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Dynamics of Spatial Frequency Tuning in Macaque V1
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Spatial frequency tuning in the lateral geniculate nucleus of the
thalamus (LGN) and primary visual cortex (V1) differ substan-
tially. LGN responses are largely low-pass in spatial frequency,
whereas the majority of V1 neurons have bandpass character-
istics. To study this transformation in spatial selectivity, we
measured the dynamics of spatial frequency tuning using a
reverse correlation technique. We find that a large proportion of
V1 cells show inseparable responses in spatial frequency and
time. In several cases, tuning becomes more selective over the

course of the response, and the preferred spatial frequency
shifts from low to higher frequencies. Many responses also
show suppression at low spatial frequencies, which correlates
with the increases in response selectivity and the shifts of
preferred spatial frequency. These results indicate that sup-
pression plays an important role in the generation of bandpass
selectivity in V1.
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Neurons in the lateral geniculate nucleus of the thalamus (LGN)
have antagonistic center-surround receptive fields, which are
poorly tuned for orientation and predominantly low-pass in spa-
tial frequency (Rodieck and Stone, 1965; Derrington and Fuchs,
1979; So and Shapley, 1979; Kaplan and Shapley, 1982; Hicks et
al., 1983; Irvin et al., 1993). In contrast, many primary visual
cortex (V1) simple cell receptive fields are elongated and have
between two and three subfields of alternating polarity (Hubel
and Wiesel, 1959, 1962). This type of receptive field can be
sharply tuned for both orientation and spatial frequency (De
Valois et al., 1982; De Valois and Tootell, 1983).

Two major classes of models have emerged to explain the
transformation of receptive fields and spatial tuning properties
between the LGN and V1. Feed-forward models suggest that
elongated receptive fields and sharp cortical tuning are a result of
input from spatially collinear LGN receptive fields (Hubel and
Wiesel, 1959, 1962). The summation of spatially aligned input in
V1 could improve both orientation and spatial selectivity. A
recent version of the feed-forward model that also accounts for
contrast invariance (Sclar and Freeman, 1982; Skottun et al.,
1986) incorporates feed-forward inhibition as well as feed-
forward excitation (Troyer et al., 1998).

In contrast to the hierarchical organization of feed-forward
models, feedback models suggest that cortical selectivity is pro-
duced primarily through intracortical mechanisms. These models
suggest that cortical tuning is only loosely biased by LGN input
and is refined through intracortical excitatory and inhibitory
influences (Benevento et al., 1972; Worgotter and Koch, 1991;
Ben-Yishai et al., 1995; Somers et al., 1995; Carandini and
Ringach, 1997; Adorjan et al., 1999; Anderson et al., 2000; Pugh
et al., 2000). The cortical feedback interactions determine, at least
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in part, the elongation of the subfields in simple cells as well as
their effective number (Sabatini et al., 1997).

The feed-forward and feedback models make testable predic-
tions about both the time course of cortical tuning and the
characteristics of suppressive input. Feed-forward models postu-
late that excitation and inhibition have similar spatial frequency
tuning. Thus, suppression produces a change in the magnitude of
the response and not in its tuning shape. In other words, the
resulting spatial frequency tuning function should be separable in
spatial frequency and time. In contrast, feedback models suggest
that cortical tuning could emerge over the time course of the
response; tuning should be initially broad, reflecting the tuning of
the LGN input, and become more selective as the effect of
intracortical feedback increases. This could be the result of the
contribution of cortical inhibition with a different tuning shape
than the LGN component.

Here, we measure the dynamics of spatial frequency tuning in
macaque V1 using a reverse correlation method. Our primary
goal is to determine whether the dynamics of spatial frequency
tuning exhibit spatiotemporal separability. In cases of insepara-
bility, we are also interested in describing what the main forms of
inseparability are and how we can account for these responses
with feed-forward or feedback mechanisms. To study these issues
we focus on three questions of interest. (1) Does the peak and/or
shape of the tuning curve change over the course of the response?
(2) Is there evidence of suppressive input in the spatial frequency
tuning curve, and if so, what are the tuning characteristics of
suppression? (3) If suppression is evident in the tuning curve, how
does it affect the preferred spatial frequency and the selectivity of
the tuning curve?

MATERIALS AND METHODS

We performed acute experiments on adult Old World monkeys (Macaca
fascicularis), using methods described elsewhere (Ringach et al., 1997).
All procedures were performed in compliance with National Institutes of
Health and University of California Los Angeles/Animal Research
Committee guidelines.

The dynamics of spatial frequency tuning in V1 were measured using
the reverse correlation technique described by Ringach et al. (1997).
Receptive fields were located at eccentricities of 1-6°. Visual stimulation
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Figure 1. Reverse correlation in the spatial frequency domain. Each
stimulus in the sequence is a sinusoidal grating with 1 of 11-19 possible
spatial frequencies equally spaced logarithmically. A blank stimulus is
randomly interleaved in the sequence to provide a measure of baseline
activity. The spikes in the response sequence are correlated with the
spatial frequencies of the images that preceded them by 7 msec. We
perform this calculation for a range of 7 values from 0 to 150 msec.

was monocular through the dominant eye (the other eye was occluded).
We recorded the responses of individual cells to a rapid sequence of
luminance-modulated sinusoidal gratings at a fixed orientation (optimal
for the cell) but with varying spatial frequencies and spatial phases (Fig.
1). The stimulus was presented at an effective rate of 50 Hz by presenting
each grating twice on a monitor with a refresh rate of 100 Hz. The
optimal orientation for each cell was determined using conventional
steady-state orientation tuning curves run before the experiment. Test
spatial frequencies were selected to completely span the response range
of each cell, spanning between 3.33 and 6 octaves, centered at the
preferred spatial frequency of the cell. Spatial frequencies were logarith-
mically spaced. The preferred spatial frequency of the cell was defined by
the peak of the steady-state spatial frequency curve in response to
drifting gratings. Each spatial frequency test was presented in eight
equally spaced spatial phases spanning 360°. Blank images of uniform
luminance were interleaved in the sequence to provide a measure of
baseline response. The probability of presentation of a blank image was
equal to that of any one spatial frequency independent of spatial phase.

The stimulus was presented in a circular window 1.5-3X the size of the
classical receptive field of the cell. The size of the receptive field was
defined as the saturation point or peak of an area summation curve, run
at the preferred orientation, temporal frequency, and spatial frequency
of the cell (Levitt and Lund, 1997; Sceniak et al., 1999). The Michaelson
contrast of the stimulus was 99%. Each sequence was composed of 1500
images drawn randomly from the stimulus set of all test spatial frequen-
cies and blanks. Each sequence lasted 30 sec. Thirty sequences were run
consecutively for each cell, for a total experimental time of 15 min.

The response of the cell consisted of the arrival time of each action
potential elicited during the visual stimulus. For a fixed time lag, 7, we
calculate the probability that a spike was preceded by a particular grating
with spatial frequency f at a particular time delay, 7, independent of
spatial phase: Pr(f, 7). The baseline, B(7), is calculated as the probability
that a blank image with uniform luminance preceded a spike by 7 msec.
By dividing the magnitude of the response to a given stimulus grating by
the magnitude of the response to a blank, we calculate the relative
strength of the response:

Pr(f, T)}' )

R(f, 7) = logm{ B(D)

The log transformation makes the absolute value of R(f, ) propor-
tional to the d’ value between the response and the baseline assuming a
Poisson firing rate (Green and Swets, 1974; Ringach et al., 2002).

We studied the dynamics of tuning by calculating R(f, 7) at values of 7
ranging from 0 to 150 msec. R(f, 7) equals zero when the response of the
cell to a test stimulus equals the response to a blank stimulus. Positive
values indicate enhancement of the response of the cell, whereas negative
values indicate suppression. For both short and long time lags (7 < 30 and
7 > 130 msec), the response distribution should be flat and near zero,
indicating no correlation between the stimulus and the response. At some
intermediate values of 7, the response may show both positive and
negative values, indicating enhancement or suppression of the response
for different spatial frequencies.

Curve fitting. Steady-state spatial frequency tuning curves are some-
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times fit with a Gaussian curve to reduce the effect of response noise on
estimates of the peak and selectivity of the tuning curve (Hawken and
Parker, 1987; DeAngelis et al., 1994). However, as will be described
below, many of the cells in our data set showed changes in the peak and
selectivity of the response, as well as response suppression for nonopti-
mal spatial frequencies. These features could not be well fit by a single
curve in which only the amplitude of the curve is allowed to vary as a
function of time. Instead, we modeled our data as the sum of excitatory
and inhibitory components, each of which is separable in spatial fre-
quency and time:

R(f, 7) = ge(DE(f) — gu(DI(f), ()
where:

(f—fer())?

E=e (57) ana np=e (550), @)

In this model, E(f) acts as an excitatory component, with f., g, and og
as the center and width of the component respectively, and gg(7) as the
gain parameter. I(f) is the inhibitory component. f, and oy represent
the center and width of the inhibitory component, and g;(7) its gain. The
center and width of each component is invariant across time. The
amplitudes of both components are the best fitting positive coefficients,
using a least squares measurement of error. Unless specifically stated
otherwise, estimates of tuning curve properties are based on the fit of the
two-component model.

Time course of the response. For most cells, the response starts around
7~ 30 msec and returns to baseline shortly after 7 ~ 130 msec, although
there was considerable variation in the time of the onset (7,,.,) and
decay (7g,) of the response. We use the variance of the response over
time to identify 7, and 75,,,. For short time delays, before the stimulus
signal has reached the cortex, any deviation of the response from the zero
baseline is attributable to noise in the measurement. The magnitude of
the deviations from baseline can be measured as the variance of the
signal (across all spatial frequencies) at each time delay:

V(1) = > R(f, D~ 4)
f

We use the first 20 msec of the response to provide an estimate of the
“variance of the noise,” which is defined as the average response variance
during the first 20 msec after the stimulus presentation, V(7 = 20). For
time delays that produce a stimulus-driven response, the variance should
increase significantly. 7., and 74,, were defined as the time lags 7 at
which the variance of the response, (1), crossed a threshold of 4 SD
above the variance of the noise.

Figure 24 illustrates 1/(7) for one example cell. The first 20 msec of the
curve are shown to the left of the short vertical line. These values are
averaged to provide an estimate of 7(r = 20). The SD of the noise is
calculated as the square root of this value. The response criterion level is
set at 4 SD above ¥(r = 20) and is indicated by a dashed line intersecting
the curve. 7,4 and 74, are defined as the first and last level-crossings
of the curve with the criterion level.

We define the maximum and minimum amplitudes of the response as:

Mx(7) = max R(f, 7) and Mn(r) = minR(f, 7), 5)

respectively. Figure 2B shows an example of how the maximum and
minimum amplitudes of the response vary over time. 7.,, and 7.,
indicate the time lag that produced maximum response enhancement
and suppression, respectively. In addition, we define 74, and 7y, as the
points at which Mx(7) has achieved or decayed back to half of its
maximum amplitude, R(fyx, Tmax)/2, indicated by the dashed line. 74,
and 7ye.,, occur where the maximum amplitude curve intersects the
dashed line.

Spatial frequency tuning characteristics. Figure 2C illustrates a time
slice of the spatial frequency tuning curve at 7,,,, = 64 msec. f;, de-
notes the preferred spatial frequency at this time delay. The dashed line
indicates R(fy, 7)/V2; the points at which the curve intersects this value
are defined as the low and high spatial frequency cutoffs, fi,,, and fy;gh-
Responses above zero indicate enhancement of the spike rate relative to
the baseline; responses below zero indicate suppression. We define total
response enhancement at each time lag 7 as the total area of response
enhancement [4g(7)], indicated by the horizontal lines in Figure 2C.
Total response suppression [Ag(7)] was defined similarly and is indicated
by vertical lines.
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Figure 2. Analysis of the dynamics of spatial frequency tuning. 4, Plot of
the variance of response for one example. The short vertical line indicates
7 = 20 msec. The dashed line indicates the criterion level for a significant
response. B, Plot of the maximum (thick line) and minimum (thin line)
amplitudes, Mx(7) and Mn(7), respectively, of a sample dynamic spatial
frequency tuning response as a function of 7. 7.,,, and 7., indicate the
time delays that produced the largest response enhancement and the most
suppression, respectively. The dashed line indicates 50% of the maximum
response. The intersection of this line with the thick curve indicates the half
point of development (74, ) and the half point of decay (Tyecay) Of the
response. C, Example of a typical response at a single time-slice. fi
indicates the peak spatial frequency of the response. f,o,, and fi,;,, mark the
low and high spatial frequency cutoffs. Areas of the curve below 0, shaded
with vertical lines, indicate suppression of the response of the cell, whereas
points on the curve above 0, shaded with horizontal lines, indicate en-
hancement of the response of the cell. 7is shown in the top right of the
graph. D, Best fitting model components for the response in C. The solid
and dashed lines indicate the spatial frequency tuning of the excitatory and
inhibitory inputs to the model, respectively. The gray shading indicates the
area of overlap between the two inputs (Eq. 13).

We estimated the preferred spatial frequency of the cell at 7,,,,, and for
the time-averaged tuning curve, R(f):

"R ) dr. 6)

Tonset

R(f) =

(Tﬁnal - Tonsel)

The peak of the time-averaged tuning curve will be referred to as f,.

As described below, we found that f,, changes with time in a number
of cells. To quantify this change, we estimated f,, as a function of 7. In
most cases, but not always, the change was monotonic and increasing with
time. We compare f, at 74, With f, at 7., to measure the overall
change in the location of the preferred spatial frequency:

i pk(Tﬁnal) )

: pk(Tonset)

Ay = log (M

This value estimates Af,,, in octaves of spatial frequency. We calculated
Afx using the raw data, smoothed to reduce the effects of noise. Raw
data were interpolated to 300 log-spaced data points and smoothed by
convolving with a Gaussian filter with a o of 0.4 log units. The peak of the
tuning curve was defined by the peak of the smoothed curve.

Spatial frequency selectivity was measured by the “quality factor” of
the tuning curve. The quality factor is given by:

f pk(T)

Q(T) N fhigh(T) _ﬁow(T) ’ (8)
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where f,(7) is the preferred spatial frequency at time 7, and f},;,,(7) and
fiow(7) represent the high and low cutoff spatial frequencies, respectively
(Horowitz and Hill, 1989). Cells that have sharp spatial frequency tuning
have a large Q-factor, whereas cells with very broad tuning have a
Q-factor close to 0.

The use of the quality factor to define selectivity has an advantage over
more traditional estimates such as response bandwidth. Traditional esti-
mates of bandwidth that consider the log ratio between fi,,,(7) and fi,(7)
are undefined when the response is low-pass. Because many of the cells
in our sample are low-pass for spatial frequency for at least a portion of
the duration of their response, bandwidth measures would limit our
ability to assess selectivity for non-bandpass cells. The Q-factor does not
suffer from this problem, but is similar to bandwidth measures in that it
remains constant if the tuning curve is translated along a logarithmic
frequency axis.

As described below, we found that many responses become more
selective over time. We measure the change in selectivity as a function of
time (AQ) as:

AQ = QTdeLuy - QTd:w' (9)

Positive values of AQ indicate that the cell became more selective over
time, whereas negative values indicate that the cell became less selective
over time.

When measured with luminance-modulated sinusoidal drifting grat-
ings, the spatial frequency tuning curves of the LGN have a characteristic
low-pass shape in which the high spatial frequency limb of the tuning
curve returns to baseline, but the low spatial frequency limb remains
elevated. Tuning in V1 is generally bandpass, with both the high and low
spatial frequency limbs decaying to baseline. To examine the steepness of
the spatial frequency limbs in our data, we use two indices that allow us
to separately examine the low and high spatial frequency flanks of the
tuning curve. These indices are given by:

flow f pk
M, =——and My = .
b T, pk t i high

An index close to 0 indicates that the spatial frequency limb has a shallow
slope, whereas a very steep slope is indicated by an index close to 1.

Suppression. Cells were identified as having a significant suppressive
response if the minimum response at T,,;, was below the suppression
criterion point and remained below this level for a period of at least 10
msec. The suppression criterion point was defined as 4 SD of the noise
below zero. For cells with significant suppression, the strength of sup-
pression was measured as the ratio of the area of suppression over all
response T values, versus the total area beneath the curve, including
enhancement and suppression:

(10)

> Ag(7)

SupIndex = -
2 As() + Ax()

an

Ag(7) and Ag(7) are approximations of the excitatory and suppressive
area under the curve, as illustrated in Figure 2C. This measure indicates
the relative strength of suppression for different values of 7.

The SupIndex measures the net suppression in the tuning curve.
However, if inhibitory and excitatory inputs have similar, but not equal,
tuning, the strength and contribution of the suppressive input to the net
tuning curve may be masked by overlapping excitatory input. We mea-
sure the relative location of excitation and suppression on the basis of the
centers of the two components of the model:

Teur
fonm 10g2< wE))
fclr(I)

As described below, for some responses the centers of the excitatory
and inhibitory inputs are more than two octaves apart. For such re-
sponses, we would not expect the two inputs to overlap significantly. If
the tuning of the components does not overlap, the inhibitory input could
not cause a change in the selectivity of the net tuning curve. However, the
overlap between the excitatory and inhibitory components depends on
both the relative location and the bandwidth of the two inputs. Figure 2D
illustrates the model components used to fit the response in Figure 2C.
We measure the overlap as:

(12)
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This measure represents the shaded region in Figure 2D. Using this
measure of the overlap between excitatory and inhibitory input, we can
then measure how the interaction between suppressive and excitatory
inputs changes the tuning of the response by looking at the change in
overlap over time:

Aoverlap = overlap(Tycc.y) — overlap(ty.,).

(14)

Data selection. We recorded from a total of 208 cells from 10 animals.
Multiple electrodes were used on some animals to allow us to gather data
from several cells concurrently. Because we recorded from multiple cells
simultaneously, in some experiments cells were not stimulated at their
optimal orientation. This study includes only cells that were stimulated at
orientations within 20° of their preferred orientation; 56 cells were
excluded from the data set for this reason. From this subset of cells, we
excluded cells for which the response was not considered significant (n =
43). A significant response requires that 1/(7 > 20) was more than 4 SD
above the average variance of the noise, V(7 = 20). Finally, some
responses did not return to baseline for the highest spatial frequencies
measured. These cells (n = 15) were excluded from the analysis. A total
of 94 cells passed these criteria and form the dataset analyzed in this
study.

RESULTS

Figure 3 illustrates the dynamic responses of three cells that are
representative of our data. In Figure 34-C, we plot R(f, 7) for a
range of time delays between ..., and 7g,,. Positive values
indicate that the response of the cell was enhanced for a given
spatial frequency relative to the response to a blank stimulus.
Negative values indicate that a stimulus with a given spatial
frequency suppressed the response of the cell below the level
produced by a blank stimulus. The dashed line is the zero level,
defined as the response to a blank. Figure 3D—F shows changes in
spatial frequency selectivity over the response period of the
neuron for the examples shown in A-C. Similarly, Figure 3G-/
shows the location of the peak spatial frequency as a function of
time for the examples in A-C.

Figure 34 depicts a response that is initially broadly bandpass
(7 = 36—42 msec), which becomes more selective over the course
of the response. Although the magnitude of the response is
approximately equal at 7 = 42 and 7 = 66 msec, the Q-factor at
T = 66 msec is approximately double the Q-factor at the earlier
time delay. The change in selectivity over time is illustrated in
Figure 3D. This increase in selectivity is a result of two poten-
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Figure 3. Examples of dynamic spatial
frequency tuning curves. A, Example of
a response that increases in selectivity
over time. The increase in selectivity is
accompanied by lagged suppression at
low spatial frequencies. The peak of the
tuning curve shifts from 0.72 cpd at 36
msec to 2.63 cpd at 72 msec. B, Example
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o AQ=1 1 Afpk = 1.9
40 60 40 60

Time lag, t (ms)

fok(®)

2.E FiesponseE; H of a tuning curve that is initially low-
| = 3' : pass (at T = 42 msec) and becomes
1 %Q " bandpass over time. The peak of the
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40 60 40 60 msec to 4.3 cpd at 74 msec. C, This
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F Relpenas to no response suppression. D-F, Selec-
2 = 5 d tivity as a function of 7, for the three
1 “% example cells shown in A-C. Selectivity
a0=0 = 171 ampk=o is measured by the Q-factor (Eq. 8).

o X
60 80 100 60 80 100 G-I, Preferred spatial frequency, f,,, as

a function of 7, for the three example
cells shown in A-C.

Time lag, 1 {ms)
tially related phenomena that are apparent in Figure 34: the low
spatial frequency limb of the tuning curve becomes markedly
steeper over time, and the response at the lowest spatial frequen-
cies is suppressed, starting at 7,,,,, = 60 msec.

Figure 3B shows another common phenomenon that may be
related to suppression at low spatial frequencies: a change in peak
spatial frequency over time from low to high spatial frequencies.
At 7 = 42 msec, the response peaks at 1.8 cycles per degree (cpd).
Later in the response, at 7 = 74 msec, the response peaks at 4.7
cpd. The change in f,, can be seen more clearly in Figure 3H,
which plots f,,, as a function of 7. The total shift in f,,, for this cell
was 1.9 octaves. The shift was accompanied by a decrease in
responsiveness at low spatial frequencies to baseline levels by 7 =
66 msec, and below baseline levels as the response decays.

The increase in selectivity, change in peak spatial frequency,
and suppression at low spatial frequencies frequently occur to-
gether and, as we show below, appear to be related. Both the
responses in Figure 3, 4 and B, show all three phenomena,
whereas the example illustrated in C shows virtually none of these
response characteristics. There is no overall change in either
selectivity or peak spatial frequency, and the apparent high spa-
tial frequency suppression (7 = 120-130 msec) is not significantly
different from noise activity.

Tuning characteristics
Preferred spatial frequency
We measured the preferred spatial frequency of R(f, 7,,.x) and of
the time-averaged response, R(f). There was no significant differ-
ence between these two measures (Wilcoxon sign rank test; p >
0.5). Figure 44 shows the distribution of f, for the time-averaged
data. f,, ranges from 0.13 to 9.72 cpd. The average f,, was 3.7 cpd
(SD = 2.1 cpd). The distribution is skewed toward low- to
mid-range spatial frequencies, with a sharp dropoff above 4.5 cpd.
To determine whether f,,, is invariant with time, we measured
the magnitude of Af,,, for each cell (Eq. 7). Figure 4B shows how
Af, is distributed in the population. Positive values indicate that
fox shifted from low spatial frequencies toward higher spatial
frequencies, whereas negative values indicate a spatial frequency
preference shift from higher to lower spatial frequencies. On
average there is a positive change in f,, over time, averaging (.62
octaves = 0.69 (1 SD). The largest change in f,,, was slightly over
two octaves. Figure 3, A and B, both provide examples of re-
sponses with large changes in f, over the course of the response;
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Figure 4. Preferred spatial frequency of dynamic tuning. 4, Histogram of
the preferred spatial frequency (f,) of the time-averaged response of
each cell. B, Change of preferred spatial frequency over the time course
of their response. Positive numbers indicate a shift from low to high spatial
frequencies, whereas negative numbers indicate a shift from high to low
spatial frequencies.
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Figure 5. Selectivity of dynamic spatial frequency tuning. 4, Histogram
of the selectivity of the time-averaged responses. We use the Q-factor to
estimate selectivity. B, Scatter plot of the selectivity index measured at
Tdey VETSUS Tyecoy- The dashed line indicates the unit line, at which O(7.,)
equals O(Tyecay)- C, Comparison of the change in steepness over time of
the low spatial frequency limb of the tuning curve versus the high spatial
frequency limb of the curve.

for both cells, plots of f,, as a function of 7 are shown in Figure
3, G and H, respectively. For both responses, the peak spatial
frequency increases at an approximately constant rate over the
entire time course of the response enhancement. The change in
the preferred spatial frequency over time is a clear form of
inseparability in spatial frequency and time that we observed in
many V1 neurons.

Selectivity

We used the Q-factor to estimate spatial frequency selectivity. As
we did for f,,, we measured selectivity for both R(f, 7,,,,) and for
the time-averaged curve, R(f). The Q-factor was significantly
higher for the time-averaged curve than for 7., (Wilcoxon sign
rank; p < 0.01). Figure 54 shows a histogram of the Q-factor for
R(f). Selectivity ranged from very untuned (Q-factor = 0.36) to
highly tuned (Q-factor = 2.12), with a mean of 1.24 = 0.38 (1 SD).
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Figure 6. Properties of suppression. 4, Histogram of the overall amount
of response suppression relative to response enhancement. Values near 0
indicate that there was very little suppression relative to the amount of
response enhancement; values near 1 would indicate an almost pure
suppressive response. B, Histogram of the relative location of maximal
response enhancement versus response suppression (Eq. 12). Positive
values indicate that the center spatial frequency of response enhancement
was higher than the center spatial frequency of suppression.

The Q-factor in V1 cells may change over time. Figure 5B
shows the Q-factor during development of the response compared
with the Q-factor during decay. For the majority of cells,
O(Tgecay) 18 higher than O(7y.,) (Wilcoxon sign rank test; p <
0.001), although the amplitude of the curve at the two time points
is equal by definition.

We next asked whether the increase in selectivity is similarly
distributed on both flanks of the tuning curve (Fig. 5C). The
increase in selectivity should be accompanied by an increase in
the steepness of at least one of the limbs of the tuning curve. We
compare the change in steepness (Asteepness) for the response on
both sides of the peak spatial frequency to determine whether
Asteepness is evenly distributed. For the low spatial frequency
flank, Asteepness is measured as My (Tyecay) — My (Tqey ); similarly,
Asteepness for the high spatial frequency flank is measured as
Miy(Tgecay) — Mi(Tyey ). Positive values of Asteepness indicate an
increase in steepness over time. Figure 5C shows the results of the
comparison. The low spatial frequency side of the tuning curve
shows a significantly larger increase in steepness than the high
spatial frequency flank (Wilcoxon sign rank test; p < 0.001).
Asteepness(f < f...) ranges from just below zero, or no change, to
~0.7. In contrast, values of Asteepness(f = f,,,) tend to be clus-
tered near zero. These results indicate that the increase in selec-
tivity is primarily dependent on changes in the response to low
spatial frequencies.

Suppression

The increase in the steepness of the low-frequency limb of the
tuning curve often appeared to be accompanied by suppression at
the lowest spatial frequencies. A majority of neurons (69%; 65 of
94) showed significant response suppression, usually at spatial
frequencies lower than the optimal. The distribution of suppres-
sion strength in our data is shown in Figure 64. The suppression
index is a measure of how strongly suppression contributed to the
overall response (Eq. 11). A value of 1 indicates a purely suppres-
sive response, whereas a value of 0 indicates pure enhancement.
A suppression index of 0.5 indicates that enhancement and sup-
pression are equally balanced. For the majority of cells with
significant suppression, suppression accounted for a little less than
one-third of the total area under the curve (mean Suplndex =
0.27 = 0.19).

For most cells, maximal suppression occurred at the lowest
spatial frequencies measured, regardless of the spatial frequency
of excitation. Figure 6B indicates the location of suppression,
relative to the location of excitation (Eq. 12). For the majority of
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Figure 7. Example of the model components and fit for the response
shown in Figure 34. A, Spatial profile of the excitatory (solid line) and
inhibitory (dashed line) input components fit by our model. B, Temporal
profile of the components. C, Response and fit at three time points (74,
Tomaxs AN Tyeeay ). Al Tyecay, the response is clearly suppressed for low
spatial frequencies.

cells, excitation is centered at higher spatial frequencies than
suppression. This pattern is consistent with a role of suppression
in increasing the steepness of the low spatial frequency limb of the
tuning curve. In addition, we observed from the model fits that
the peak amplitude of the suppressive component was delayed
relative to the peak of the excitatory component by ~5 msec on
average (data not shown).

Relative location and widths of enhancement

and suppression

On the basis of changes in selectivity and f,, over time, as well as
the location of suppression at frequencies other than f,, we
conclude that, as a whole, the dynamics of spatial frequency
tuning are not separable in spatial-frequency and time. Instead,
we found that the response could be well fit by a model based on
two input components, each of which is separable in space and
time. The components of the model act as excitatory and inhibi-
tory inputs to the response, with separate temporal profiles.
Figure 7 gives an example of the model fit for the response shown
in Figure 34. The response shows a change in both selectivity and
peak spatial frequency as a function of time, which are both
reasonably well fit by the model. The spatial and temporal profiles
of the model components for this cell are illustrated in Figure 7,
A and B, respectively. For both plots, the solid line indicates the
excitatory component; the dashed line indicates the inhibitory
component. The inhibitory component is centered at lower spa-
tial frequencies but largely overlaps the excitatory component,
and its time course is slightly delayed relative to the development
of the excitatory component. Figure 7C shows the model fit to the
data for Ty, Trax, a0d Tyee,,- The fit is able to capture the change
from broad bandpass tuning at 7, to sharp tuning with low
spatial frequency suppression at Tqec,-

Figure 8 shows the population data for the best fitting curves.
Figure 84 compares f.. ) With fe,q), in a log-log scatter plot.
fewrary tends to be lower than f,,, (), by up to 3.5 octaves. The large
degree of separation between the centers of the two components
is a consequence of the tendency for f,, to be located at the
lowest spatial frequencies that we measured, whereas f,, g, tends
to be located at spatial frequencies very similar to the peak of the
response. The degree of separation between the centers of the
components might be surprising at first, because the components
can only interact if they overlap.
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Figure 8. Distribution of model parameters. 4, Scatter plot of the center
spatial frequency of the excitatory (f s, and suppressive components
(feer)> on a log-log axis. The histogram indicates the log ratio of f i,
and f ;) and shows that f g, is higher than f,, for most responses. B,
Scatter plot of the o of the excitatory (o(g,) and inhibitory (o) compo-
nents. The histogram indicates the difference between o and oy,

Figure 8B compares o; and og. A large proportion of cells are
located near the unit line, indicating that they tend to covary. In
other words, cells with broad excitatory components also tend to
have broad suppressive components. Cells with the largest sepa-
ration between [,y and f ) also tend to have large o values,
suggesting that the increase in the width of the components
compensates for the separation between their centers (data not
shown). The result is that there is a large degree of overlap
between the components, regardless of the separation between

fclr(E) and fclr(I)'

Correlation between suppression, Af,, and AQ

Many cells show both a net effect of suppression and a change in
selectivity and f,,. We asked whether suppression plays a role in
generating these characteristics. In principle, a time-delayed sup-
pressive component at low spatial frequencies could increase both
selectivity and cause a shift in f,, toward higher frequencies over
time. If the suppressive and excitatory input overlap, but have
different tuning, the result will be an increase in the slope of the
tuning curve. The location of suppression relative to excitation
determines whether the increase in selectivity will be symmetrical
or biased toward one flank of the tuning curve. If suppression is
located at the same spatial frequency as excitation, but is broader
in tuning, both flanks of the tuning curve would be equally
suppressed, resulting in a symmetrical tuning function. However,
if suppression is located primarily at spatial frequencies either
higher or lower than excitation, the increase in selectivity would
be biased toward the corresponding flank of the tuning curve. In
addition, the overlap between suppressive and excitatory input
might push the peak of the resulting tuning curve away from the
location of suppression over time.

Suppression and selectivity

We examined the possible role of suppression in increasing se-
lectivity by looking at the correlation between spatial frequency
selectivity and suppression (Fig. 94). In general, cells with a high
suppression index (SupIndex > 0.23), which indicates the relative
contribution of suppression to the total response (Eq. 11), tend to
be more selective than cells with a lower suppression index
(Wilcoxon sign rank test; p < 0.001). This relationship suggests
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Figure 9. Effect of suppression on selectivity. 4, The time-averaged
selectivity of dynamic tuning increases with increasing suppression. B, C,
The change in selectivity over the time course of the response (AQ) is
related to a change in the amount of overlap between the two components
of the model (Aoverlap). Positive numbers on the abscissa indicate an
increase in selectivity over time, whereas negative numbers indicate a
decrease in selectivity. On the ordinate, positive numbers indicate increas-
ing amounts of overlap between the components over time.

that at least one of the roles of suppressive input may be to
increase the selectivity of the tuning of the cell.

We investigated the relationships between the inhibitory and
excitatory inputs in our model to examine the influence of sup-
pression on selectivity. If the delayed development of suppression
is responsible for the increase in selectivity shown by many of the
cells in our sample, we should find a correlation between changes
in selectivity over time, AQ (Eq. 9), and the amount of overlap
between the components of the model, Aoverlap (Eq. 14).

Figure 9, B and C, compares AQ and Aoverlap, on the basis
of whether the suppression was centered at lower or higher spatial
frequencies than excitation. When f, g, is higher than f.,q,
there is a significant positive relationship between AQ and
Aoverlap (Fig. 9B) (r* = 0.6; p < 0.001). The opposite is true when
fercey is lower than ., (> = 0.4; p < 0.05). These correlations
suggest that the relationship between suppression and excitation
contributes to changes in selectivity over time.

Suppression and spatial frequency shift

In addition to changes in selectivity, changes in the amount of
overlap between the excitatory and suppressive components could
also produce changes in the peak of dynamic tuning. An increase
in Aoverlap would tend to shift the peak of the tuning curve away
from f., gy, toward the nonsuppressed flank of the tuning curve.
We tested this hypothesis by comparing Aoverlap with Af,, (Fig.
104,B); for larger values of Aoverlap, we expect to find larger
shifts in f,,y.

Similar to the results for selectivity, there is a positive corre-
lation when f, i) is greater than f., ;) and a negative correlation
otherwise (r* = 0.3; p < 0.001 and r* = 0.3; p < 0.1 respectively).
These results suggest that suppression may also be involved in
producing the shift of f,, over time.
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Figure 10. Effect of suppression on f,. 4, B, There is a correlation
between Af,, and Aoverlap. The form of this relationship is similar to the
relationship seen between the change in selectivity and the change in
overlap (Fig. 9).

DISCUSSION

In this study, we measured how spatial frequency tuning evolves
as a function of time from stimulus presentation. We found that,
for a majority of cells, the tuning curve is not separable in
spatial-frequency and time. The three most salient patterns in the
data were (1) shifts in the preferred spatial frequency toward
higher spatial frequencies over the duration of their response, (2)
increases in selectivity over time, and (3) suppression at low
spatial frequencies.

The role of suppression in generating cortical spatial
frequency tuning

Of particular interest in this study was whether suppression plays
a role in spatial frequency tuning. We found suppression primar-
ily at low spatial frequencies, slightly lagged in time relative to the
development of excitation. For individual cells, the relative
amount of suppression correlates with the selectivity of the re-
sponse, suggesting that the generation of sharp cortical spatial
frequency tuning may be directly dependent on suppression of
nonpreferred stimuli. This hypothesis is supported by the dynam-
ics of the relationship between suppression and selectivity re-
vealed by the two-component model. The model suggests that the
relative location, timing, and the amount of overlap between
excitatory and inhibitory inputs are all important in understand-
ing the relationship between suppression and selectivity. When
lagged suppression is located at lower spatial frequencies than
excitation, it inhibits the response to low spatial frequencies,
sharpening the low spatial frequency limb of the tuning curve. As
the magnitude of suppression increases relative to the magnitude
of excitation, the increasing overlap between the inhibitory and
excitatory components pushes the peak of the spatial frequency
tuning curve toward higher frequencies. Such a mechanism might
be partly responsible for transforming low-pass tuning input from
the LGN into the more typical bandpass shape observed in V1.
This process is seen in the dynamic responses of many cells, which
are initially low-pass but become bandpass over the time course of
their responses.

The relationship between suppression and selectivity in our
data is consistent to some extent with the study of Bauman and
Bonds (1991) in cat area 17. These investigators suggested that
suppression occurs on the sharper limb of the spatial frequency
tuning curve. For both “low-pass” and “high-pass” cells, suppres-
sion was most often revealed on the complementary limb of the
tuning curve, i.e., on the high spatial frequency limb of a low-pass
tuning curve. For bandpass cells, suppression was often located on
both sides of the tuning curve. On the basis of their results,
Bauman and Bonds (1991) suggested that suppression was in-
volved in sharpening the slope of spatial frequency tuning.
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For reasons that are not completely clear, however, another
study of spatial frequency suppression has reached different con-
clusions (Ramoa et al., 1986). In this study, when spontaneous
firing rates were elevated using pharmacological agents, there was
no evidence for suppression in the spatial frequency tuning curve,
although orientation tuning showed robust suppression.

Comparison with the dynamics of orientation tuning
There are several similarities between the dynamics of spatial
frequency tuning and the dynamics of orientation tuning, suggest-
ing that cortical selectivity for both orientation and spatial fre-
quency relies on similar mechanisms. First, the dynamics of
cortical tuning revealed suppression in both the orientation and
spatial frequency domains. For both orientation and spatial fre-
quency, the suppression is correlated with higher tuning selectiv-
ity (Ringach et al., 1997, 2002). In addition, dynamic orientation
tuning responses are well described by a two-component model,
in which an oriented excitatory component and a delayed, iso-
oriented suppressive component can accurately capture the sa-
lient aspects of the data (Pugh et al., 2000). For orientation
tuning, suppression tends to be broader than excitation, produc-
ing symmetrical flank suppression or global inhibition. A few cells
also show changes in orientation preferences over time, which
could be the result of suppression centered slightly off the exci-
tatory peak. Such changes in the orientation peak could be
analogous to the shift in peak spatial frequency found in this
experiment. The similarities between the dynamics of orientation
and spatial frequency tuning in V1 suggest that a single model in
Fourier space can probably account for the transformation of
thalamic input into sharp cortical selectivity.

Models of cortical tuning and the role of suppression
There are two major classes of models that attempt to explain the
emergence of cortical selectivity. In their most simple forms,
feed-forward models suggest that cortical tuning is generated
from the organized convergence of thalamic input (Hubel and
Wiesel, 1959, 1962; Troyer et al., 1998; Ferster and Miller, 2000).
In contrast, feedback models hypothesize that the excitatory
thalamic input provides only a weak tuning bias, which is then
refined through intracortical excitatory and inhibitory interac-
tions (Benevento et al., 1972; Worgotter and Koch, 1991; Ben-
Yishai et al., 1995; Somers et al., 1995; Carandini and Ringach,
1997; Adorjan et al., 1999; Anderson et al., 2000; Pugh et al.,
2000).

There is evidence that aligned LGN input does play at least a
partial role in generating cortical selectivity (Bullier et al., 1982;
Ferster, 1987; Chapman et al., 1991; Reid and Alonso, 1995); the
extent of this role is at the center of the feed-forward/feedback
debate. As feed-forward models have become more sophisticated,
an additional question has arisen regarding the role of suppres-
sive input. Current feed-forward models draw on evidence that
V1 receptive fields receive push—pull suppression (Heggelund,
1981; Palmer and Davis, 1981; Ferster, 1988). Push—pull suppres-
sion is required by these models to explain contrast invariance,
while maintaining a primary dependence on feed-forward influ-
ences to produce cortical selectivity (Troyer et al., 1998). Feed-
back models, on the other hand, focus on evidence of a more
broadly tuned suppression in the orientation domain (Benevento
et al., 1972; Nelson, 1991; Sato et al., 1996; Ringach et al., 1997)
that could improve cortical selectivity by suppressing nonoptimal
stimuli (Ben-Yishai et al., 1995; Somers et al., 1995). Such sup-
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pression could also produce contrast invariance (Wielaard et al.,
2001). Both classes of models were developed to account for the
properties of orientation selectivity. Here, we consider how well
these classes of models account for dynamic spatial frequency
tuning in V1.

Our results suggest that response suppression has a strong
influence on the spatial frequency tuning characteristics of V1
neurons. The influence of response suppression is seen most
clearly in spatial frequency tuning selectivity, which is sharpened
through inhibitory influences. The effects of suppression on tun-
ing selectivity indicate that, although response suppression may
be responsible for contrast invariance and contrast gain control, it
is also involved in producing sharp tuning. We think a single
inhibitory circuit could potentially explain, in a parsimonious
way, gain control phenomena, contrast invariance, and the dy-
namics of both orientation and spatial frequency tuning
selectivity.

The effect of suppression on cortical selectivity is most consis-
tent with feedback models, which predict that LGN input pro-
vides a tuning bias, but that this bias is sharpened by intracortical
excitation and suppression (Ben-Yishai et al., 1995; Somers et al.,
1995; Adorjan et al., 1999). Thus, feedback models predict that
the dynamic response should become more selective over time as
the intracortical feedback develops. These predictions are sup-
ported by the increase in selectivity over time observed in our
data. In addition, the broad tuning of the excitatory input com-
ponents fit by our model (Fig. 84) is similar to estimates of
thalamic spatial frequency tuning (Derrington and Fuchs, 1979;
Kaplan and Shapley, 1982), suggesting that the excitatory com-
ponents of the model could be thought of as biased LGN input.

Current feedback models have not made specific predictions
about the tuning of intracortical spatial frequency suppression. In
the orientation domain, broad iso-oriented inhibition suppresses
both flanks of the symmetrical orientation tuning curve (Ringach
et al., 1997). The flank suppression increases the selectivity of
orientation tuning while maintaining a symmetrical orientation
tuning curve. In the spatial frequency domain, the LGN inputs to
V1 are low-pass rather than symmetrically bandpass; thus inhib-
itory inputs at low spatial frequencies, such as those described by
our model, would suppress the response at the lowest spatial
frequencies, producing the bandpass curves characteristic of vi-
sual cortex.

The dynamics of spatial frequency tuning are not consistent
with current instantiations of the push—pull model (Troyer et al.,
1998), because this model does not predict the suppressive com-
ponent at low-spatial frequencies that is seen in our data. How-
ever, we emphasize that our results do not reject the entire class
of feed-forward models. Inhibitory influences could be caused by
feed-forward input from the LGN that is inverted by cortical
interneurons. Thus, it might be possible to modify the push—pull
model to account for some or all of the effects seen in our data.

To summarize, we think that a goal for future theoretical work
is to explain the correlation between suppression and selectivity
observed in the data. It might be possible to identify a single
inhibitory circuit that can adequately explain bandwidth, gain
control, and contrast invariance simultaneously. Further experi-
ments can also shed new light on the relationship between these
properties. If inhibition is responsible for most of these phenom-
ena, one could ask whether correlations are observed on a cell-
by-cell case.
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