Somatostatin Modulates Voltage-Gated K⁺ and Ca²⁺ Currents in Rod and Cone Photoreceptors of the Salamander Retina

Abram Akopian,¹ Juliette Johnson,³ Robert Gabriel,¹ Nicholas Brecha,³,4,5 and Paul Witkovsky¹,²

Departments of ¹Ophthalmology and ²Physiology and Neuroscience, New York University School of Medicine, New York, New York 10016, ³Department of Neurobiology, University of California, Los Angeles, School of Medicine, Los Angeles, California 90095, ⁴Department of Medicine, Jules Stein Eye Institute and Center for Ulcer Research and Education, Division of Digestive Diseases, University of California, Los Angeles, School of Medicine, Los Angeles, California 90095, and ⁵Veterans Administration Medical Center-West Los Angeles, Los Angeles, California 90073

We investigated the cellular localization in the salamander retina of one of the somatostatin [or somatotropin release-inhibiting factor (SRIF)] receptors, sst₂₄, and studied the modulatory action of SRIF on voltage-gated K⁺ and Ca²⁺ currents in rod and cone photoreceptors. SRIF immunostaining was observed in widely spaced amacrine cells, whose perikarya are at the border of the inner nuclear layer and inner plexiform layer. sst₂₄ immunostaining was seen in the inner segments and terminals of rod and cone photoreceptors. Additional sst₂₄ immunoreactivity was expressed by presumed bipolar and amacrine cells. SRIF, at concentrations of 100–500 nM, enhanced a delayed outwardly rectifying K⁺ current (Iₒ) in both rod and cone photoreceptors. SRIF action was blocked in cells pretreated with pertussis toxin (PTX) and was substantially reduced by intracellular GDP₃S. Voltage-gated L-type Ca²⁺ currents in rods and cones were differentially modulated by SRIF. SRIF reduced Ca²⁺ current in rods by 33% but increased it in cones by 40%, on average. Both effects were mediated via G-protein activation and blocked by PTX. Ca²⁺-imaging experiments supported these results by showing that 500 nM SRIF reduced a K⁺-induced increase in intracellular Ca²⁺ in rod photoreceptor terminals but increased it in those of cones. Our results suggest that SRIF may play a role in the regulation of glutamate transmitter release from photoreceptors via modulation of voltage-gated K⁺ and Ca²⁺ currents.

Key words: somatostatin; retina; Ca²⁺ channel; K⁺ channel; G-protein; patch clamp

Somatostatin, also called somatotropin release-inhibiting factor (SRIF), initially was identified as a hypothalamic peptide but subsequently has been shown to be widely distributed in the nervous system and in peripheral endocrine organs (Delfs and Dichter, 1985). The cellular actions of SRIF are mediated via five distinct G-protein-coupled receptors, sst₁–₅ (Hoyer et al., 1995). In addition, there are two sst₂ isoforms resulting from alternative mRNA splicing (Vanetti et al., 1992). SRIF has been shown to modulate K⁺ and Ca²⁺ currents in neurons, endocrine cells, and some cell lines. Many classes of K⁺ current are reported to be increased by SRIF, including a K⁺ leak current (Schweitzer et al., 1998), an inward rectifier (Takano et al., 1997), a delayed rectifier K⁺ current (Wang et al., 1989), and a Ca-activated K⁺ current (White et al., 1991). The effect of SRIF on Ca current is inhibitory, and it acts on high voltage-activated Ca²⁺ currents of the L-type (Rosenthal et al., 1988) and N-type (Shapiro and Hille, 1993). In axonal terminals, the combined action of SRIF on K⁺ and Ca²⁺ currents has been reported to reduce transmitter release (Katayama and Hirai, 1989; Boehm and Betz, 1997).

In the vertebrate retina, SRIF-containing neurons typically are amacrine (Yamada et al., 1980; Li and Lam, 1990; Rickman et al., 1996) or interplexiform cells (Smiley and Basinger, 1988). SRIF-immunoreactive fibers are predominantly distributed to selected laminae of the inner plexiform layer (IPL). Physiological data on the role of SRIF in retinal function, however, are scant. Zalutsky and Miller (1990) reported that SRIF was excitatory to most ganglion cells tested in rabbit retina, but whether the peptide acted directly on ganglion cells or via circuitry that is presynaptic to ganglion cells was not determined. More recently, sst₂A immunostaining was localized to a variety of rat and rabbit retinal neurons, including bipolar cells and cone photoreceptors (Johnson et al., 1998, 2000). The location of sst₂A receptors on photoreceptor terminals suggested a possible role of SRIF in regulating the release of glutamate, the identified neurotransmitter of photoreceptors (Marc et al., 1990; for review, see Thoreson and Witkovsky, 1999).

In the present study we examined the action of SRIF on rod and cone photoreceptor terminals in the salamander retina. We showed, by immunocytochemistry, that in the salamander retina, both rods and cones express sst₂A receptors. Using the whole-cell patch-clamp technique, we found that SRIF had a differential action on the high voltage-activated L-type Ca²⁺ currents of rods and cone inner segments; it reduced the Ca²⁺ current of rods but increased that of cones. In addition, SRIF increased the delayed rectifier K⁺ current of rods and cones. These data suggest that, like dopamine (for review, see Witkovsky and Darryl, 1991), SRIF may play a role in governing the balance of information flow through rod and cone circuits.
MATERIALS AND METHODS

Animals. Salamanders (*Ambystoma tigrinum*) were obtained from a commercial supplier (Charles Sullivan, Nashville, TN) and kept at 4°C until used. The handling and maintenance of animals met the National Institutes of Health guidelines and were approved by the animal research committees of New York University School of Medicine and University of California, Los Angeles, School of Medicine (UCLA).

Tissue preparation for immunohistochemical experiments. After decapitation, the eyes were removed, the anterior segment was dissected away, and the posterior eye cup containing the retina was immediately immersed in 6% paraformaldehyde (PFA) in 0.1 M phosphate buffer (PB). The eye cup was fixed for 1 hr at room temperature and then stored in 25% sucrose in 0.1 M PB at 4°C. Vertical sections of the retina were cut perpendicular to the vitreous surface with a cryostat at 12–16 μm, mounted onto gelatin-coated slides, and then air-dried and stored at −20°C.

Cell isolation procedure. The retinas were removed from the salamander eye cups, exposed to 20 U/mg papain (Worthington, Freehold, NJ) for 30 min, and then washed several times with Ringer’s solution [composition (in mM), NaCl 100; KCl 2.5; CaCl2 1.8; MgCl2 1.0; and NaHCO3 25, pH 7.4]. The remaining procedures for cell isolation are identical to those reported previously (Akopian and Wiktorsson, 1996). Dissociated cells were plated onto concanavalin A (Sigma, St. Louis, MO)-coated coverslips. Isolated cells were used in immunocytochemical and Ca2+-imaging experiments. For immunocytochemical experiments, cells were fixed in 4% PFA for 10 min followed by three washes with 0.1 M PB.

Antibodies. The SRIF antibody and the tyrosine hydroxylase monoclonal mouse antibody were obtained from Chemicon (Temecula, CA). A rabbit affinity-purified polyclonal antibody (#9431) directed against the C terminus of mouse sst2A (363–369) was a generous gift of Drs. J. Walsh and Helen Wong of UCLA. After a blocking step in an antibody diluent solution, the primary antibodies were placed on the tissues or isolated cells for 12–36 hr at 4°C and then washed in 0.1 M PB. The immunoreaction was visualized with fluorescein-isothiocyanate-coupled goat anti-rabbit antibodies (American Qualex, La Mirada, CA) or rhodamine donkey anti-mouse (Jackson ImmunoResearch, West Grove, PA) for 1–2 hr at room temperature. Sections were coverslipped with a glycerol phosphate or carbonate buffer containing 2% potassium iodide to retard fading.

The specificity of the sst2A antibody was evaluated by preabsorbing it with 10 μg/mg synthetic sst2A peptide, which completely abolished labeling. In addition, the sst2A antisera has been characterized extensively in a previous study using transfected cell lines, Western blotting, and immunohistochemistry on tissue sections (Sternini et al., 1997).

Image processing. Images were photographed using T-Max 400 or Ektachrome 1600 film. The photographic images were scanned at 2700 dpi with a SprintScan 35/Plus scanner (Polaroid, Cambridge, MA) and saved as TIFF files. Images were adjusted to the final size, corrected for contrast and brightness, and labeled using Adobe Photoshop 5.0 (Adobe Systems, Mountain View, CA). Images were saved at 320 dpi.

RESULTS

Localization of SRIF and the sst2A receptor

SRIF immunostaining was observed in widely spaced amacrine cells, whose perikarya are at the border of the inner nuclear layer (INL) and the IPL. Immunolabeled amacrine cell processes were distributed within two narrow strata: sublamina 1 at the border of the INL and the IPL and sublamina 5 at the border of the IPL and the ganglion cell layer (GCL) (Fig. 1a). Because the morphology of these cells resembled that of the dopaminergic amacrine cells in tiger salamander (Watt et al., 1988), we conducted

![Figure 1](attachment:image1.png)

Figure 1. Retinal distribution of SRIF and somatostatin sst2A immunoreactivity. a, A SRIF-immunoreactive amacrine cell body whose processes extend into both distal and proximal portions of the IPL. b, sst2A receptor immunoreactivity that is located in both plexiform layers. Arrows indicate positive staining of photoreceptor bases. c, Absence of sst2A immunoreactivity when antibody was preabsorbed with a blocking peptide. Labels indicate retinal layers: gcl, ganglion cell layer; inl, inner nuclear layer; ip1, inner plexiform layer; op1, outer plexiform layer; and pl, photoreceptor layer. Scale bar: a–c, 5 μm.
Somatostatin increased the staining pattern observed in retinal sections (data not shown). Expression by isolated rod and cone photoreceptors, with strong SRIF increased voltage-activated K^+ currents–voltage relation. IK obtained from the experiment described in A is shown. $Inset$: Somatostatin increased IK amplitude without substantially changing the current–voltage relation. $□$: Control; $○$: somatostatin. The y-axis of the $inset$ is normalized current. C: CTX reduced outward currents (left) but did not prevent a somatostatin-induced increase in IK. D: $I–V$ relationship of outward current in the presence of CTX (□), or CTX + somatostatin ($△$); $n = 3$.

double-labeling experiments and determined that SRIF and tyrosine hydroxylase were found within two distinct cell populations (data not shown).

sst_{2A} receptor immunoreactivity was localized to both the inner and outer retina, including cell bodies in the photoreceptor layer, and to processes in both plexiform layers (Fig. 1b). sst_{2A}-immunoreactive photoreceptors with prominent staining throughout the inner segment and synaptic terminals were observed (Fig. 1b, arrows). sst_{2A} receptor immunoreactivity also was expressed by isolated rod and cone photoreceptors, with strong staining of the inner segments and synaptic terminals, similar to the staining pattern observed in retinal sections (data not shown).

sst_{2A}-immunoreactive bipolar and amacrine cell bodies also were noted in which immunostaining was characterized by a thin rim of immunoreactivity at, or adjacent to, the plasma membrane. A dense network of immunostained processes was present in the outer plexiform layer and in all laminae of the IPL (Fig. 1b). Diffuse immunostaining was observed in the GCL. Immunostaining was completely eliminated in sections incubated in antibody that was preadsorbed with 10^{-5} m sst_{2A} 361–369 (Fig. 1c).

Effect of SRIF on voltage-gated currents in photoreceptors

Characteristics of outward K^+ current in photoreceptors

In the retinal slice preparation, rods were stepped for 50 msec to depolarizing voltages between -60 to $+40$ mV in 20 mV increments from a holding potential of -70 mV (Fig. 2A, left). Outward current was reliably observed for voltage steps positive to -40 mV. The tail current reversal potential for the outward current recorded was near -75 mV (data not shown), which is positive to the equilibrium potential of K^+ of -88 mV, assuming that the intracellular concentration of K^+ was equal to that in the pipette. The current was blocked in the presence of 20 mM TEA (data not shown).

Effect of SRIF on IK

To examine the effect of SRIF receptor activation on IK, various concentrations of SRIF from 0.1 to 1 μM were applied to rods. Even at the holding potential of -70 mV, 0.5 μM SRIF induced a steady outward current of 16 ± 3 pA ($n = 3$). This steady current is not reflected in the current–voltage plots of IK (Fig. 2), because it was subtracted as a baseline current. Exposure to SRIF progressively increased the IK evoked by depolarizing pulses (Fig. 2A, right) compared with those recorded in control Ringer’s solution (Fig. 2A, left). Partial recovery was observed after a 10–15 min wash in SRIF-free Ringer’s solution (data not shown). The corresponding $I–V$ relationships are illustrated in Figure 2B, showing that an increase in IK amplitude is not accompanied by a shift of the current–voltage relation along the voltage axis (Fig. 2B, inset). The threshold dose at which SRIF increased IK was near 0.1 μM, and the maximum effect was obtained at ~ 1 μM. In subsequent experiments, we used concentrations of 0.1–0.5 μM. The mean increase of IK (at $+30$ mV voltage step) induced by 0.5 μM SRIF was $58 \pm 13\%$ ($n = 20$; $p < 0.001$). The effect of SRIF was observed after ~ 1 min of application and reached a maximum in 2–4 min. A dose–response function for SRIF could not be obtained on a single cell because of incomplete recovery of IK, even after a 10–15 min wash in normal Ringer’s solution. A similar enhancement of IK by SRIF was observed in cones (0.5 μM SRIF; mean increase, $37 \pm 8\%$; $n = 5$; $p < 0.001$). In separate experiments ($n = 3$) done in the absence of Cs$^+$ in the bath solution, we found that the hyperpolarization-activated current (I_h) was not affected by SRIF in the same cells that showed a substantial increase in IK current (data not shown).

Previous studies indicate that, in salamander photoreceptors, depolarization activates at least two types of K^+ current: a delayed rectifier and a Ca^{2+}-dependent K^+ current (IK_{Ca}) (Barnes and Hille, 1989). We used charybdoxin (CTX; 20 nM) to block IK_{Ca} (Knaus et al., 1994). This reduced the outward current evoked by a depolarizing step from -70 to 0 mV (Fig. 2C; mean reduction, $36 \pm 17\%$; $n = 3$). Thereafter the slice was superfused with a mixture of charybdoxin and SRIF (500 nM), resulting in a $49 \pm 19\%$ increase in outward current (Fig. 2C,D), which is the same degree of enhancement noted without charybdoxin treatment. Thus, on the basis of its kinetic and pharmacological characteristics we identify the SRIF-sensitive outward current (Fig. 2A) as a delayed rectifier K^+ current (IK_d).

Previous studies in other preparations have demonstrated that the action of SRIF on voltage-gated K^+ and Ca^{2+} currents is sensitive to PTX, indicating the participation of a PTX-sensitive G-protein (White et al., 1991; Ishibashi and Akaike, 1995; Delmas et al., 1998). We found that in slices obtained from eyecups after a 16–20 hr incubation with PTX (400 ng/ml), IK of either rods or cones was not augmented by SRIF (Fig. 3a). The mean change of peak IK by SRIF in PTX-pretreated cells was $-8 \pm 7\%$ ($n = 3$; $p > 0.1$). There were no significant differences in the $I–V$ characteristics of the IK current recorded in control Ringer’s solution or in the presence of SRIF (Fig. 3b). The histogram of Figure 3c summarizes the data obtained in control and PTX-treated slices.

Another test of G-protein involvement was the addition to the
pipette solution of GDP$_p$S (500 μM), a compound that blocks the G-protein-mediated effects of neurotransmitters on neuronal Ca$^{2+}$ currents (Holtz et al., 1986). After rupturing the cell membrane, a period of 4–5 min was allowed to ensure adequate dialysis with GDP$_p$S. Inclusion of GDP$_p$S in the patch pipette substantially abolished the SRIF-induced enhancement of I_{K}. In many cases we observed even a slight reduction of I_{K} after exposure to SRIF. In the experiment illustrated in Figure 4a, I_{K} was first recorded in control Ringer’s solution and then after a 4 min exposure to 0.5 μM SRIF. The corresponding I–V relationships are illustrated in Figure 4b. The mean change of I_{K} induced by exposure to SRIF in the presence of GDP$_p$S was $-6 \pm 10\%$ ($n = 8$; $p > 0.1$). Figure 4c summarizes these results, which indicate that a G-protein is implicated in the cascade underlying a SRIF-induced enhancement of I_{K} in retinal photoreceptors.

SRIF reduces Ca$^{2+}$ current in rods

Ca$^{2+}$ currents were isolated from other voltage-gated currents using ion substitution and channel blockers and were recorded in rods and cones under whole-cell voltage clamp. From a holding potential of −70 mV, depolarizing pulses of 70 msec duration were applied from −60 to +60 mV, in 10 mV increments, using 20 mM Ba$^{2+}$ as the current carrier. For depolarizing steps positive to −40 mV, rods responded with a sustained inward current, which was completely blocked by application of 100 μM Cd$^{2+}$, increased by 10 μM BAY K 8644, and reduced in the presence of 50 μM nifedipine (data not shown), indicating that the Ca$^{2+}$ current is mediated by dihydropyridine-sensitive, L-type Ca channels. In general, the kinetic and voltage-dependent characteristics of the Ca$^{2+}$ current were similar to those described previously for salamander photoreceptors (Bader et al., 1982; Barnes and Hille, 1989). Figure 5a illustrates a representative experiment in which Ca$^{2+}$ current was evoked by a depolarizing step from −70 to 0 mV in control external solution (1), after a 1 min exposure to 0.2 μM SRIF (2), and 2 min after the washout of drug (3). The SRIF-induced reduction of Ca$^{2+}$ current was accompanied by a slowing of its activation kinetics. In control solution the time constant of activation was 2.2 ± 0.3 msec ($n = 6$), increasing significantly ($p < 0.05$; $n = 6$) to 3.4 ± 0.3 msec in the presence of SRIF. SRIF (0.2 μM) reversibly reduced peak Ca$^{2+}$ current in rods by 33 ± 3% ($n = 10$; $p < 0.05$). Figure 5b illustrates the steady-state I–V relationship of Ca$^{2+}$ current recorded in control external solution (open circles), and in the presence of SRIF (closed circles). It shows that the reduction of peak current is not accompanied by a significant shift of the voltage dependence of the calcium current.

The time course of SRIF blockade was evaluated, using the following protocol. We applied 70 msec depolarizing pulses to a test potential of 0 mV from a holding potential of −70 mV each 5 sec (Fig. 5c). In other experiments a voltage ramp (from −70 to +50 mV) was applied every 10 sec. After obtaining five to six stable sequential responses, SRIF-containing solution was perfused into the bath, and the recordings continued another 2–3 min. Figure 5c illustrates that the actions of SRIF on Ca$^{2+}$ current developed relatively rapidly (<1 min) and complete recovery was observed within a 1–2 min wash in control external solution, unlike the incomplete recovery of I_{K} even after a 10–15 min wash.

SRIF enhances Ca$^{2+}$ current in cones

Surprisingly, we found that in contrast to its inhibitory action on Ca$^{2+}$ current in rods, SRIF enhanced I_{Ca} in cones. Figure 6a illustrates an experiment in which a cone was held at a membrane potential of −70 mV, and depolarizing pulses were applied from...
The inhibitory effect of SRIF on high voltage-activated Ca\(^{2+}\) currents in rods. The test solution contained 0 CaCl\(_2\) and 20 mM BaCl\(_2\) substituted for equimolar NaCl. a. A depolarizing step to 0 mV from a holding potential of −70 mV was applied to record whole-cell Ca\(^{2+}\) current in control external solution (1), after a 1 min exposure to 0.2 μM SRIF (2), and after a wash (3). The I–V relationship of Ca\(^{2+}\) currents evoked by depolarizing voltage steps from −50 to +50 mV in 10 mV increments in the absence (open circles) and the presence of 0.2 μM SRIF (closed circles) is shown. c. The time course of SRIF blockade was evaluated by applying 70 msec depolarizing pulses to a test potential of 0 mV from a holding potential of −70 mV each 5 sec. The time of SRIF application is shown by the hatched horizontal bar. The numbers correspond to the traces in a.

The SRIF-induced inhibition of \(I_{Ca}\) is G-protein coupled. \(sst_{2a}\) receptors are coupled to G\(_i\) or G\(_o\) proteins in different systems (Law et al., 1991, 1993; Gu and Schonbrunn, 1997). Some forms of G-protein-mediated inhibition of Ca\(^{2+}\) currents by neuromodulators are voltage dependent, being relieved by strong depolarizations (Bean, 1989; Hille, 1994). For example, in hippocampal neurons, the SRIF-induced inhibition of an N-type Ca\(^{2+}\) current has been shown to be highly sensitive to PTX and to depolarizing prepulses (Ishibashi and Akaifie, 1995). To test for the possible involvement of a G-protein in the SRIF-induced inhibition of \(I_{Ca}\), we performed experiments on eyecups pretreated with 400 ng/ml PTX. We found that PTX attenuated the inhibitory action of SRIF on \(I_{Ca}\). The mean inhibition of \(I_{Ca}\) by somatostatin in PTX-pretreated rods was 8 ± 2% (\(n = 3; p > 0.1\)), compared with the 33% reduction observed in untreated rods.

A G-protein-dependent inhibition of \(I_{Ca}\) by SRIF may be mediated via an intracellular second messenger system or by a direct membrane-delimited mechanism. G-protein-dependent inhibition of \(I_{Ca}\) has been found to use either pathway, depending on the neurotransmitter involved (Beech et al., 1991; Shapiro and Hille, 1993). We tested whether intracellular Ca\(^{2+}\) might serve as a second messenger by changing the pipette solution to one containing 0 Ca\(^{2+}\)/10 mM BAPTA. The mean reduction of \(I_{Ca}\) by SRIF in the presence of BAPTA was ~37% (\(n = 3\)), the same degree of inhibition observed in rods not treated with BAPTA (data not shown). We concluded that SRIF-induced inhibition of \(I_{Ca}\) in rods is not mediated via changes in intracellular [Ca\(^{2+}\)].

Effect of SRIF on intracellular Ca\(^{2+}\) accumulation

We used Ca\(^{2+}\)-imaging techniques to examine whether SRIF altered a depolarization-induced elevation of [Ca\(^{2+}\)], in isolated photoreceptor synaptic endings. In these experiments, 50–100 mM K\(^+\) (substituted for an equivalent amount of NaCl) was used to depolarize the cells and to stimulate Ca\(^{2+}\) entry through voltage-gated Ca\(^{2+}\) channels. Exposure to elevated K\(^+\) induced a sustained increase of [Ca\(^{2+}\)] in the synaptic terminals of isolated rods and cones (Fig. 7a,c). This effect was substantially reduced (~80%) in the presence of nifedipine (50 μM) and completely blocked in the presence of Cd\(^{2+}\) (100 μM), indicating that elevation of intracellular Ca\(^{2+}\) was caused by activation of voltage-gated L-type Ca\(^{2+}\) channels, although release of Ca\(^{2+}\) from intracellular stores may also have contributed to the Ca\(^{2+}\) signal (Krizaj and Copenhagen, 1998). We found that, in rods, SRIF (0.2–0.5 μM) significantly reduced the [Ca\(^{2+}\)] accumulation induced by high K\(^+\) (Fig. 7a). The mean reduction of Ca\(^{2+}\)
entry by 0.5 μM somatostatin was 55 ± 18% (n = 5; p < 0.05). In agreement with electrophysiological results, we noted that in cones, 0.5 μM SRIF enhanced intracellular Ca2+ accumulation induced by high K+ (Fig. 7c). The mean increase of [Ca2+]i, by 0.5 μM SRIF in cones was 50 ± 15% (n = 5; p < 0.05). Figure 7, b and d, summarizes these data that show that SRIF differentially affects Ca2+ signals in rods and cones. In control experiments we observed that two pulses of 90 mM K+ elicited approximately equal increases in [Ca2+]i, when separated by the same 1–2 min and its enhancement in cones (d; n = 5). Vertical bars show the mean values ± 1 SE.

Figure 7. Effects of somatostatin on K+–induced Ca2+ accumulation in rods and cones. a, c, KCl (100 mM) was used to stimulate Ca2+ entry in the absence and the presence (hatched horizontal bar) of 0.5 μM somatostatin in rods (a) and cones (c). Somatostatin reduced Ca2+ accumulation in rods but increased it in cones. b, d, Histograms summarize the somatostatin-induced inhibition of Ca2+ accumulation in rods (b; n = 5) and its enhancement in cones (d; n = 5). Vertical bars show the mean values ± 1 SE.

In the absence of antibodies against other forms of the SRIF receptors, we cannot conclude with certainty that the SRIF-induced physiological effects we have described were mediated by the sst2A receptor, although this is a reasonable supposition because of the high density of sst2A receptors on rod and cone terminals. The finding that these effects were blocked by PTX is not diagnostic, because all forms of SRIF receptor are reported to act via subtypes of either Gα or Gβγ proteins (Law et al., 1991; Takano et al., 1997), all of which are blocked by PTX.

SRIF-induced modulation of Ca2+ and K+ currents in photoreceptors

K+ current

Photoreceptors possess a mixture of voltage-dependent K+ currents, including a delayed rectifier, \(I_K \) (Bader et al., 1982), a Ca2+-dependent K+ current, \(I_{K–Ca} \) (Corey et al., 1984), and \(I_n \), a mixed cation current (Fain et al., 1978; Barnes and Hille, 1989). Our data indicate that SRIF selectively augments the delayed rectifier K+ current. The enhancement of outward currents remained in the presence of charybdotoxin that blocks \(I_{K–Ca} \), and it increased with depolarizing steps (Fig. 2) at which potentials \(I_n \) is inactivated (Akopian and Witkovsky, 1996). Exposure to SRIF also elicited a non-inactivating outward current that was 16 pA at –70 mV. If the steady current were a leakage current, it would add a linear component to the total outward current, whose magnitude can be estimated by a regression line passing through \(E_K \) (–88 mV) and 16 pA at –70 mV. Because this putative current was not observed (Fig. 2), we conclude that the action of SRIF on K current is mediated primarily by \(I_K \) in salamander rods and cones.

The SRIF-induced steady K+ current would be expected to hyperpolarize photoreceptors. At the resting potential of the photoreceptor in darkness (–40 mV) and with a value of 100 MΩ resistance to ground for rods in an intact retina (Owen and Copenhagen, 1977), photoreceptors will be hyperpolarized 1 mV for each 10 pA of steady current.

We noted that the SRIF-induced increase in \(I_K \) was blocked by PTX and by GDPβS, consistent with the general finding that

DISCUSSION

Cellular distribution of SRIF-containing neurons and SRIF receptors in the vertebrate retina

SRIF immunoreactivity has been described in the retinas of a variety of cold-blooded and homeotherm vertebrates (for review, see Brecha, 1983). The SRIF-containing cells are inner retinal neurons, typically amacrine or interplexiform cells (Yamada et al., 1980; Li et al., 1986; Smiley and Basinger, 1988; Rickman et al., 1996), with perikarya located either in the GCL or at the border of the INL and IPL. SRIF-containing neurons in mammals often are displaced amacrine cells, i.e., with cell bodies in the GCL (Engelmann and Peichl, 1996; Rickman et al., 1996). The retinal density of SRIF neurons is low (<100 cells mm–2 (Rickman et al., 1996)) in most parts of the retina but may reach a few thousand cells per square millimeter in restricted retinal regions (Engelmann and Peichl, 1996; Rickman et al., 1996). In spite of the low cellular density, SRIF processes create a continuous network in the IPL. Within the IPL the distribution of SRIF processes varies; in chicken retina, it is diffuse (Ishimoto et al., 1986), whereas in rabbit and salamander retinas, SRIF processes extend horizontally in laminae 1 and 5 of the IPL (Rickman et al., 1996) (present report). sst2A receptors, on the other hand, are found in both the inner and outer retina (Johnson et al., 1998, 1999) (present report). The wider retinal distribution of SRIF receptors in relation to SRIF cells and processes indicates that SRIF reaches some targets by diffusion. Thus in general outline, the retinal SRIF system resembles closely that of the dopamine system (Witkovsky and Schutte, 1991), a resemblance that is heightened by the presumption that SRIF will affect synaptic transmission between rod and cone photoreceptors and second-order retinal neurons, as shown previously for dopamine (Witkovsky et al., 1988).

Our data indicate that SRIF selectively augments the delayed rectifier K+ current. The enhancement of outward currents remained in the presence of charybdotoxin that blocks \(I_{K–Ca} \), and it increased with depolarizing steps (Fig. 2) at which potentials \(I_n \) is inactivated (Akopian and Witkovsky, 1996). Exposure to SRIF also elicited a non-inactivating outward current that was 16 pA at –70 mV. This steady current is not attributable to \(I_K \) that has a reversal potential near –30 mV and so would generate an inward current at –70 mV. If the steady current were a leakage current, it would add a linear component to the total outward current, whose magnitude can be estimated by a regression line passing through \(E_K \) (–88 mV) and 16 pA at –70 mV. Because this putative current was not observed (Fig. 2), we conclude that the action of SRIF on K current is mediated primarily by \(I_K \) in salamander rods and cones.

The SRIF-induced steady K+ current would be expected to hyperpolarize photoreceptors. At the resting potential of the photoreceptor in darkness (–40 mV) and with a value of 100 MΩ resistance to ground for rods in an intact retina (Owen and Copenhagen, 1977), photoreceptors will be hyperpolarized 1 mV for each 10 pA of steady current.

We noted that the SRIF-induced increase in \(I_K \) was blocked by PTX and by GDPβS, consistent with the general finding that
SRIF acts via PTX-sensitive G-proteins (Law et al., 1991; Rens-Domiano and Reisine, 1992). Our data agree with the demonstration by Wang et al. (1989) that in rat neocortical neurons, the enhancement by SRIF of a delayed rectifier current was antagonized by PTX. Takano et al. (1997) found that \(k \) was activated by SRIF via G\(_{m1} \) or 2 proteins, and Gu and Schonbrunn (1997) showed that the sst\(_{2A} \) receptor complexed specifically with G\(_{m1} \) 1–3 proteins, all of which are PTX-sensitive. Thus our data are consistent with the hypothesis that they were mediated by the sst\(_{2A} \) receptor that rod and cone photoreceptors express (Fig. 1), but a more compelling proof would require showing that SRIF receptors other than the sst\(_{2A} \) subtype are absent on salamander photoreceptors.

Ca\(^{2+} \) currents

The Ca\(^{2+} \) currents of salamander rods and cones have been investigated intensively (Bader et al., 1982; Corey et al., 1984; Barnes and Hille, 1989; Wilkinson and Barnes, 1996). They are of the L-type (dihydropyridine-sensitive, high voltage-activated, and nondesensitizing). Studies in several systems show that L-type currents are reduced by SRIF in a rapid and reversible manner (Ikeda and Schofield, 1989; Dryer et al., 1991; Shapiro and Hille, 1993; Ishibashi and Akaike, 1995). Our data on the fast, reversible inhibition of \(I_{Ca} \) in rods by SRIF and the independence of SRIF-induced effects on changes in intracellular \([Ca^{2+}]_i\) suggest that the SRIF-induced inhibition of \(I_{Ca} \) is mediated by a membrane-delimited pathway. This possibility is consistent with the demonstration by Delmas et al. (1998) that a G\(_{βγ} \) unit underlies the inhibition, by noradrenaline and SRIF, of an N-type Ca\(^{2+} \) current in rat sympathetic neurons.

The finding that the \(I_{Ca} \) of cone photoreceptors is enhanced by SRIF is novel. The enhancement consisted of a shift toward negative voltage of the activation function. This shift will be functionally important for cones, because their operating range extends for 20–30 mV negative to the membrane potential of approximately −40 mV in darkness (for review, see Attwell, 1990). The voltage-clamp records of \(I_{Ca} \) in cones are buttressed by the data from Ca\(^{2+} \) imaging that show that SRIF augments the increase in \([Ca^{2+}]_i\). It is possible that the differential action of SRIF on rod and cone calcium currents indicate a difference in the underlying Ca channel. Wilkinson and Barnes (1996) classified the cone L-Ca channel as the D subtype on the basis of its pharmacological profile, but we are unaware of a comparable study on the rod Ca channel.

Significance for retinal function of SRIF-induced alterations in photoreceptor K\(^+ \) and Ca\(^{2+} \) currents

The photoreceptor synapse is unusual in that rods and cones release glutamate tonically in darkness. Light, by hyperpolarizing the photoreceptors, reduces the rate of glutamate release (for review, see Attwell, 1990). Because glutamate release by photoreceptors is a Ca\(^{2+} \)-dependent process, it requires a sustained, voltage-dependent Ca\(^{2+} \) current, in accord with the demonstration that rods and cones use an L-type Ca current to mediate transmitter release (Rieke and Schwartz, 1996; Schmitz and Witkovsky, 1997; Witkovsky et al., 1997). A growing number of studies document that transmitter release from photoreceptor terminals is subject to multiple sources of neuromodulation. These include pH (Barnes et al., 1993), possibly related to GABA release by horizontal cells (Verweij et al., 1996), dopamine (Stella and Thoreson, 1998), and Ca release from intracellular stores (Krizaj et al., 1999).

SRIF will contribute to the overall modulation by downregulating glutamate release from rods via two mechanisms. The steady outward K\(^+ \) current will hyperpolarize the rod. Even a small (1–2 mV) hyperpolarization might be important, because of the change of slope of the Ca\(^{2+} \) current activation function that occurs near the −40 mV resting potential of the rod in darkness (Rieke and Schwartz, 1996; Witkovsky et al., 1997). Second, by further reducing \(I_{Ca} \) directly, glutamate release by rods will be attenuated.

The situation for cones is complex in that the shift toward negative voltages of the Ca\(^{2+} \) current–voltage function by SRIF will tend to be counterbalanced by any hyperpolarization resulting from a SRIF-induced increase in \(I_{Ca} \). Thus a good test of the net action of SRIF on photoreceptor signaling will be to examine rod and cone inputs to the second-order retinal neurons and horizontal and bipolar cells. In amphibian retinas these second-order neurons receive a mixed input from rods and cones (Hare et al., 1986). On the basis of the findings of the present study, one would expect SRIF to reduce rod input and increase cone input, just as has been reported for the action of dopamine on amphibian horizontal cells (Witkovsky et al., 1988).

REFERENCES

Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Im-
proved patch clamp technique for high resolution current recording from cell and cell-free membrane patches. Pflügers Arch 391:85–100.

