Pronociceptive Actions of Dynorphin Maintain Chronic Neuropathic Pain

Departments of 1Pharmacology, 2Chemistry, and 3Anesthesiology, University of Arizona Health Sciences Center, Tucson, Arizona 85724, 4Eleanor Roosevelt Institute, Denver, Colorado 80206, and 5Developmental Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104

Whereas tissue injury increases spinal dynorphin expression, the functional relevance of this upregulation to persistent pain is unknown. Here, mice lacking the prodynorphin gene were studied for sensitivity to non-noxious and noxious stimuli, before and after induction of experimental neuropathic pain. Prodynorphin knock-out (KO) mice had normal responses to acute non-noxious stimuli and a mild increased sensitivity to some noxious stimuli. After spinal nerve ligation (SNL), both wild-type (WT) and KO mice demonstrated decreased thresholds to innocuous mechanical and to noxious thermal stimuli, indicating that dynorphin is not required for initiation of neuropathic pain. However, whereas neuropathic pain was sustained in WT mice, KO mice showed a return to baselines by post-SNL day 10. In WT mice, SNL upregulated lumbar dynorphin content on day 10, but not day 2, after injury. Intrathecal dynorphin antisera reversed neuropathic pain in WT mice at post-SNL day 10 (when dynorphin was upregulated) but not on post-SNL day 2; intrathecal MK-801 reversed SNL-pain at both times. Opioid (μ, δ, and κ) receptor density and G-protein activation were not different between WT and KO mice and were unchanged by SNL injury. The observations suggest (1) an early, dynorphin-independent phase of neuropathic pain and a later dynorphin-dependent stage, (2) that upregulated spinal dynorphin is pronociceptive and required for the maintenance of persistent neuropathic pain, and (3) that processes required for the initiation and the maintenance of the neuropathic pain state are distinct. Identification of mechanisms that maintain neuropathic pain appears important for strategies to treat neuropathic pain.

Key words: prodynorphin; dynorphin; neuropathic pain; opioid receptors; spinal nerve injury; nociception; gene deletion; gene knockout; transgenic; mouse

Peripheral nerve damage can elicit abnormal pain characterized in part by hyperalgesia where nocuous stimuli are perceived as more painful, and allodynia where normally innocuous stimuli elicit pain (Ossipov et al., 1999). The clinical efficacy of local anesthetics, anti-arrhythmic, and anti-epileptic drugs (Devor and Seltzer, 1999) supports the concept that such pain critically depends on sustained afferent discharge of nerves. Data from experimental models of neuropathic pain support the importance of discharge of injured or adjacent nerve fibers as critical for eliciting the behavioral signs of nerve injury-induced pain (Kajander and Bennett, 1992; Malan et al., 2000). Recent studies have shown that the rate of discharge of injured nerves declines significantly with time after the injury (Han et al., 2000; C. Liu et al., 2000; X. Liu et al., 2000). Although tonic discharge continues in the postinjury state, the decreased firing rate of the afferents does not appear consistent with many behavioral reports that demonstrate that nerve injury-induced pain persists essentially unchanged for many weeks (Chaplan et al., 1994; Bian et al., 1995). These findings raise the possibility that although the pain state depends on some level of abnormal afferent discharge, the processes that initiate neuropathic pain state may differ from those that maintain such pain.

Neuropathic and other chronic (e.g., inflammatory) pain states are associated with increased spinal dynorphin expression (Iadarola et al., 1988; Dubner and Ruda, 1992; Bian et al., 1999; Malan et al., 2000). Whereas dynorphin is an endogenous opioid with activity at κ opioid receptors (Goldstein et al., 1979), many of its effects are blocked by MK-801 but not naloxone, implicating direct or indirect interaction with NMDA receptors (Massardier and Hunt, 1989; Skilling et al., 1992; Lai et al., 1998; Tang et al., 1999). Intrathecal dynorphin injection produces behavioral signs that mimic nerve injury-induced pain (Vanderah et al., 1996; Laughlin et al., 1997) and that are blocked by MK-801 pretreatment. The mechanisms of such acute activity of dynorphin in vivo and the relevance of its upregulation in prolonged pain states is not well understood. However, the observation that intrathecal administration of an antisera to dynorphin A(1-17) reverses neuropathic pain in nerve-injured rats (Malan et al., 2000) and mice (Ibrahim et al., 1999) has led us to hypothesize that upregulated or pathological levels of spinal dynorphin may play a pronociceptive role by maintaining “central sensitization” in the post-nerve injury state.

This hypothesis has been tested in the present study using a transgenic mouse strain in which the gene encoding prodynorphin has been deleted, resulting in mice that do not produce dynorphin (Sharifi et al., 2001). The responses of these prodynorphin knock-out (KO) mice to innocuous stimuli and to acute and tonic nociception, were compared with those of wild-type (WT) litter-
mates before and after spinal nerve ligation injury (SNL). Our findings demonstrate that although the actions of dynorphin are not required for the initiation of the neuropathic pain state, presence is critical for the maintenance of such abnormal, nerve injury-induced pain.

MATERIALS AND METHODS

Animals. Progeny of progenitor 129/SvEvTac mice were used in this study. They were heterozygous at the prodynorphin gene with one wild-type allele (+) and one null allele (−). In null allele (−), the coding region of exons 3 and 4 was deleted by the replacement of exons 3 and 4 with a neomycin cassette PA95 (Sharif et al., 2001). Male mice that were homozygous prodynorphin knock-out (KO) (−/−) and littermates that were homozygous wild-type (WT) (+/+) were used. Both genotypes were viable and showed normal growth and reproduction. Genotyping of litters was initially performed with PCR and confirmed by Southern blot analysis. Subsequently, mice were routinely genotyped by PCR using a set of prodynorphin primers (5′-CAG GAC CTC GTG CCG CCC TCA GAG-3′, 5′-CCG TTC TGC TTT TGC CAC TTA AGC-3′; these yield a 500 bp product) and neo primers (5′-ATC CAG GAA ACC AGC GGC GGC TAT-3′, 5′-ATT CAG ACA CAT CCC TAA GCA CA-3′; these yield a 1200 bp product). Each mouse was genotyped twice using DNA from tissues from the tail or in the tail tissue samples. The investigators performing the biochemical and behavioral tests were blind to the genotype of the mice. All breeding and testing procedures were performed in accordance with the policies and recommendations of the International Association for the Study of Pain and the National Institutes of Health guidelines for the handling and use of laboratory animals and approved by the Institutional Animal Care and Use Committee of the University of Arizona.

Immunohistochemistry. Tissue preparation and immunohistochemical staining of spinal cord tissues from WT and KO mice were performed according to that previously described (Vanderah et al., 2001). Frontal frozen sections (30 μm) were prepared from the spinal cord lumbar enlargement and immunostained for prodynorphin (guinea pig anti-prodynorphin antisera, 1:40,000; gift from Dr. Robert Elde, University of Minnesota, St. Paul, MN). In addition, groups of three prodynorphin knockout WT or KO mice were subjected to sham or SNL surgery and killed at day 14 after surgery. The lumbar spinal cords from these mice were immunolabeled with a rabbit anti-μ opioid receptor antibody (1:20,000; gift from Dr. Robert Elde) or an antisera for PKCγ (rabbit anti-PKCγ, 1:10,000; Santa Cruz Biotechnology, Santa Cruz, CA). The sections were processed with a biotinylated goat anti-rabbit serum (prodynorphin) or goat anti-rabbit (μ opioid receptor and PKCγ) IgG secondary antibody, followed by the avidin–biotin horseradish peroxidase (HRP) complex (ABC kit; Vector Laboratories, Burlingame, CA) and developed with 3′,5′-diaminobenzidine (Fast DAB sets; Sigma, St. Louis, MO). The sections were then mounted on glass slides and coverslipped with DPX. Transmitted light images were acquired using a Nikon E800 microscope outfitted with a plan apo 25× objective lens and a Hamamatsu CS810 color CCD camera. The digitized output of the camera was acquired with Adobe Photoshop.

Western analysis of the κ opioid receptor. The ipsilateral (i.e., left) halves of the lumbar spinal cord from sham or nerve-ligated mice were dissected and frozen on dry ice. Tissues from three mice of the same experimental group were pooled and homogenized with a glass homogenizer in RIPA buffer (1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS, 5 mM EDTA in PBS, pH 7.4) (3 ml/g wet weight) in the presence of protease inhibitors [0.05 mg/ml bestatin, 0.05 mg/ml leupeptin, 0.05 mg/ml pepstatin, and 0.1 mg/ml phenylmethylsulfonfluoride (PMSF)]. The homogenates were incubated at 4°C for 2 hr, and the soluble fraction was separated by centrifugation (45,000 × g, 60 min). Protein content in the supernatant was determined by the Lowry method. Samples (15 μg of protein) were separated by 8% SDS-PAGE and electrotransferred onto nitrocellulose membrane. The membrane was blocked in 5% nonfat milk in Tris (20 mM) buffer saline, pH 7.6, with 0.1% Tween 20 and incubated with a rabbit anti-κ opioid receptor antibody (1:1500; Upstate Biotechnology, Lake Placid, NY). The membrane was washed and incubated with a 12,000-fold dilution of the membrane-bound HRP-conjugated secondary antibody and developed as above. ECL-detected bands were digitized and analyzed for relative intensity using MetaMorph (Universal Imaging, West Chester, PA).

Enzyme immunoassay for the quantitative analysis of dynorphin. Spinal dynorphin content was assayed as previously described (Malan et al., 2000) using the dorsal ipsilateral quadrants of the lumbar spinal cord from sham-operated or SNL mice. Content was evaluated either 2 or 10 d after sham or SNL injury; the latter time point was chosen on the basis of peak SNL-induced spinal dynorphin levels in rats (Malan et al., 2000). Tissue was extracted in 1 M acetic acid, and the dynorphin content in the extract was quantitated using a commercial enzyme immunoassay system (Peninsula Laboratories, Belmont, CA) and a standard curve constructed from known concentrations of dynorphin A1–17. The dynorphin anti-serum used recognizes dynorphin A1–17 and a number of its fragments (as short as dynorphin A1–10), but has no affinity for α-neoendorphin, dynorphin B, β-endorphin, [Leu]6-dynorphin, or for dynorphin fragments shorter than dynorphin A1–13. Protein content in the extract was determined by the Coomassie Plus Protein assay (Pierce, Rockford, IL).

Radioligand binding analysis for opioid receptors. Brain membranes were prepared from the whole brains of three mice from the same experimental group by homogenizing the tissues with the Polytron in 50 mM Tris, pH 7.4, and centrifuging at 45,000 × g for 20 min at 4°C. The obtained membrane extracts were washed twice with the radioligand buffer. Protein content was determined by the Lowry method. Membrane protein (20 μg) was incubated with 12 concentrations of [3H]diprenorphine (59 Ci/mmol; NEN, Boston, MA) in 50 mM Tris buffer, pH 7.4, containing 1 mM EDTA, 1 mM diithiothreitol, 0.1 mM PMSF, and 0.5% bovine serum albumin (BSA) at 25°C for 3 hr. Reaction was terminated by rapid filtration through Whatman (Maidstone, UK) GF/B filters presoaked in polyethylene and washed with 3 × 4 ml of buffer. Nonspecific binding was defined as that in the presence of 10 μM naloxone. Radioactivity was quantitated by liquid scintillation counting. The Kd and Bmax values were calculated by nonlinear least squares analysis (GraphPad Prism, San Diego, CA).

Opioid mediated [35S]GTP binding in spinal cord. Determination of μ opioid binding in spinal cord membranes prepared from naive or nerve-ligated mice was performed as previously described with slight modifications (Porreca et al., 1998). The ipsilateral halves of the lumbar spinal cords from three mice in the same group were pooled for membrane extraction as above. Membranes (20 μg of protein) were incubated with 0.1 mM [35S]GTP (1000–1500 Ci/mmol; NEN) in a final volume of 1 ml of reaction buffer (50 mM HEPES, pH 7.4, 100 mM NaCl, 1 mM EDTA, 5 mM MgCl2, 20 μM GDP, 1 mM diithiothreitol, and 0.1% BSA) in the presence of opioid receptor subtype-specific agonists for 60 min at 25°C. The agonists (concentration range, 0.1 pm to 100 μM) were [D-Ala2,NMePhe4,Gly-ol5]-enkephalin (DAMGO), SN80 and U69,593 for μ, δ, and κ opioid receptors, respectively. Basal level of binding was defined as the amount bound in the absence of agonist. Nonspecific binding was determined in the presence of 10 μM unlabeled GTP·S. Binding was terminated by rapid filtration through GF/B filters (presoaked in reaction buffer), followed by 4 × 4 ml of ice-cold wash buffer (50 mM Tris, 5 mM MgCl2, and 100 mM NaCl, pH 7.4). The membrane-bound [35S]GTP was determined by liquid scintillation counting. The EC50 and Emax values were calculated by nonlinear least squares analysis (GraphPad Prism).

Behavioral tests. High-threshold thermal nociception was evaluated by the following methods: (1) tail immersion test by dipping the distal half of the tail into a water bath maintained at 48, 52, or 55°C and recording the latency to a rapid tail flick response. A 15, 12, and 10 sec cutoff was applied to 48, 52, or 55°C test, respectively, to prevent tissue injury; (2) paw withdrawal latency to radiant heat source applied to the plantar surface of the paw of mice as previously described (Hargreaves et al., 1988). Naive wild-type mice respond to lower and higher stimulus intensities with appropriate changes in latency; the response at the lower intensity stimulation was 20 ± 0.42 sec whereas at the higher intensity stimulation the response latency was 12 ± 0.32 sec. A maximal cutoff of 40 sec was used to prevent tissue damage; (3) a hot-plate test by placing the animal in a glass cylinder on a heated plate with temperature controlled to 52 or 55°C and determining the latency to hindpaw licking. A cutoff time was set at 45 sec for 52°C or 30 sec for 55°C hot plate to prevent tissue injury; (4) pinprick test. The response was determined by paw withdrawal latency to probing with a series of calibrated (0.02–2.34 gm on a logarithmic scale) von Frey filaments (“up and down” method) according to Chaplan et al. (1994) and analyzed using a Dixon (1980) nonparametric test and expressed as the mean withdrawal threshold.
Prodynorphin immunostaining in spinal cord tissues of wild-type (+/+) and prodynorphin knock-out (−/−) mice. Prodynorphin immunoreactivity was primarily seen in the superficial dorsal horn of wild-type mice, but was not detectable in prodynorphin knock-out mice. Scale bar, 200 μm.

Formalin test. Tonic inflammatory pain was induced in groups of 14 mice by a subcutaneous injection of 20 μl of 2% formalin solution in the dorsal surface of the right hindpaw. Flinching of the paw was counted in bins of 5 min each, starting with the formalin injection and ending after 75 min. The formalin flinch test produces a distinct biphasic response over time with flinching behavior appearing in two phases. To quantify the flinch response over the first and second phases, the total number of flinches occurring between 0 and 15 min and between 15 and 75 min were summed, respectively, giving a cumulative distribution over time.

SNL. SNL was performed based on that previously described for rats (Kim and Chung, 1992). Groups of eight WT or KO mice had the L5 and L6 spinal nerve tightly ligated distal to the dorsal root ganglion but before the fibers joined the sciatic nerve; sham operation consisted of the same procedures but without the ligation. Mechanical thresholds were determined by measuring the paw withdrawal threshold to probing with a series of calibrated von Frey filaments as described above. Thermal thresholds were determined with the radiant heat test as described above. For the reversal of nerve injury-induced changes in mechanical and thermal thresholds, separate groups of five to eight mice were injected intrathecally with MK-801 (3.4 mg).

RESULTS

Initial analysis of spinal cord tissues from the WT mice showed that prodynorphin immunoreactivity is primarily located in the superficial laminae of the dorsal horn but is entirely absent in spinal cord tissues from the prodynorphin KO mice (Fig. 1). Enzyme immunoassay for the active peptide dynorphin A₁₋₁₇ which is one of the endogenous derivatives of prodynorphin, further confirmed the lack of dynorphin expression in the KO mice (see Fig. 5 below). The KO mice exhibited normal growth and development, feeding, motor function, and weight that were indistinguishable from their WT littermates. When these mice were evaluated for their nociceptive responsiveness, the WT and KO mice displayed similar latency to innocuous mechanical stimulation of the paw and to noxious input based on radiant heat and hot-plate tests (Fig. 2A and 2C). However, the KO mice consistently showed a small, but significant decrease in the tail-flick response latency when compared with the WT mice (Fig. 2B). WT and KO mice were tested using a model of tonic inflammatory pain (2% formalin; Fig. 3A). The time course of the formalin response is seen in A, and the total number of flinches in the first (0–15 min) and second (15–75 min) phases are seen in B. Prodynorphin knock-out mice exhibit a small but significantly greater number of paw flinches in the second phase of the formalin response when compared with wild-type mice (*p < 0.05), indicating mild hyperalgesia. Data represent the mean from 14 animals in each group.
stimuli in wild-type (WT, squares) and prodynorphin knock-out (KO, circles) mice after sham (open symbols) or SNL surgery (closed circles). Neither WT nor KO mice show any change in the mechanical or thermal thresholds from preinjury baselines after sham surgery throughout the 14 d test period. After SNL, both WT and KO mice rapidly develop decreased innocuous mechanical and noxious thermal thresholds by postsurgery day 2. Whereas the decreased mechanical and thermal thresholds were maintained in WT mice (closed squares), thresholds in KO mice showed a progressive reversal to preinjury baseline levels (closed circles). By day 10 after SNL, both mechanical and thermal thresholds in KO mice were not significantly different from those exhibited by sham-operated KO (or WT) mice done in parallel ($p > 0.5$). Asterisk denotes values that are significantly different from the corresponding sham-operated mice. Data represent the mean from eight mice in each experimental group.

The possible contribution of dynorphin in nerve injury-induced neuropathic pain states was investigated by comparing the development of decreased latency to respond to a noxious thermal stimulus and decreased response thresholds to innocuous mechanical or thermal stimuli seen in the WT or KO mice. Figure 4 shows that within 2 d after SNL injury, both the WT and KO mice developed pronounced increases in sensitivity to innocuous mechanical and noxious thermal stimulation such that by day 10 after SNL injury, the paw withdrawal threshold to radiant heat stimulus or von Frey filament probing was not different from the preinjury level or that of the sham-operated controls.

Quantitative analysis of spinal dynorphin content by enzyme immunoassay showed that in the WT mice, spinal dynorphin at day 10 after SNL (590 ± 76 pg/mg) was significantly elevated ($p < 0.05$) when compared with sham-operated controls (590 ± 74 pg/mg), whereas at day 2 after SNL (340 ± 110 pg/mg) spinal dynorphin was not different from the sham controls (Fig. 5). The immunoreactivity found in extracts from KO mice (56 ± 3 pg/mg) was negligible when compared with that in the WT mice and likely represents the nonspecific activity of the antisera. To substantiate the possible involvement of spinal dynorphin in the observed neuropathic pain, WT and KO mice were subjected to SNL, and at days 2 and 14 after surgery, they received a bolus intrathecal injection of an antiserum to dynorphin and were then monitored for paw withdrawal thresholds to von Frey filaments (Fig. 6A) or radiant heat (Fig. 6B). Dynorphin antiserum had no effect on the enhanced sensitivity to innocuous mechanical or noxious thermal stimuli seen in the WT or KO mice 2 d after SNL, however, dynorphin antiserum reversed these decreased thresholds in the WT mice 14 d after SNL. Dynorphin antiserum had no effect on the responses of the KO mice 14 d after SNL, at which time the paw withdrawal thresholds for both innocuous and noxious stimuli had returned to preinjury level. Control serum did not alter baseline responses in any treatment groups (data not shown). The NMDA receptor antagonist, MK-801, was similarly used to evaluate the contribution of excitatory amino acid neurotransmission to neuropathic pain states in these mice (Fig. 6).

In contrast to the data with intrathecal antiserum to dynorphin, intrathecal MK-801 was effective in reversing the decreased thresholds to innocuous mechanical and noxious thermal stimuli in WT and KO mice at day 2 after SNL and in WT mice at day 14 after SNL. MK-801 had no effect on the paw withdrawal thresholds to innocuous or noxious stimuli in the KO mice at day 14 after SNL. Neither dynorphin antiserum nor MK-801 altered paw withdrawal latencies in sham-operated WT or KO mice.

It has been recognized that an alteration of function of a
 stimulates (in both WT and KO mice) reversed the decreased mechanical and thermal response thresholds seen not day 14, after SNL surgery. At day 2 after SNL, intrathecal MK-801 mice. SNL induced a decrease in both mechanical and thermal thresholds (von Frey filaments) on the response threshold to innocuous mechanical stimulation (von Frey filaments) (A/S) in the brain (Table 1), as well as the immunoreactivity of the opioid receptor in the spinal cord (Fig. 8) and μ opioid receptor immunoreactivity in the spinal cord (Fig. 9) indicates that the density of opioid receptors, as well as their affinity to the opioid antagonist, diprenorphine, in the KO mice were not significantly different from that in the WT mice. The density of the opioid receptors also did not change after SNL injury in the WT or KO mice. The potency and efficacy of the selective opioid agonists for μ, δ, and κ receptors in stimulating γ-[35S]GTP binding to spinal cord membranes argue against any functional difference in these receptors between the WT and KO mice after sham or SNL surgery (Fig. 7). The expression and distribution of protein kinase Cγ (PKCγ), which has been implicated in the development of neuropathic pain (Malmberg et al., 1997), was also found to be similar in sham or SNL-injured WT and KO mice (see Fig. 9). However, the potency and efficacy of selective opioid agonists for μ, δ, and κ receptors in stimulating γ-[35S]GTP binding to spinal cord membranes argue against any functional difference in these receptors between the WT and KO mice after sham or SNL surgery (Fig. 7).

Furthermore, an evaluation of the total opioid receptors in the brain (Table 1), as well as κ (Fig. 8) and μ opioid receptor immunoreactivity in the spinal cord (Fig. 9) indicates that the density of opioid receptors, as well as their affinity to the opioid antagonist, diprenorphine, in the KO mice were not significantly different from that in the WT mice. The density of the opioid receptors also did not change after SNL injury in the WT or KO mice. The expression and distribution of protein kinase Cγ (PKCγ), which has been implicated in the development of neuropathic pain (Malmberg et al., 1997), was also found to be similar in sham or SNL-injured WT and KO mice (see Fig. 9). However, the potency and efficacy of selective opioid agonists for μ, δ, and κ receptors in stimulating γ-[35S]GTP binding to spinal cord membranes argue against any functional difference in these receptors between the WT and KO mice after sham or SNL surgery (Fig. 7). The expression and distribution of protein kinase Cγ (PKCγ), which has been implicated in the development of neuropathic pain (Malmberg et al., 1997), was also found to be similar in sham or SNL-injured WT and KO mice (Fig. 9).

DISCUSSION

The generation of a transgenic mouse strain that does not express dynorphin allows for an assessment of the possible contributions of this peptide in normal sensory thresholds as well as in pathologic pain states. When compared with WT controls, the KO mice showed normal behavior and development as well as normal sensitivity to non-noxious stimulation. Only slightly altered nociceptive thresholds to some noxious stimuli were observed, suggesting that spinal reflex and pain transmission pathways are intact. A consistent observation was mild, but significant hyperalgesia in the KO mice as shown by the decrease observed in tail-flick response latencies and the enhancement of flinching in the second phase of the formalin response. These observations suggest the possibility that constitutive levels of the products of prodynorphin produce a modest and limited tonic inhibition of nociceptive input, likely through opioid actions, as previously suggested with studies using dynorphin antiserum (Ossipov et al., 1996). The mild endogenous tone suggested by these observations is also consistent with the relatively low levels of dynorphin
normally expressed in the spinal cord (Dubner and Ruda, 1992). However, it should be noted that in the initial characterization of these prodynorphin KO animals, Sharifi et al. (2001) found evidence for a reduced level of transcripts for proopiomelanocortin (POMC). The degree to which this change might affect peptide production remains to be determined, but the possibility that the mild hyperalgesia observed could also reflect a decrease in the expression of products of POMC, such as β-endorphin, cannot be excluded.

After SNL, both WT and KO mice demonstrated reliable signs of neuropathic pain within 2 d, suggesting that the initiation of the postinjury state does not depend on the action of the products of prodynorphin. However, the WT mice exhibited a significant upregulation of spinal dynorphin at day 10 after SNL, which is similar to that previously observed in SNL-injured rats (Malan et al., 2000). This overexpression of spinal dynorphin notably correlates with the presence of sustained neuropathic pain in the SNL-injured WT mice, because in the SNL-injured KO mice in which spinal dynorphin is absent, a full recovery of increased sensitivity to innocuous mechanical and noxious thermal stimuli was observed by day 10 after injury. These findings support the possibility of a causal relationship between upregulated spinal dynorphin and the abnormal pain state. This possibility was tested further by spinal administration of dynorphin antiserum. Dynorphin antiserum has previously been shown to reverse SNL-induced neuropathic pain in rats (Malan et al., 2000) and in mice (Ibrahim et al., 1999). Consistent with the earlier observation in rats and mice, intrathecal dynorphin antiserum had no effect on sensory thresholds in sham-operated WT or KO mice (Ibrahim et al., 1999; Malan et al., 2000). When tested at day 2 after SNL injury, intrathecal dynorphin antiserum also did not affect sensory thresholds in WT or KO mice. When tested 14 d after SNL.

Figure 7. Stimulation of γ-[35S]GTP binding by the opioid δ receptor agonist SNC80 (A), the opioid µ receptor agonist DAMGO (B), and the opioid κ receptor agonist U69,593 (C) in spinal cord membranes prepared from WT (squares) or KO (circles) mice 14 d after sham (open symbols) or SNL surgery (closed symbols). No significant change in opioid receptor-mediated transduction was seen.

Figure 8. Western analysis of the opioid κ receptor (KOR) in lumbar spinal cord from wild-type (WT) and prodynorphin knock-out (KO) mice 14 d after sham or SNL surgery. The KOR antibody recognizes two bands of ~50–55 kDa, and the antibody for actin recognizes a single band of 40 kDa. The integrated optical densities for the KOR bands, normalized against that from the WT sham (1.0), are 0.92 for WT SNL, 0.93 for KO sham, and 1.0 for KO SNL, after correcting for loading based on the integrated optical density for actin in each sample. The data are representative of three separate analyses.

Figure 9. Opioid µ receptor (MOR; A–D) and protein kinase Cγ (PKCγ; E–H) immunoreactivity in the ipsilateral dorsal horn of the lumbar spinal cord of wild-type (WT, left column) and prodynorphin knock-out (KO, right column) mice, after sham surgery (A, B; E, F) or at day 14 after SNL (C, D; G, H). No qualitative difference in immunoreactivity was seen in tissues from WT and KO mice after sham or SNL surgery. Scale bar, 200 µm.
injury, however, intrathecal administration of antiserum to dynorphin completely reversed the increased sensitivity to innocuous mechanical and noxious thermal stimuli induced by SNL in WT mice (no pain or effects of dynorphin antiserum were seen in SNL KO mice at day 14). The time-related activity of dynorphin antiserum against SNL-induced pain contrasts sharply with the activity of intrathecal MK-801; this compound was effective in reversing SNL-induced pain when tested at either 2 or 14 d after injury. Critically, it should be noted that the reversal by dynorphin antiserum was to, but not above, preinjury baseline levels, indicating blockade of a pronociceptive effect rather than production of “analgesia.”

The lack of sustained SNL-induced pain in the prodynorphin KO mice, together with the increased mechanical and thermal sensitivity of the SNL WT mice to dynorphin antiserum as well as MK-801 on day 14, have led us to conclude that the products of prodynorphin, and specifically dynorphin, are essential in the maintenance of the neuropathic pain state. The specific involvement of dynorphin in the SNL-induced pain, rather than that of other products of the prodynorphin gene, is supported by the specificity of the antiserum used as well as the demonstrated increases in expression of spinal dynorphin at day 10 after SNL. In this regard, it should be emphasized that the potential reduction of POMC products such as β-endorphin in these KO mice would be expected to increase sensitivity to pain, rather than promote the decrease in sensitivity to noxious or non-noxious stimuli observed in the current experiments. These data, together with the activity of dynorphin antiserum only at a time when spinal dynorphin is upregulated, strongly suggests that unlike dynorphin, potential deficiencies in the expression of POMC products do not play a role in the observed consequences of SNL injury.

The differential sensitivity to reversal of SNL-induced pain by MK-801, but not dynorphin antiserum at postinjury day 2, also indicates that the processes that initiate neuropathic pain differ from those that are critical to its maintenance. The activity of MK-801 underscores the likely importance of repetitive discharge originating from the injured or adjacent primary afferent neurons to initiate SNL-induced neuropathic pain (Seltzer et al., 1991). Ectopic discharge is known to occur and to peak within 16 hr after SNL in rats but decreases over time to <50% of its initial discharge rate by day 5 after injury (Han et al., 2000). Although the discharge rate of the injured nerve fibers depends on fiber type, it is clear that discharge rate diminishes with time after nerve injury (C. Liu et al., 2000; X. Liu et al., 2000). However, the magnitude of the observed signs of neuropathic pain are maintained essentially unchanged for many weeks (Chaplan et al., 1994; Bian et al., 1995; X. Liu et al., 2000). These findings suggest that mechanisms required to maintain the presence of the neuropathic pain state extend beyond afferent input to the CNS. Our data support this possibility and suggest that whereas ectopic activity is likely to drive the neuropathic pain state at early stages after nerve injury, afferent discharge is necessary but not sufficient to maintain the neuropathic pain state in the absence of an upregulation of spinal dynorphin. Thus, the data provide support for the concept that the processes which maintain the neuropathic pain state depend on the presence of increased levels of spinal dynorphin.

Dynorphin appears to maintain the neuropathic pain state ultimately through an NMDA-dependent mechanism. It might be speculated that elevated levels of dynorphin act to increase the release of excitatory transmitters from presynaptic and/or postsynaptic spinal sites, an idea that awaits experimental validation. However, the des-Tyr fragments of dynorphin (i.e., non-opioid fragments) have been demonstrated to enhance capsaicin-evoked release of calcitonin gene-related peptide from primary afferent fibers in spinal cord preparations (Claude et al., 1999; T. Vanderah and F. Porreca, unpublished observations) and in DRG cells in culture (J. Lai, Z. Wang, and F. Porreca, unpublished observations). Des-Tyr dynorphin also activates PKC in spinal cord (Z. Wang, F. Porreca, and J. Lai, unpublished observations) and stimulates an increase in intracellular calcium in neuronal cells (Tang et al., 2000). Additionally, it is known that dynorphin and its fragments may directly bind to the NMDA receptor (Tang et al., 1999) although the physiological relevance of such binding is unclear. An interesting and plausible hypothesis is that SNL-induced afferent discharge may initiate the consequences of nerve injury, including an upregulation of spinal dynorphin that ultimately acts to sustain the SNL-induced pain. This would be in line with an early, dynorphin-independent, and a later, dynorphin-dependent, neuropathic pain state as a result of SNL.

An alternate explanation may relate to the possibility that SNL injury results in an upregulation of inhibitory transmitter–receptor systems. Using a model of sustained inflammatory pain, Dubner and colleagues have suggested that inhibitory receptors (such as opioid δ receptors) may be upregulated in opioid μ receptor-deficient mice (Qi et al., 2000). An examination of opioid receptor expression and transcription in the post-SNL injury state revealed no changes, suggesting that such compensations were not responsible for the progressive reversal of neuropathic pain in the KO mice.

The present study supports the concept that an upregulation of dynorphin results in a pathological action that is pronociceptive and acts to maintain the chronic pain state. These findings offer a potentially important alternative to the development of NMDA antagonists as treatments for neuropathic pain. Whereas the latter are likely to be limited by a broad spectrum of severe side effects (Blanchet et al., 1997), approaches that may selectively limit the increased expression or activity of dynorphin may offer pain relief without associated side effects. The findings from this study reveal a previously unknown role of dynorphin to promote pain. Dynorphin may also participate in other pathological states associated with injuries to peripheral or central nerves, including the consequences of ischemia, stroke, and central trauma (Faden, 1996). Critically, our data suggest that a blockade of an overexpression of dynorphin or its actions may represent a new modality to interfere with the maintenance of chronic pain, which remains one of the most important challenges to clinical medicine.

REFERENCES

Devor M, Seltzer Z (1999) Pathophysiology of damaged nerves in rela-

Wang et al. • Dynorphin Maintains Neuropathic Pain