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In gustatory cortex, single-neuron activity reflects the multimo-
dal processing of taste stimuli. Little is known, however, about
the interactions between gustatory cortical (GC) neurons during
tastant processing. Here, these interactions were character-
ized. It was found that 36% (85 of 237) of neuron pairs, includ-
ing many (61%) in which one or both single units were not taste
specific, produced significant cross-correlations (CCs) to a
subset of tastants across a hundreds of milliseconds timescale.
Significant CCs arose from the coupling between the firing

rates of neurons as those rates changed through time. Such
coupling significantly increased the amount of tastant-specific
information contained in ensembles. These data suggest that
taste-specific GC assemblies may transiently form and co-
evolve on a behaviorally appropriate timescale, contributing to
rats’ ability to discriminate tastants.
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In awake rats, gustatory cortical (GC) neurons produce time-
varying responses to gustatory stimuli (Katz et al., 2001a). Such
time-varying responses may arise because these neurons are
embedded in neural networks that process tastants interactively,
as has been suggested for other sensory systems (Bazhenov et al.,
2001; Ghazanfar et al., 2001). In recordings from pairs of neurons
in anesthetized rats, the occurrence of tight (�20 msec) cross-
correlations (CCs) has revealed functional interactions between
GC (Yokota et al., 1996, 1997; Nakamura and Ogawa, 1997) or
gustatory brainstem (Adachi et al., 1989; Di Lorenzo and Mon-
roe, 1997) neurons. These previous studies, however, did not
determine whether neural interactions across hundreds of milli-
seconds, the timescale of both single-neuron GC response dynam-
ics (Katz et al., 2001a) and gustatory decision making (Halpern,
1985), might be related to system processing (Nowak and Bullier,
2000; Salinas and Sejnowski, 2001).

To determine whether time-varying GC responses are related
to network processing, it is necessary to characterize GC neuro-
nal interactions across this broader timescale by recording the
simultaneous activity of small ensembles of GC neurons while
delivering tastants to the tongues of awake rats. After application
of a subset of tastants, pairs of neurons produced peaked CCs
(mean half-width �300 msec), even when single-unit analyses
suggested that one or both neurons were not taste specific. Taste-
specific CCs were explicable as coupling in response rates of
neurons as they changed through poststimulus time and suggest
the emergence of taste-specific neural assemblies that interact on
a behaviorally relevant timescale. The formation of such assem-
blies facilitates tastant processing in a manner consistent with
population theories of taste perception (Erickson, 2001).

MATERIALS AND METHODS
Subjects. All procedures accorded with the National Institutes of Health
guidelines for the treatment of animal subjects. Male (n � 3) and female
(n � 9) Long–Evans rats (275–300 gm) served as subjects for this study.
Because no sex-related differences were observed, the data from male
and female rats were pooled.

Surgery. Anesthetized rats [5% halothane and then either pentobarbi-
tal (50 mg/kg, i.p.) or ketamine and xylazine (100 and 10 mg/kg, i.m.,
respectively)] were implanted unilaterally or bilaterally with electrode
bundles in the GC [anteroposterior, 1.2–1.5 mm; mediolateral, 5.2 mm;
dorsoventral, approximately �4.5 mm from dura] (Kosar et al., 1986).
Intraoral cannulas (IOCs) were implanted bilaterally as well (Phillips and
Norgren, 1970; Katz et al., 2001a).

Each electrode bundle included 16 Formvar-coated nichrome wires
(diameter of 25-�m), cut flat with carbide-tipped scissors. The imped-
ance of the wires was 200–500 K� at 1 kHz. The wires were glued to a
small microdrive such that they could be advanced through the brain in
the weeks after surgery (Katz et al., 2001b).

Behavioral procedure. After recovery from surgery, water-restricted
rats were adapted to mild restraint, after which 90–120 min sessions were
run in which 40 �l of a randomly selected tastant was delivered every 90
sec, interspersed with 80 �l water rinses. The stimuli were delivered via
IOCs or a nozzle situated directly in front of the mouth. The two
delivery methods produced similar responses (Nishijo and Norgren,
1991; Katz et al., 2001a). The tastants were citric acid [CA (0.02 M)],
NaCl [Na (0.1 M)], sucrose [Suc (0.1 M)], quinine HCl [Q (0.001 M)],
nicotine [Nic (100 �M)], and water ( W) (Katz et al., 2001a). One rat was
not tested with nicotine.

The triggering of tastant delivery solenoids was transmitted to the data
acquisition computer (Plexon Inc., Dallas, TX). Off-line, the data were
adjusted for physical delays between this signal and the time at which
fluid hit the tongue, in accordance with the following test. The stimulus
delivery apparatus was placed an appropriate distance from an “artificial
rat tongue” (two bare wire tips, separated by 1 mm of air, that were the
ends of an open circuit including a battery and oscilloscope); the second
input to the oscilloscope monitored the transistor–transistor logic pulse
to the fluid-delivery solenoid. NaCl was delivered, connecting and com-
pleting the battery circuit, and the resultant delay between solenoid
opening and stimulus hitting the tongue could be viewed on the oscillo-
scope. In the case of delivery via an intraoral cannula, this delay was
reliably 45 msec (�4 msec range). In the case of nozzle delivery (which
had to be placed further from the tongue), the delay was 90 msec (�8
msec range).

Electrophysiology. Single neurons of �3:1 signal-to-noise ratio were
isolated using a waveform template algorithm (Nicolelis et al., 1997a)
and corrected off-line using cluster cutting software (Plexon Inc.). All
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isolations lasted �2 hr, allowing for the delivery of 10–30 trials of each
tastant. Figure 1 presents an example of a raw oscilloscope trace, as well
as an example of extracted waveforms and associated interspike interval
statistics of units isolated from individual microwires. The larger unit in
Figure 1 A is Neuron 1 from Figure 2 A, and the two units in Figure 1, B
and C, are Neurons 1 and 2 from Figure 2 B.

Paired-unit analyses. CCs were calculated using spikes produced during
the 4 sec after tastant administration. Analyses were performed to ascer-
tain which of various types of coupling were responsible for significant CC
peaks and to determine the nature of GC interactions (Perkel et al., 1967;
Aertsen et al., 1989; Brody, 1999a). These analyses involved sequentially
removing various aspects of the observed responses (see below).

To remove the portions of CCs attributable to common input to both
neurons, the “optimal shift predictors” [cross-correlations made after the
trials of one of the neurons are shuffled; essentially cross-correlations
between the two peristimulus histograms (PSTH) with trial-to-trial co-
herence ignored] were subtracted from CCs made from the original data
(Perkel et al., 1967). The “shift predictor” contains only information that
is time locked to stimulus presentation, that is, that pertains to stimulus-
driven activation. This subtraction procedure therefore leaves only cross-
correlation structure that is related to actual interdependence between
the neurons. In fact, this procedure leads to an underestimation of the
actual interdependence between neurons, because some true between-
neuron interactions may in fact be stimulus locked.

To test whether direct spike-to-spike coupling (synchrony) was respon-
sible for the CC peaks, raw data were compared with bootstrapped
simulations (Seidemann et al., 1996; Baker and Lemon, 2000; Bair et al.,
2001). First, single-trial spike trains were turned into firing probability
vectors, determined at each time point by the interspike interval between

previous and succeeding action potentials. These vectors were then
smoothed through convolution with a � of 50 msec Gaussian distribution.
Once the smoothed vectors (one per trial) were created, spike trains were
simulated from each. Ten such “smoothed simulations” were produced,
and the average CC for each simulated neuron pair was calculated.
Neuronal activity was modeled as gamma processes, which is to say as
Poisson processes with refractory periods and “fat tails.” The orders of
the gamma distributions were chosen to match the interspike interval
plots (minimizing least-squared error) of the real data (Baker and
Lemon, 2000).

Surrogate spike data were generated using the millisecond-by-
millisecond firing probability estimation and the appropriate gamma
distribution (Baker and Lemon, 2000). These simulations provided esti-
mates of the expected variability in cross-correlogram height, taking into
account the observed single-unit spiking distributions and broad single-
trial response patterns but ignoring spike-to-spike interactions in the real
data. CC peaks generated from spike trains simulated in this way solely
reflected rate-related (i.e., not spike-to-spike) coupling.

If the firing rates of a neuron pair vary together between trials across
a session, this coupling may cause the appearance of a peak in their
cross-correlogram (Brody, 1999b). To test whether such coupled mag-
nitude could account for CC peaks observed in this study, the above
simulation procedure was repeated, but the computed probability
vectors were normalized so that each trial had the same mean before
spike-train simulation (“normalized smoothed simulation”). Such nor-
malization removed any coupled magnitude effects by removing any
between-trial structure in the responses and leaves only within-trial
rate coupling.

To test whether coupled rate changes, the tendency for significant
within-trial changes in the time-varying response of one neuron to be
coupled to those of another neuron, played a role in producing CC
peaks, the above data were compared with the results of yet another
simulation: the “rate-change simulation.” Trials were simulated as
above, with one difference: no smoothing was done across times of
significant within-trial firing rate changes (Pauluis and Baker, 2000).
The algorithm used to determine times of firing rate change worked
locally on sets of three successive action potentials. The interspike
interval between the first two spikes served as the momentary average
of the gamma distribution describing the firing of that neuron, the
order having been estimated as described above. This provided the
means to determine whether the third was unlikely ( p � 0.01) to have
been produced by the same gamma-distributed firing rate. Such “un-
likely spikes” were determined to represent significant changes in firing
rate (Pauluis and Baker, 2000).

CCs based on these vectors emphasized coupling of firing rate change
times. Comparisons with smoothed simulations thus revealed the impor-
tance of coupled rate changes. These CCs were also compared with CCs
calculated from “normalized rate-change simulations.”

To test whether any coupled rate changes reflected purely coupled
latency, the tendency for the initial response onsets of the neuron pairs
to vary together between trials (Brody, 1999a), the initial response
changes, determined as part of the analysis described in the above
paragraphs, for interacting neuron pairs were examined. Any coupled
latency will be reflected in a simple Pearson’s product moment correla-
tion between the initial latencies of the two neurons.

Because interpretations of CCs are complicated by peaks in the
autocorrelograms of the neurons (Rosenberg et al., 1989; Nowak and
Bullier, 2000), we bolstered our analyses with several supporting mea-
sures. First, the autocorrelograms of all units were examined, and only
data for which the autocorrelograms did not differ significantly be-
tween tastants (according to � 2 tests) was further analyzed. Second,
significance tests were constructed based on one final simulation, in
which independent pairs of spike trains were constructed based on the
observed single-unit firing rates and spiking distributions, but ignoring
any single-trial interactions in the data. The PSTH of each neuron was
used as the underlying firing probability vector in this analysis, and a
number of trials equal to that actually collected were generated from
this one probability vector. Ten such simulations were prepared for
each pair of neurons, and binwise confidence intervals for chance
interactions were constructed from the means and SDs of these sam-
ples. Actual and simulated CCs were smoothed with a 20 msec Gauss-
ian to limit the effect of outliers.

To ensure conservatism of interpretation, the significance criterion
was set at p � 0.001. Furthermore, only sections of CC that were
significant for �100 msec, or for which the peak was greater than twice

Figure 1. Examples of GC recordings. A, An oscilloscope trace showing
the signal from a single microwire placed in GC. One larger and one
smaller spike can be seen. The larger spike is Neuron 1 from Figure 2A.
The trace has a time base of 5 msec per division. B, Extracted waveforms
from two channels in a different animal. The signal-to-noise ratio of the
lef t neuron was 6:1; that of the right neuron was 4:1. These are Neurons 1
and 2, respectively, used in Figure 2B. C, The interspike interval plots for
the neurons in B. Note the presence of a refractory period in the records
of both neurons. k � 1000.
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the amplitude of the significance criterion, were counted as significant.
These four criteria, set after examining real and simulated CCs, made
the occurrence of appreciable rates of spurious significance very unlikely.

The results differed little for significance criteria set between 0.01 and
0.001, a fact that stands testament to the robustness of the phenomena.
Furthermore, the fact that the number of significantly interacting pairs
did not scale with size of recorded ensemble [the correlation between
these two variables did not reach significance (r 2 � 0.24; Fisher’s z
(10) � 1.77; NS)] adds credence, above and beyond the stringent signif-
icance criterion used, to our claim that the observed interactions did not
occur randomly. Results using a variety of alternative techniques for
building CC confidence intervals (Brillinger, 1992; Politis et al., 1992)
also led to similar conclusions. The simulations were used because they
facilitated additional analysis, as described above.

Between-simulation comparisons used the maximum height of the
peak of the produced CCs, normalized to the peak height of the empir-
ical CC. Widths at half-height were calculated as the distance between
the sides of a peak at the height halfway between the peak and the
average value of the correlation across all lags (or between the peak and
zero, if the CC showed biphasic peaks). The similarities between cross-
correlations was calculated using Pearson’s product Moment correlation
(r), computed using the values of one cross-correlation for lags between
�1 sec as one vector of numbers and the values of the second cross-
correlation for the identical lags as the paired vector. This analysis
permitted the estimation of similarities in the timing and direction of
cross-correlation peaks. Two cross-correlations with similarly timed
peaks in the same direction (positive or negative) will have an r � 0, two
with similarly timed peaks in different directions (one positive and one
negative) will have an r � 0, and two with unrelated peak timings will
have an r � 0.

To further examine the information content of GC cross-correlations,
the responses of whole ensembles were subjected to linear discriminant
analysis (Gochin et al., 1994; Schoenbaum and Eichenbaum, 1995;
Nicolelis et al., 1997b; Chapin, 1999). This multivariate technique looks
for structure in the covariance matrix of the variables and uses this
covariance structure to build optimal linear estimators for the responses
to each stimulus. In this case, the covariance structure reflects informa-
tion related to that which is exposed in the cross-correlations. The firing
rate vectors of individual trials (described above) were the input to the
algorithm (the input vectors were n � t numbers long, with n indicating
number of neurons and t indicating number of time bins); the number of
correctly and incorrectly classified trials was the output. Each trial was
classified on the basis of the distance between that trial and the estimator
of each stimulus, with the smallest distance determining the “predicted”
tastant. An identical analysis was then run on the same data, with an
additional random time jitter (of up to �6 bins) introduced to each trial.
This jitter destroyed the between-neuron structure, leaving only individ-
ual responses intact. Thus, the difference in error rates between the
jittered and unjittered data provided a test of the usefulness of between-
neuron patterns for coding tastants. The pattern of correct and incorrect
classifications was transformed into “bits,” a basic measure of the infor-
mation content of a signal (Krippendorff, 1986).

Single-unit analysis. Details of the analysis of single-unit firing rates can
be found by Katz et al. (2001).

Histology. After the end of recording, rats were killed with sodium
pentobarbital (150 mg/kg) and perfused first with PBS and then 5%
formalin in PBS. Electrolytic lesions made after perfusion (70 �A for 7
sec) in fixed, 80 �m coronal slices stained with cresyl violet revealed that
all recordings were made in GC (dysgranular insular cortex).

Figure 2. Taste-specific CCs between
pairs of GC neurons. A, The CCs (lef t) and
PSTHs (right) of a pair of GC neurons to
the battery of tastants. The CCs of this pair
to NaCl (mauve) is highly significant (sig-
nificant portions are shown as bold lines);
the half-height of the peak is �300 msec.
The abscissa is lag (in seconds); the ordinate
is correlation. The PSTHs for Neuron 1
show an positive response to NaCl and sub-
tle negative responses to quinine HCl and
acid; Neuron 2 did not respond in a taste-
specific manner. B, Similar CCs and PSTHs
for another pair of neurons, showing signif-
icant negative interactions to nicotine and
acid; only mild specificity of response can
be seen in the PSTHs. C, CCs and PSTHs
for two neurons recorded from a single
wire. These neurons cohered in the pres-
ence of NaCl and quinine on a very short
timescale, visible in the sharp peak just
offset from 0 lag, as well as on the longer
timescale. Neither neuron showed taste
specificity of response in PSTHs. D, CCs
and PSTHs for a between-hemisphere pair
of neurons (same rat as in Fig. 1B), one of
which was mildly taste specific according to
PSTH, that produced significant positive
CC peaks to nicotine, NaCl, and quinine
and showed a biphasic negative–positive
interaction to acid. Green, CA; mauve, Na;
orange, Nic; dark blue, Q; black, Suc; light
blue, W.
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RESULTS
GC neurons fire coherently on the timescale of
hundreds of milliseconds
The sample consisted of 237 neuron pairs (mean yield per rat was
20 pairs; range of six to 45), 167 within a single hemisphere and
70 between hemispheres.

Stimulus-specific neural interactions occurred frequently at a
relatively broad timescale (half-widths of 75–500 msec). Repre-
sentative examples, revealing the relative likelihood (at a given
lag) that a neuron 2 spike follows or precedes a neuron 1 spike,
are shown in Figure 2A–D. The neuron pair in Figure 1A inter-
acted significantly only in the presence of Na. The CCs for other
tastants were not significant. The corresponding color-coded
PSTHs are shown to their right (the color key is at the bottom).
Neuron 1 produced an excitatory firing rate change to Na and a
significant inhibitory response to CA. Neuron 2 did not respond
in a statistically significant manner to any of the proffered tas-
tants. This pattern was not uncommon: 67% (57 of 85) of the
interacting pairs contained one (46%; 39 of 85) or two (21%; 18
of 85) neurons that were either unresponsive or that produced
similarly shaped responses to all of the tested tastants (Table 1).

The CCs in Figure 2B show a significant negative correlation
peak in the presence of Nic and CA. The occurrence of a
“negative” correlation means that neuron 2 tended not to fire in
the vicinity of a neuron 1 spike. This pattern of interaction is not
reflected by significant inhibition of the single-unit responses to
these tastants.

Figure 2C shows one of the relatively few (17.6%; 15 of 85)
sharp interactions (width of a few milliseconds) that was ob-
served. In the presence of Na and Q, the CCs of this pair
contained a sharp peak (centered on a broader peak) near 0 sec
lag time. This pair, like 33% (5 of 15) of those showing such sharp
CCs, was isolated from a single wire (9.8% of the total number of
significant peaks came from single-wire pairs). None of the taste
specificity of the CCs was paralleled by taste specificity in the
PSTHs of the neurons.

Sharp CCs were not observed between any interhemispheric
pairs, but many such pairs (22%;19 of 85) showed broad interac-
tions. An example is shown in Figure 2D. This pair showed
significant positive correlation peaks to Nic, NA, and Q and a

biphasic negative–positive interaction to CA. The PSTHs of
these neurons were not significantly different for any applied
tastants. In all other regards, interhemispheric interactions were
generally similar to interactions in intrahemispheric pairs.

Overall, 36% (85 of 237) of the GC pairs interacted in the
presence of at least one tastant (mean half-width of 300 � 15
msec). Of these, 59% (50 of 85) interacted significantly in the
presence of more than one tastant (that is, the lef tmost bar in Fig.
3A is 41% of the total number of pairs represented in the
histogram). In total, 13% of the total number of CCs (177 of
1401) were significant. Most tastants induced similar numbers of
significant CCs (Table 1); nicotine produced significantly fewer,
perhaps because of relative concentration differences or adapta-
tion (Dessirier et al., 2000). Palatability of the tastants did not
determine the pattern of significant CCs (Table 1).

When neuron pairs did interact to a subset of tastants (e.g., two
to five), the subset of CCs with significant peaks tended to have
similar “morphologies;” that is, they tended to show similarly
timed peaks in the same direction (Fig. 2B–D). This observation,
summarized in Figure 3B, shows the similarity between pairs of
cross-correlations at the same set of lags. The white bars show the
similarity (Pearson’s product moment correlation r) between the
shapes of significant CCs involving the same pair of neurons (for
instance, the CCs to Na and Q for the pair shown in Fig. 2C); for
this subgroup of pairs, the mean r � 0.36. Black bars show the
similarity between any two significantly peaked CCs that have
only one neuron in common; for these comparisons, the average
r � 0.02. The two distributions are significantly different from
each other (�2

(20) � 703.5; p � 0.000001), as are the mean
correlations (Fisher’s z (163) � 14.15; p � 0.000001).

Taste-specific assemblies of GC neurons change their
firing rates together
The fact that many neuron pairs interacted similarly to a subset of
tastants suggests that taste specificity can be found in the makeup
of the groups of GC neurons interacting in response to each
tastant. Figure 4 shows such taste-specific assemblies recorded for
three of the 12 rats. Circles at the intersections in each half-matrix
represent the pairwise interactions. The size of a circle represents
the significance of the interaction (white for negative and dark

Table 1. Summary of cross-correlations

% (n) Excitatory Inhibitory

Neuron pairs involved in significant CCs 35% (85 of 237)
Total CCs (pairs � tastants) showing significant peaks 13% (177 of 1401) 67% (119) 33% (58)
Pairs significant for:

Citric acid 16% (28 of 177) 64% (18) 36% (10)
NaCl 21% (37 of 177) 65% (24) 35% (13)
Nicotine 9% (16 of 177) 63% (10) 37% (6)
Quinine 19% (34 of 177) 76% (26) 24% (8)
Sucrose 17% (30 of 177) 60% (18) 40% (12)
Water 18% (32 of 177) 72% (23) 28% (9)

Pattern explainable in terms of palatability (e.g.,
significant CC to Suc and Na and not to Q or Nic)

7% (6 of 85)

Single-unit responses:
Both neurons show taste-specific single-unit

responses
31% (55 of 177) 71% (32) 29% (23)

Only one taste-specific neuron 50% (88 of 177) 72% (63) 28% (25)
Neither neuron taste-specific 19% (34 of 177) 71% (24) 29% (10)
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gray for positive); small black circles represent nonsignificant
interactions (for the neurons showing biphasic patterns of inter-
action, the size of the circle is keyed to the strongest interaction,
and the circle is shown half-white and half-gray). Although positive
interactions predominated, both were plentiful. For each tastant,
a distinct but overlapping set of neurons interacted in response to
presentation of each tastant. Many pairs (Fig. 4C, neurons 4 and
7) only interacted in the presence of a single tastant (in this case,
Na), whereas others interacted in the presence of many to a range
of degrees (Fig. 4B, neurons 1 and 2).

We next determined whether such coherence structure within
ensembles, measured at the timescale of CC widths, could be used
to identify applied tastants. This possibility was tested using
linear discriminant analysis (LDA). Single-trial firing rates of all
neurons in ensembles (including those not involved in significant
cross-correlations) were turned into rate vectors and binned at a
range of timescales (100, 125, 160, 200, and 250 msec, chosen to
produce whole numbers of bins). Across-ensemble vectors were
used as input to the LDA algorithm, which produced a linear
function that allowed maximal discrimination between the tas-
tants, measured as the error rate of response classification.

Figure 5 presents the results of the LDA. Figure 5A shows, for
the range of bin sizes tested, the significance of the difference in
percentage of correct using normal and shuffled (�1–6 bins) data.

Eliminating the covariance structure between neurons in the
ensemble impairs performance for bin sizes 160 and 200 msec
(both p values � 0.02), a range that is consistent with the time-
scale of the observed cross-correlations. Figure 5B shows the bits
of information (that is, the amount of information useful for
identifying tastants from the responses) for all ensembles at a bin
width of 160 msec. For the vast majority of ensembles (n � 10),

Figure 3. Summary of cross-correlation patterns in GC neuron pairs. A,
Frequency histogram showing the number of significant cross-
covariances, of a total possible six (one for each tastant), for each neuron
pair. Most pairs only covaried in response to one or two tastants, but a
substantial number covaried in response to four or five. B, Frequency
histograms showing that CCs produced to different tastants by the same
neuron pair tend to be similar (white bars), in that the Pearson’s r between
such CCs tends to be greater than zero. For comparison, the black bars
show the Pearson’s r between cross-covariances that share only one
neuron in common; note that this distribution is centered on zero.

Figure 4. Taste-specific assemblies of interacting neurons. A–C, The
half-matrix of the neuron pairs in three separate ensembles, showing
which pairs produced significant CC peaks in response to the different
tastants. Small black circles denote lack of significant interaction, and the
sizes of shaded circles denote relative significance level. White circles
denote excitatory interactions, and dark gray circles denote inhibitory
interactions (for the rare neuron pairs that showed biphasically significant
CCs, the size of the circle refers to the most significant peak, and half of
the circle is shown in each shade). In virtually all cases, the assemblies for
different tastants are distinct (some pairs interact to only one tastant) but
overlap (some pairs interact for several tastants).
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performance with shuffled data (white bars) was worse than per-
formance with normal data (black bars); even with the small
number of trials and neurons, the difference was significant for
five individual ensembles. Figure 5C summarizes these latter
data, showing the average amount of information (in bits) for
normal and shuffled data. The shuffled data contained signifi-
cantly lower amounts of information (t(11) � 2.73; p � 0.02).

As noted, significant CCs can arise from a number of sources.
We therefore undertook a series of analyses to determine what
the observed interactions may “mean” in terms of the processing
of gustatory information. The analytic process required obtaining
the times of significant firing rate changes in individual trials.
After quantification of these times, initial latencies for every trial
involved in significant interactions were correlated. The average
correlation (0.02) suggests that coupled latencies did not contrib-
ute to the CCs.

To test for other possible sources of CCs, simulations that
excluded aspects of the data were produced from individual trials
of the single-unit responses, and CCs calculated from these var-
ious simulations were compared. Figure 6A presents CCs con-
structed from the Na interaction of the neuron pair shown in

Figure 2A. The empirical CC is shown in a thick solid line, the CC
calculated from normalized rate-change simulations is shown in a
thinner solid line, from normalized smoothed simulations in a
dashed line, and from control simulations (all single-trial effects
excluded) in a dot–dash line. The strongest interaction is seen in
the real data, but the rate-change simulation produced a substan-
tial CC, and the smoothed simulation produced an even lower
CC. The corresponding PSTHs for neuron 1 can be seen to the
right; each is remarkably similar to the others, clearly demonstrat-
ing that the CCs do not depend on the summed single-unit
responses.

The results of these analyses are summarized in Figure 6B.
The difference between the rate change and smoothed simula-
tions was highly significant (t(175) � 6.73; p � 0.000001). Coupled
shifts in firing rate contribute significantly to the CCs. Figure 6C
compares the rate-change and normalized rate-change simula-
tions. Had magnitude coupling contributed to the interactions,
the latter should have been significantly smaller than the former.
Such was not the case: the size of the peaks are virtually identical
for the two simulations (t(175) � 1).

In summary, the information reflected in the taste-specific
coherent assemblies is preserved in the broad time course of
individual trial responses, and significant amounts of that infor-
mation can be traced to sudden changes in instantaneous firing
rates, even when these changes do not show up in PSTHs.

DISCUSSION
GC neurons cohere during tasting
Information related to gustation evolves in GC responses (Katz et
al., 2001a) on the same timescale as gustatory perception (Halp-
ern, 1985). We investigated interactions between GC neurons
during tastant responses and explored how such interactions
might be related to the single-unit processing of gustatory stimuli.
These data reveal that pairs of GC neurons interact across hun-
dreds of milliseconds, that the interactions are taste specific, that
they do not depend on the shapes of the PSTH or on stimulus
palatability, and that they define distinct, but overlapping, neural
assemblies that respond to the presence of each tastant by under-
going coupled changes in firing rate. Our analyses demonstrate
that these couplings could, in principle, be used to discriminate
between tastants.

Previous studies reported taste-specific CCs between GC neu-
rons on a narrow timescale (�20 msec) (Nakamura and Ogawa,
1997; Yokota et al., 1997). We observed a small number of such
CCs (Fig. 2C), the properties of which were consistent with these
previous reports. The fact that sharp CCs were not found in
interhemispheric pairs and the relatively high likelihood that they
were found between neurons isolated from a single wire suggests
that monosynaptic connections are formed preferentially between
neurons in close spatial proximity to each other.

However, our findings differ from those reported previously in
two ways. First, the effects of anesthesia, which may change
system dynamics (Nowak and Bullier, 2000; Gaese and Ostwald,
2001), were avoided through the use of awake rats. Second, the
broad (hundreds of milliseconds) interactions observed here (Fig.
2) are widespread and systemic, even appearing between neurons
in opposite hemispheres (Fig. 2D). The systemic nature of this
phenomenon, together with the well known millisecond-to-
millisecond variability of neural responses (Shadlen and New-
some, 1998), suggests that broad interactions may better repre-
sent the processing of tastants than do tight (indicative of
monosynaptic connections) interactions.

Figure 5. Use of the GC ensembles to discriminate between adminis-
tered tastants. A, Quantification of the reduction in discriminative per-
formance of LDA after time shifting (�6 bins) of single-unit spike trains
within GC ensembles. The abscissa is bin size for the analysis, and the
ordinate is significance level ( p value of the t test comparing error rates
for normal and shifted data). The dashed horizontal line shows p � 0.05.
When the time bins used were between 160 and 200 msec, LDA per-
formed significantly worse when time shifting eliminated the true
between-neuron coherence in the data. B, Information contained within
ensembles obtained from each rat, using a bin size of 160 msec. Black bars
show the available information (in bits) using the real data, and white bars
show the bits using time-shifted data. C, Summary of the data in B, using
real and time-shifted data. *p � 0.02.
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Gustatory processing via coherent rate changes in
taste-specific assemblies
What do broad CCs have to do with chemosensory processing?
Research in olfaction suggests that specific information may be
carried in patterns of transient synchrony between neurons (Wehr
and Laurent, 1996). In this study, we found that the shapes of CCs
provide some information about tastant identity, in that most
pairs of neurons only interact after application of only a subset of
tastants. Figures 2B–D and 3 suggest, however, that significant
CCs in GC may simply be a “flag” to the membership of a neuron
pair in a processing group. Specifically, significant CCs can serve
to flag the membership of a neuron pair in a stimulus-specific
neural assembly (Fig. 4). The formation of such assemblies has
been related to system function by a number of researchers
studying other systems (Singer, 1990; Abeles et al., 1993; Vaadia
et al., 1995; Stopfer et al., 1997; Nicolelis et al., 1998; Laurent,
1999; Christensen et al., 2000). Although it is difficult to ascertain
whether interactions between neurons provide “more” coding-
relevant information than single-neuron firing patterns (as they
seem to in olfaction), elimination of this information via random
time shifting of individual responses significantly degraded the
ability of the ensembles to discriminate between applied tastants
(Fig. 5). Although it should be remembered that such analyses
represent proof only of an “observer’s” ability to use neural
interactions (and not that the rat does so), this supports the
suggestion that these interactions between GC neurons can play a
role in the processing of tastant stimuli.

The performed analyses permit the exclusion of common
source, coupled latency, and coupled magnitude as sources of the
interactions between taste-specific subset of coherent neurons
(Fig. 6). Other possibilities can also be eliminated. Between-trial
variations in the rats’ handling of taste stimuli, for instance, could
give rise to peaked CCs, but those CCs would be taste specific
only if tastant delivery was similarly variable for a subset of
stimuli and not at all variable for others. The fact that different
but overlapping subsets of neurons interacted to different tastants
(Fig. 2) further reduces the feasibility of this hypothesis. Alter-

natively, it might be argued that palatability-specific orofacial
behaviors drove the between-neuron coupling. The fact that pair-
wise interactions seldom fell out according to palatability (Table
1), however, eliminates this explanation.

Therefore, we conclude that coupled changes in firing rate (a
portion of which must “live” at a timescale smaller than the 50
msec filter used to produce our simulations) are the underlying
source of GC interactions. Subsets of neurons in GC became
coupled after the presentation of particular tastants, and the
responses of neurons in that ensemble changed in concert with
those of others. The action of gustatory assemblies is thus inti-
mately related to rate changes on a timescale similar to that of
taste behavior (Halpern, 1985). The failure of PSTHs to reflect
the significant interactions (Figs. 2, 6) suggests that the firing rate
coupling was not locked to stimulus onset. Rather, it is an inter-
nal, single-trial process.

The conclusions offered here are consistent with recent work
from a variety of preparations. Researchers have suggested that
networks of neurons form functional ensembles (Welsh et al.,
1995; Laubach et al., 2000) and that such ensembles undergo
coupled firing rate changes (Seidemann et al., 1996). Recent
simulations suggest explicit mechanisms of between-neuron cou-
pling to explain such a process in olfaction (Bazhenov et al.,
2001). The current results are also consistent with research sug-
gesting that the taste specificity of neural responses is partially
determined by interconnections among neurons (Ogawa et al.,
1998; Smith and Li, 1998).

In summary, the time-varying tastant responses produced by
GC neurons in awake rats, even those that do not translate into
taste-specific PSTHs, can be attributed to coherent rate changes
in taste-specific assemblies. These data suggest that taste percep-
tion may involve the formation and action of such assemblies and
to the way in which ensembles of neurons work together.
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