found in the simulations. It
describes how the weights evolve by combining the weight depen-
dence of potentiation and the probability that a synapse of given
weight will be potentiated and depressed. This yields the weight
distribution (Fig. 3A, solid line). The analysis also shows explicitly
that the destabilizing force plays only a minor role. If this force is
completely turned off, as is easily done in the analytical expres-
sions, weak and strong synapses have an equal probability for
potentiation. Yet, this hardly changes the shape of the distribution

Figure 1. Spike timing-dependent plasticity. a, Synapses are potentiated if
the synaptic event precedes the postsynaptic spike. Synapses are depressed
if the synaptic event follows the postsynaptic spike. b, The time window for
synaptic modification. The relative amount of synaptic change is plotted
versus the time difference between synaptic event and the postsynaptic
spike. The amount of change falls off exponentially as the time difference
increases. In addition, the amount of potentiation decreases for stronger
synapses, whereas the relative amount of depression is independent of
synaptic size.

Figure 2. The weight dependence of the STDP conductance change. a,
The data from Bi and Poo (1998) describing the relative synaptic change as
a function of the initial synaptic size. Potentiating (open circles) and
depressing ( filled circles) pairings were repeated 60 times. The depression
data are fitted to a constant; the potentiation data are inversely proportional
to the synaptic size. b, Additive noise model: the data is simulated by
applying the plasticity rule 60 times. After every synaptic change a random
conductance value is added. The random conductance is drawn from a
Gaussian distribution with zero mean and SD of 8 pA. This description of
the noise was rejected. c, Simulation of the data using a multiplicative noise
model, in which the noise in the conductance change is weight dependent.
Multiplicative noise gives a better description of the spread in the data.
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(Fig. 3A, dashed line) indicating the minor role of the destabilizing
force in our model.

Stability: comparison to other models
How does this model compare to other STDP models? In most
other models (but see Kistler and van Hemmen, 2000), potentia-
tion and depression change the synaptic weight by a fixed amount,
independent of the synaptic weight (Blum and Abbott, 1996; Ger-
stner et al., 1996; Amarasingham and Levy, 1998; Kempter et al.,
1999; Song et al., 2000). The typical shape of the weight distribu-

tion for such a model is shown in Figure 3C. Note that, depending
on the parameters, the synapses split into two groups of either weak
or strong synapses, despite the absence of any structure in the
input.

The behavior can be understood from the force terms introduced
above, which determine the net potentiation and depression that a
certain weight experiences. Because here potentiation and depres-
sion have an identical weight dependence, the stabilizing force
vanishes. Left is the destabilizing force. This small but important
force causes strong synapses to get even larger as they will have a
higher probability of inducing a spike. This positive feedback will
cause the weights to run off to infinite values. Therefore, a hard
limit on the maximal weight is required for these models. Similarly,
weights below a certain threshold will be depressed till they hit the
lower bound. In the Appendix we show how also for these models
the synaptic weight distribution can be calculated.

In these models the weight distribution is sensitive to small
perturbations of the parameters and the destabilizing force (see
Appendix). In contrast, in our model the effect of the destabilizing
force is small. The distribution is dominated by the differential
weight dependence of potentiation and depression, overruling the
positive feedback and stabilizing the distribution.

Correlated input potentiates synapses
Above we determined the weight distribution reached after long
random stimulation. From a functional point of view this is a rather
dull situation: no memory is stored, and all inputs obtain on
average the same weight. The question arises how memory patterns
are impressed and stored in the model. In contrast to conventional
forms of long-term potentiation (LTP) and long-term depression
(LTD), in our STDP scheme synapses are not strengthened by
increasing their input rates. A different stimulation frequency
changes the rate at which depression and potentiation occur, but
will not effectively change the synaptic weight.

An effective way to store memories is to introduce correlation
among inputs (Oja, 1982; Song et al., 2000). When inputs are
correlated, the probability for potentiation is larger because syn-
aptic events will often occur simultaneously and induce postsynap-
tic spikes. Weak synapses piggyback on the strong ones (Zhang et
al., 1998). However, the probability for depression is unaltered (see
Appendix). This is illustrated in Figure 4 where four groups of
inputs with varying amount of correlation are presented to the
neuron. Correlation shifts the distribution towards higher conduc-
tance values as the balance between potentiation and depression
shifts. The shape of the distribution remains qualitatively the same,
and the stability is maintained. The effect of the correlation is
twofold: first, most of the postsynaptic spikes will be triggered by
correlated inputs, and, second, these inputs will be potentiated.
The mean weight is proportional to the correlation. In models
without weight-dependent potentiation, inputs with correlations
above a certain threshold obtain maximal weight, and inputs with
less correlation obtain essentially zero weight. There is a sharp
transition between the two.

Lack of competition
In many models of constrained Hebbian plasticity there is strong
competition between synapses: enhancement of one synapse leads
to depression of the other synapses (Miller, 1996; Song et al., 2000).
In our model there is practically no competition: the synaptic
weights are insensitive to changes in the other inputs. To demon-
strate this, we simulate the following situation (Fig. 5A): the
postsynaptic neuron receives two groups of inputs. Initially both
groups are uncorrelated, and as a result both groups have identical
mean weights. Next, strong correlation within the first group is
introduced, and this potentiates these synapses as described above.
The mean conductance of this group and the postsynaptic firing
rate increase. If there were competition present between the syn-
apses, this stimulation should lead to a reduction of the weight of

Figure 3. a, The equilibrium distribution of the synaptic weights of a
neuron after prolonged synaptic stimulation with uncorrelated Poisson
trains. Histogram, Distribution of weights from a simulation of an integrate
and fire neuron. Solid line, Analytical prediction from Equation 14, with
Wtot extracted from Figure 7. Dashed line, Analytical prediction when strong
synapses do not have an enhanced probability for potentiation. Simulation
parameters: 20 Hz input rate, postsynaptic firing rate ;25 Hz, weights were
averaged over 10 runs. b, Experimental quantal amplitude distribution as
observed from a single cultured cortical pyramidal neuron. c, When poten-
tiation and depression do not depend on the weight, as was assumed in
many other models, a bimodal weight distribution results. Limits on the
minimal and maximal weight have to be imposed (wmin 5 0 and wmax); the
weights cluster at these limits.
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synapses in the other group. The weights of the other group of
synapses are, however, hardly affected, as is illustrated in Figure
5A. Thus, there is little competition.

In STDP models in which potentiation and depression are inde-
pendent of the synaptic weight, there is strong competition. The
reason is as follows. In STDP the potentiation mainly occurs if the
input has caused the spike, in other words, the inputs compete for
the postsynaptic spike. When one input starts driving the postsyn-
aptic spikes and its weight increases, the other inputs will become
less correlated with the postsynaptic spikes, and these inputs will
effectively be depressed (see Appendix).

The competition in these models is so strong that there is a
limited regime in which increasing the input rate is counteracted by
the reduction of the synaptic weights, causing the postsynaptic
firing frequency to be almost independent of the input rate (Song
et al., 2000). In our model, the potentiation and depression of
synapses is limited. As a result it is not very sensitive to changes in
the total input. Competition and output rate normalization are
virtually absent, and the output rate follows the input rate.

Activity-dependent scaling as a separate
competition mechanism
The lack of competition in our model demonstrates that stable
Hebbian learning is possible without competition. Nevertheless,
competition is useful for developmental processes such as ocular
dominance column plasticity, and output rate normalization is
useful in situations when the input rate or the number of inputs
undergoes large changes. Therefore we include activity-dependent
scaling of synaptic weights in the model. Activity-dependent scaling
is a homeostatic mechanism which, in reaction to changes in the
postsynaptic activity, scales all synapses in an effort to keep the
activity of the neuron within bounds. The scaling is multiplicative
and does not seem to depend on presynaptic spike activity (Tur-
rigiano et al., 1998). To implement activity-dependent scaling, we
introduce a slow-varying sensor of activity. The weights are mul-
tiplicatively scaled if the readout of the activity sensor differs from
some preset goal value (see Materials and Methods).

The scaling mechanism introduces competition between the

Figure 4. Effect of correlation in the inputs on the synaptic weights. The
inputs consisted of four groups of 25 synapses having different amounts of
correlation within the group (correlation coefficients: 0, 0.033, 0.066, 0.1). a,
The probability for inducing potentiation, pp and depression pd vs. the
weight. The probability for inducing potentiation is increased when corre-
lations between inputs are present, whereas the probability for inducing
depression is unaltered. The labels indicate the correlation coefficient. b,
The weight distributions of the different groups. The different amounts of
correlation lead to the coexistence of multiple weight distributions. The
weights of the more strongly correlated groups are larger. The inset shows
the mean conductance of the different groups as a function of the
correlation.

Figure 5. Competition between synaptic inputs and the effect of activity-
dependent scaling (ADS). a, Behavior of model without ADS. Bottom
graph, The neuron receives input from two sets of 50 synapses. Until time
5000 sec, both sets are uncorrelated. At 5000 sec the inputs within one set
become strongly correlated, potentiating its weights. At 10,000 sec this set
becomes again uncorrelated, whereas the other set becomes correlated,
reversing the situation. Middle graph, The postsynaptic firing frequency
jumps when the inputs become correlated. Top graph, The average synaptic
weight for the two sets. The introduction of correlation potentiates the
synapses, but changes in one group of synapses barely affect the other
group. Competition is almost absent. b, Same situation but with activity-
dependent scaling turned on. After the jump in firing rate the synapses are
slowly scaled downward, until the activity is again at its goal value of 20 Hz.
This introduces competition. Note the difference in time-scales between the
slow competition and the much faster STDP. c, The corresponding weight
distributions once equilibrium has been reached. The activity-dependent
scaling scales the weights of both groups.
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synapses (Fig. 5B). This is expected: if one synapse is potentiated,
the postsynaptic activity rises, and the activity-dependent scaling
kicks in to reduce all synaptic weights. The scaling works on long
time scales, and in the end the goal level of activity is maintained.
The shape of the weight distribution and its stability are not
affected by the scaling (Fig. 5C). The competition is thus separated
from the STDP.

Note that this additional plasticity rule updates the weights
independent of the presynaptic rate, in contrast to the STDP. Thus,
if there are two sets of synaptic inputs, one with a low rate and one
with a high rate, the weights of the low rate inputs will mainly be
governed by the activity-dependent scaling, whereas the high rate
inputs will be ruled by the STDP.

DISCUSSION
Despite the importance of correlation-based plasticity in learning
and development, the exact nature of the learning rules that oper-
ate in biological networks remains unclear. Here we have shown
that a learning rule based closely on experimental data allows
inputs to change in strength as a function of correlation, while
generating and maintaining a stable distribution of synaptic
weights. We use an STDP learning rule in which potentiation
occurs when a postsynaptic spike follows a synaptic event, and
depression occurs if a postsynaptic spikes precedes a synaptic
event. In addition, this rule incorporates the experimental obser-
vation that the amount of potentiation decreases as the synapse
strengthens (Debanne et al., 1996, 1999; Bi and Poo, 1998). In this
weight-dependent STDP, the synaptic weights evolve into a unimo-
dal, positively skewed distribution that closely resembles experi-
mentally measured distributions of quantal amplitudes (Turrigiano
et al., 1998) and of receptor number (O’Brien et al., 1998). The
introduction of correlations between inputs increases synaptic
strengths, but does not effect the shape and stability of the weight
distribution. Weight-dependent STDP is intrinsically stable with-
out requiring artificial constraints upon synaptic strengths.

The cause for instability in rate-based plasticity models is a
destabilizing mechanism similar to the one in the STDP models: if
a synapse is potentiated, the larger synapse causes a higher postsyn-
aptic activity, which in turn potentiates the synapse even further.
Weight-dependent potentiation could probably solve the problem of
runaway learning for conventional LTP and LTD as well.

The shape of the synaptic weight distribution can be character-
ized by its mean, SD, and skew. In our model, the mean synaptic
weight is determined by the balance point between potentiation
and depression. Our analysis shows that this balance point is itself
determined by two competing forces, one stabilizing and the other
destabilizing. Because stronger synapses are more likely to evoke a
postsynaptic spike, they are also more likely to be potentiated than
weak synapses. This generates a destabilizing force that pushes
synaptic strengths towards higher values. In models without the
weight dependence of potentiation, this destabilizing force will
tend to push synapses all the way to their upper and lower bounds.
In our model, this destabilizing force is balanced by a reduction of
the potentiation as synaptic weights increase. Because the amount
of depression stays constant, for strong synapses depression will be
larger than potentiation. This provides a brake on synaptic
strength, constraining the weights of the synapses at central values.

The width of the synaptic weight distribution is strongly influ-
enced by variations in the amount of potentiation and depression
for different pairings of synaptic events and postsynaptic spikes. To
make the model as realistic as possible, the magnitude of these
fluctuations was extracted from the experimental data of Bi and
Poo (1998). The magnitude may be overestimated because we
assumed that all the measured noise arose from trial-to-trial fluc-
tuations in the amount of potentiation or depression. Without this
noise the simulated synaptic weight distribution has the same shape
and overall behavior but is considerably narrower. Other factors
could also contribute to a widening of the distribution, such as the
presence of groups of inputs with different correlation levels (Fig.
4). The noise widens the weight distribution to values similar to

those measured for quantal amplitudes, but many other factors
could contribute to the width of these measured distributions. For
example, the distribution of quantal amplitudes can be widened
because of cable filtering (Spruston et al., 1993; Forti et al., 1997)
and fluctuations in the transmitter content of vesicles (Frerking et
al., 1995; Liu et al., 1999).

Another approach to assess the synaptic conductance distribution
in central neurons is by using immunohistochemical methods to
quantify the staining intensity of synaptic receptors. Using this
method, the observed distributions of receptor staining are also
unimodal and positively skewed (Nusser et al., 1997; O’Brien et al.,
1998). As in our model, the shape of the distributions of both quantal
amplitudes (Turrigiano et al., 1998; O’Brien et al., 1998) and of
receptor staining (O’Brien et al., 1998) is preserved when synaptic
strengths are scaled up or down in response to changes in activity.

A feature of STDP learning rules, with or without a weight depen-
dence, is that inputs are potentiated as a function of their correlation
on short time scales. This is because spikes in the postsynaptic neuron
are chiefly caused by inputs correlated on short time scales. This
contrasts with conventional rate-based Hebbian models in which the
stimulation frequency determines which synapses get potentiated and
in which short time scale correlations are not essential. Here, however,
when precise timing does matter, correlations on short time scales are
essential (Gerstner et al., 1996; Zhang et al., 1998; Kistler and van
Hemmen, 2000; Song et al., 2000) as has been suggested for learning
and memory (von der Malsburg, 1981).

An important feature of activity-dependent development in
some CNS regions is competition between inputs onto a postsyn-
aptic neuron (Shatz, 1990; Miller, 1996). Such competition allows
some inputs to be retained, whereas other inputs are lost. In
rate-based Hebbian models in which plasticity depends on the
firing rate, synaptic normalization schemes are necessary to stabi-
lize synaptic weights, and these schemes invariably introduce com-
petition between synapses (Miller and MacKay, 1994). This has
lead to the notion that competition is an inevitable consequence of
stable Hebbian plasticity. STDP learning rules that do not include
the weight dependence of potentiation also produce strong com-
petition and, for instance, correlations in some inputs push other
inputs to zero (Song et al., 2000). In contrast, weight-dependent
STDP generates stable Hebbian plasticity without introducing
much competition.

Competition can be introduced into weight-dependent STDP
through an independent mechanism such as activity-dependent
scaling. It is important to note that activity-dependent scaling is not
needed to prevent runaway learning, but instead keeps the activity
of the postsynaptic neuron within bounds as the input undergoes
strong changes. This allows the activity-dependent scaling to be
much slower than the STDP, as is suggested by experimental
observations (Turrigiano et al., 1998). Our implementation of the
scaling as an integral controller is well suited for this task because
it is both slow and strong. The scaling mechanism literally scales
the entire weight distribution up or down without qualitatively
changing its shape, as was also observed experimentally (O’Brien et
al., 1998; Turrigiano et al., 1998). Activity-dependent scaling in-
troduces competition between the synapses because if some syn-
apses are potentiated and the postsynaptic activity increases, all the
synaptic weights will be scaled down.

Whereas strong competition is clearly important for some pro-
cesses such as ocular dominance plasticity, in which inputs from
one eye are retained, and inputs from the other eye are largely lost,
it may not be desirable under all conditions and during all periods
of development. In adult animals or in central circuits that code a
continuous variable, such as direction, it may be advantageous to
allow synaptic weights to change while retaining weak inputs. Such
inputs could then be potentiated again if circumstances were to
change, allowing the circuit greater flexibility. Our results demon-
strate that stable Hebbian plasticity and synaptic competition are
separable entities and suggest that learning rules may vary by
region or developmental period to generate more or less
competition.
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APPENDIX
Derivation of the weight distribution
Apart from simulations, we present calculations that show how the
synaptic weight distribution follows from the plasticity rules. The
advantage of the analytical calculations is that although some
approximations have to be made, the role of the various parameters
in the model becomes clear and can be studied systematically.

Consider a neuron receiving uncorrelated Poisson inputs. Its
synapses continuously undergo weights modifications according to
the plasticity rules because of random coincidences of presynaptic
and postsynaptic spikes. We denote the distribution of its synaptic
weights with P(w, t), where t denotes the time. A single bin in this
distribution describes the probability that a synapse has a weight, w.
Every time step the number of synapses in this bin can change
because of potentiation and depression (Fig. 6). Collecting all
terms that change the number of synapses in this bin, we have:

1
rin

­P~w, t!
­t

5 2ppP~w, t! 2 pdP~w, t!

1 ppP~w 2 wp , t! 1 pdP~w 1 wd , t!, (4)

where rin is the presynaptic rate, assumed identical at all synapses, pp
is the probability that the synapse is potentiated, pd is the probability
that the synapse is depressed, the wd and wp describe how much the
weight changes with depression and potentiation. The first two
right-hand side terms in Equation 4 are loss terms decreasing the
number of synapses with weight w. The last two terms are gain terms
describing synapses with initially different weights acquiring new
weight w because of either potentiation or depression.

For now we neglect the precise timing dependence of the plas-
ticity. Instead, we assume that if the synaptic event occurs within a
narrow time window tw after a spike, the synapse is depressed an
amount wd 5 2cdw 1 vw, see Equation 2 in Materials and Meth-
ods. And similar if the synaptic event occurs before the postsynap-
tic spike, the synapse is potentiated wp 5 cp 1 vw. In other words
the exponential window is replaced by a square window of width tw.
The justification is that when averaged over many pairings, only the
average amount of change is important. (This approximation in-
troduces a small, negligible error in Eq. 7). In the simulations the
exponential window is used.

By Taylor expanding P(w 2 wp) and P(w 1 wd), one obtains the
Fokker–Planck equation (van Kampen, 1992):

1
rin

­P~w, t!
­t

5 2
­

­w
@A~w! P~w, t!# 1

1
2

­2

­w2@B~w! P~w, t!#,

(5)

with jump-moments A and B:

A~w! 5 2pdcdw 1 ppcp , (6)

B~w! 5 pdcd
2w2 1 ppcp

2 1 ~ pd 1 pp!w2s2, (7)

where s2 is the variance of the noise term v. This derivation
requires that changes in w are small with respect to variations in
P(w, t), which is indeed the case. But to solve these equations we
first need to know the probability for inducing potentiation pp and
the probability for inducing depression pd.

The probability that a synaptic event causes a spike
First, we calculate the probability that a synaptic event depresses
the synapse. This requires that the presynaptic event succeeds a
postsynaptic spike within a short window. We use a simplified
model: a non-leaky integrate and fire model. The cell receives
background input from other synapses, described by a constant
background current I0. This current causes the neuron to fire
regularly with an interspike interval tisi 5 VthrC/I0 , where Vthr is the
threshold voltage relative to the resting voltage, and C is the
membrane capacitance. We assume that the presynaptic signal is
uncorrelated to other inputs and that the presynaptic signal is not

affected by the spikes in the postsynaptic neuron (that is, no
recurrent connections). At a random time the synaptic event ar-
rives in the postsynaptic neuron. The postsynaptic spike, occurring
earlier, is of course independent of this synaptic event. Therefore,
the probability that the synaptic event occurs within a time window
tw after a spike is:

pd 5
tw

tisi
, (8)

where it is implied that tw , tisi.
Next, we calculate the probability that a synaptic event potenti-

ates the synapse, which requires that the postsynaptic spike comes
after the synaptic event. Because the synaptic event can help to
induce a spike, this is more complicated than the previous case
(Kistler and van Hemmen, 2000). We calculate this as follows: the
synaptic current is modeled with a brief square pulse of duration
tsyn, its amplitude is wVsyn, where w is the synaptic weight and Vsyn
is the synaptic drive (assumed constant). This synaptic current
causes the membrane voltage to jump by an amount tsynwVsyn/C. If
after the jump the voltage is still below threshold, the interspike
interval is shortened to t9isi 5 tisi 2 tsynwVsyn/I0. If, on the other
hand, the neuron was already close to threshold it will spike (Fig.
7). One finds that the time between the synaptic event and the
spike, dt, is distributed as,

P~dt! 5
1
tisi

1
Vsyn

VthrC
w ~if dt , tsyn!/~if tsyn , dt , t9isi!.

5
1
tisi

This describes an enhanced probability for small intervals between
the synaptic event and a postsynaptic spike. The reason is that
postsynaptic spikes likely follow the synaptic input. With tsyn ,, tw ,
the probability that the synapse is potentiated, is

pp 5 E
0

tw

P~dt!ddt

5 pd~1 1 w/Wtot!, ~but pp # 1!,
(9)

Figure 6. Diagram of the evolution of the synaptic weight distribution.
Every time-step the number of synapses within a bin can change: with a
probability pd the synapse depresses an amount wd , or with a probability pp
the synapse is potentiated an amount wp. Similarly, synapses with initially a
different weight can enter the bin. Finally, a steady state distribution is
reached. Bottom graph shows the net weight change (drift), which deter-
mines whether on the average a weight will increase (positive drift) or
decrease (negative drift).
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with Wtot 5 twI0 /(Vsyntsyn). This probability is a sum of a constant
term that describes random coincidence of presynaptic and
postsynaptic spikes, and a term linear in w, which describes the
enhanced probability that the synapse induces a spike. For syn-
apses with zero weight, pp equals the probability of inducing de-
pression, pd. The reason is that the postsynaptic neuron is unaf-
fected by a tiny input, in other words, only random coincidences
cause potentiation. The linear term depends on Wtot. The Wtot is
the average current of all other inputs expressed as an instanta-
neous conductance. If the input to the cell is purely from excitatory
synapses, one has:

Wtot 5 twrinN^w&, (10)

where N is the number of synapses, and ^w& is their average weight.
This dependence of Wtot on the average weight shows that Wtot is a
competition parameter, describing competition among inputs for a
postsynaptic spike. As the total input Wtot increases, pp gets smaller.
Finally, for large synaptic conductances pp reaches its upper limit of
one. In that case the presynaptic event always induces a spike, a
suprathreshold connection. In physiologically relevant situations
such synapses are rare, and this upper limit can be ignored.

In Figure 7D we present the results of a simulation showing the
probability for depression and potentiation. Although the synaptic
time course, leak conductance and noise in the cell give rise to
small correction terms (M. C. W. van Rossum, unpublished obser-
vations), Equations 8 and 9 are still qualitatively valid: pd is inde-
pendent of the weight, and pp increases linearly with the weight and
equals pd for zero weight. Experimental verification of this law
would be desirable.

The synaptic weight distribution
Using the above results for pp and pd , we have for the distribution
of synaptic weights,

1
rin

­P~w, t!
­t

5 2
­

­w
@A~w! P~w, t!# 1

1
2

­2

­w2@B~w! P~w, t!#

(11)

A~w! 5 pd@2cdw 1 ~1 1 w/Wtot!cp# (12)

B~w! 5 pd@cd
2w2 1 ~1 1 w/Wtot!cp

2 1 ~2 1 w/Wtot!w2s 2#.
(13)

This describes the evolution of the synaptic weight distribution
under random stimulation. Of most interest is the steady-state
solution, which corresponds to the equilibrium distribution a neu-
ron obtains with random stimulation. It is independent of the initial
distribution.

The steady-state solution is found by imposing that ­P/­t 5 0 and
that the probability current J(w) 5 A(w)P(w) 2 1/2 ­/­w
[B(w)P(w)] vanishes. The resulting equation is easily solved numer-
ically. An analytical solution is obtained if one assumes that the
noise s and Wtot are large, so that B(w) ' pd(cp

2 1 2w2s2). In this
case the distribution reads:

P~w! 5 N
eÎ2atanSÎ2sw

cp
D/s

~2s2w2 1 cp
2!

2s22cp/Wtot1cd

2s2

, (14)

where N normalizes the distribution such that *P(w)dw 5 1. This
distribution is plotted in Figure 3A (solid line). It closely matches
the simulation results. The steady-state solution is unimodal, and
the mean weight is roughly located where potentiation and depres-
sion are balanced (here A crosses zero). The distribution peaks at
w 5 cp /(cd 2 cp /Wtot 1 2s2). Because Wtot depends on the average
weight (Eq. 10), the distribution (Eq. 14) has to be solved self-
consistently. In practice this poses no problem because the distri-
bution depends only weakly on Wtot. Indeed, approximating Wtot3
` only slightly changes the distribution (Fig. 3, dashed line). This
means that the enhanced probability for inducing a spike for strong
synapses is a minor effect. Finally, note that the distribution does

not vanish at zero conductance; this is hard to see in Figure 3, but
is clear from Equation 14.

The evolution of the distribution can be compared to diffusion of
particles (weights) in an external force field. In analogy with the
diffusion equation, the A term is a force that the synapse experi-
ences, its sign determines whether with the next event the weight
will on the average increase or decrease (Fig. 6). The B term
corresponds to a diffusion “constant” and determines the width of
the distribution; it is determined by the amount of weight change
and the noise. Although without the noise term, the distribution
would still have a finite width and a positive skew, the noise
broadens the distribution and due to its multiplicative character,
the noise also enhances the positive skew of the distribution.

Application to other models
Other models of spike timing-dependent plasticity have not in-
cluded the size dependence of the plasticity rules (Amarasingham
and Levy, 1998; Kempter et al., 1999; Song et al., 2000). Also these
models can be analyzed with our method. We show that they yield
a dramatically different weight distribution. Following the notation
of Song et al. (2000), we have, again neglecting the exponential
timing dependence,

wd 5 2A2 (15)

wp 5 A1 , (16)

where A1 is the amount of potentiation, and A2 is the amount of
depression. This plasticity scheme requires slightly more potentia-
tion than depression, that is, A1 5 (1 2 e)A2, where e is a small,
positive number. For small e and large Wtot, one has for this model
A(w) 5 pd(w/Wtot 2 e)A2 and B(w) 5 2pdA2

2 . There is no steady-
state weight distribution unless a hard limit on the maximal weight,
wmax, is explicitly imposed. The resulting distribution is:

P~w! 5 Ne~2ew1
1
2

w2/Wtot!/A2 ~0 , w , wma x!, (17)

where N normalizes the distribution. This distribution matches the
distributions observed in simulations (Song et al., 2000). It is
plotted in Figure 3C with parameters: wmax 5 1, Wtot 5 11, e 5
0.05, and A2 5 0.005. It is seen that some synaptic weights will
cluster around zero weight. The reason is that for weak synapses
the drive A(w) is negative, pushing them toward smaller and
smaller synaptic conductances. If one chooses wmax . eWtot the
distribution is bimodal and has a second peak at the maximal
weight. In that case A(w) becomes positive for large w and weights
for which A(w) is positive are pushed towards wmax. When input
correlations are present, the distribution becomes already bimodal
for lower values of wmax.

The parameters are usually chosen such that the distribution is
bimodal. This requires a balance between the potentiation and
depression ratio, e, and the competition parameter, w/Wtot. The
weight distribution in these models is sensitive to small perturba-
tions in this balance. This is seen in Figure 3C: the weight distri-
bution plotted there would be symmetric if Wtot were 10, but a 10%
change (Wtot 5 11) causes already a considerably asymmetric
distribution. Because of this strong dependence, Equation 17 needs
to be solved self-consistently. Namely, through Wtot the distribution
depends on the weights of the inputs (Eq. 10), but the weights are
again given by the distribution. Solving Equation 17 for a range of
input rates, shows that there is indeed a limited regime in which the
postsynaptic firing frequency is almost independent of the input
rate, as was seen in simulations (Song et al., 2000).

The dependence of A(w) on the weight is precisely the opposite
to our model where A(w) decreases with increasing weight stabi-
lizing the weight distribution (Fig. 6). The stability of different
learning rules can be analyzed with our method. If the potentiation
depends as strong or more strongly on the weight than in our
model, the weights will be stable. If the potentiation depends much
more weakly on the weight than assumed here, the stability de-
pends on parameters such as the threshold weight and postsynaptic
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firing frequency. The behavior of any model is determined by how
A(w) crosses zero, with positive or negative slope. In general we
can distinguish two classes of learning rules. Assume that B(w) Þ
0 for any w and that A(w) crosses zero only once, (1) if A(w) crosses
zero with negative slope the distribution is centered around the
zero crossing as in our model, (2) but if A(w) crosses zero with
positive slope the weights are repelled from the zero crossing as
happens above. This dichotomy does not seem to leave room for a
stable model which intrapolates between the two classes.

Note added in proof. After completion of this study, we found that
a similar approach to calculate the weight distribution has been
followed by Rubin et al. (2000).
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