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The Receptive-Field Organization of Simple Cells in Primary
Visual Cortex of Ferrets under Natural Scene Stimulation

Darragh Smyth,' Ben Willmore,? Gary E. Baker,' Ian D. Thompson,' and David ]J. Tolhurst?
"Laboratory of Physiology, Oxford University, Oxford 0X1 3PT, United Kingdom, and 2Department of Physiology, Cambridge University, Cambridge CB2
3EG, United Kingdom

The responses of simple cells in primary visual cortex to sinusoidal gratings can primarily be predicted from their spatial receptive fields,
as mapped using spots or bars. Although this quasilinearity is well documented, it is not clear whether it holds for complex natural
stimuli. We recorded from simple cells in the primary visual cortex of anesthetized ferrets while stimulating with flashed digitized
photographs of natural scenes. We applied standard reverse-correlation methods to quantify the average natural stimulus that invokes a
neuronal response. Although these maps cannot be the receptive fields, we find that they still predict the preferred orientation of grating
for each cell very well (r = 0.91); they do not predict the spatial-frequency tuning. Using a novel application of the linear reconstruction
method called regularized pseudoinverse, we were able to recover high-resolution receptive-field maps from the responses to a relatively
small number of natural scenes. These receptive-field maps not only predict the optimum orientation of each cell (r = 0.96) but also the
spatial-frequency optimum (r = 0.89); the maps also predict the tuning bandwidths of many cells. Therefore, our first conclusion is that
the tuning preferences of the cells are primarily linear and constant across stimulus type. However, when we used these maps to predict
the actual responses of the cells to natural scenes, we did find evidence of expansive output nonlinearity and nonlinear influences from
outside the classical receptive fields, orientation tuning, and spatial-frequency tuning.
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Introduction

Visual systems have evolved to interpret the complex spatiotem-
poral structure in natural visual stimuli (Srinivasan et al., 1982;
van Hateren, 1992; Dan et al., 1996). However, our understand-
ing of neuronal behavior in the mammalian visual system is pri-
marily based on their responses to simple artificial stimuli such as
spots of light and sinusoidal gratings. We have little direct knowl-
edge of how visual neurons respond to naturalistic stimuli (Dan
etal,, 1996; Baddeley et al., 1997; Gallant et al., 1998). Hubel and
Wiesel (1959) described “simple cells” in primary visual cortex
(V1), the receptive fields (RFs) of which, when mapped with
spots of light, predicted the orientation, width, and position of
the optimal stimulus. Quantitative studies confirm that, to a first
approximation, the responses of simple cells to one set of simple
spatial stimuli can be used in a linear model to predict the selec-
tivity to another set (Movshon et al., 1978; Jones and Palmer,
1987b; DeAngelis et al., 1993). If the integration of stimuli by
simple cells really was linear, then responses to natural scenes
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should be predictable from their responses to simple stimuli (cf.
Creutzfeldt and Northdurft, 1978).

However, numerous studies have demonstrated that the re-
sponses of simple cells, even to artificial stimuli, are not perfectly
linear. The rate of action potential production is a nonlinear
function of any underlying linear spatiotemporal stimulus inte-
gration (Carandini and Ferster, 2000) and, therefore, linear pre-
dictions based on action potential counts often fail (Tolhurst and
Dean, 1987; Albrecht and Geisler, 1991; Heeger, 1992; DeAngelis
et al., 1993; Tolhurst and Heeger, 1997b; Lampl et al., 2001).
Moreover, there are more profound nonlinear behaviors. In par-
ticular, the presence of a second stimulus, to which the cell would
not normally respond [e.g., a stimulus outside the classical recep-
tive field (CRF)], can modulate the responses of a cell to its pre-
ferred stimulus (Blakemore and Tobin 1972; Nelson and Frost,
1985; Bonds 1989; Knierim and Van Essen, 1992; Walker et al.,
1999; Kapadia et al., 2000). It has even been reported that the
classical orientation tuning of a cell depends on the context in
which stimuli are presented (Gilbert and Wiesel, 1990; Shevelev
et al., 1994; Sillito et al., 1995).

Natural scenes are spatially extensive and contain features at
many orientations, widths, and positions (Ruderman, 1994);
thus, nonlinear contextual influences could be particularly evi-
dent in simple-cell responses to natural scenes (Rao and Ballard,
1999), contributing to efficient coding of information in the
scenes (Vinje and Gallant, 2000). The responses to simplistic
stimuli may not allow the prediction of the responses to natural
scenes. Consequently, we directly examine how simple cells in
ferret V1 respond to natural scenes and ask whether these re-
sponses are compatible with the responses to simpler stimuli (si-
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nusoidal gratings). Theunissen et al. (2001) and Ringach et al.
(2002) have independently investigated this problem, but we de-
scribe a novel application of an analytical method for recovering
high-resolution receptive-field maps from the responses to nat-
ural scenes, allowing detailed and critical comparison with tuning
of the cell to other stimuli.

Materials and Methods

Recordings. Extracellular recordings of action potentials were made from
single neurons in V1 (area 17) of 12 anesthetized ferrets using tungsten-
in-glass microelectrodes (Merrill and Ainsworth, 1972). Surgery was per-
formed on adult pigmented ferrets under intramuscular anesthesia (2
ml/kg ~") followed by intravenous injections of Saffan (0.3% alphado-
lone acetate and 0.9% alphaxalone). During recordings, anesthesia was
maintained by artificial respiration with 0.5-1.5% Halothane in a mix-
ture of 75% N,O and 25% O,. End-tidal CO, concentration was main-
tained near 4% by an adjustment of respiration rate and stroke volume;
rectal temperature was maintained at 37.5°C. The animals were para-
lyzed by intravenous infusion of gallamine triethiodide (10
mg- kg ™' -hr ') in a vehicle of saline with 4% glucose at 2.6 ml/hr ~',
and the adequacy of anesthesia was assessed from inspection of the heart
rate and the waveform of the EEG [full experimental details are given in
Baker et al. (1998)]. At the end of the experiment, each animal was given
a barbiturate overdose, perfused through the heart with PBS, and then
perfused with 4% buffered paraformaldehyde to fix the brain for later
histological verification of the recording sites (electrolytic lesions were
made on termination of electrode penetrations). All procedures were
approved under license from the United Kingdom Home Office.

The pupils were dilated and the accommodation was paralyzed by
topical application of homatropine (1% w/v) to the eyes which were then
protected with clear zero-power contact lenses. The small eye of the ferret
has alarge depth of focus (cf. Green et al., 1980), and auxiliary lenses were
not considered necessary to focus the eyes on the stimulus display (Price
and Morgan, 1987; Baker et al., 1998). The receptive fields of the neurons
were generally within a few degrees of the area centralis, and visual stim-
ulation was applied through the eye contralateral to the recorded cortex
while the ipsilateral eye was covered.

Visual stimulation. Monochrome visual stimuli were presented on
cathode ray tube monitors under the control of a visual stimulus gener-
ator 2/4 graphics card (Cambridge Research Systems, Cambridge, UK);
this had a pseudo-15 bit analog output allowing precise control of the
luminance of each pixel on the display and correction for expansive
luminance nonlinearities. Stimuli could be presented with 256 linearly
spaced gray levels. Two different display monitors were used. Initially, we
used an Eizo Flexscan T562-T monitor with a viewable area that was 28.5
cm wide X 21.5 cm high, viewed from a distance of 57 cm (or sometimes
28.5 cm) so that it subtended 28.5 X 21.5° of visual angle. Stimuli were
presented as 800 X 600 pixels, so that each pixel subtended 0.036° of arc
[equivalent to a maximum resolvable spatial frequency of 13.8 cycles per
degree (cpd)]. This monitor had a mean luminance of 36 cd/m “2anda
frame rate of 100 Hz. In later experiments, a Sony (Tokyo, Japan) GDM-
500PST monitor measured 39.6 cm wide X 29.7 cm high; it was viewed
from a distance of 28.5 cm, giving a viewing angle of 79.2 X 59.4°. Again,
the display had 800 X 600 pixels, so that each pixel subtended 0.099°
(equivalent to a maximum resolvable spatial frequency of 5.1 cpd). This
monitor had a mean luminance of 54 cd/m ~? and a frame rate of 160 Hz.

We recorded from 148 single neurons with a battery of tests using both
moving sinusoidal gratings and sequences of flashed natural scenes. Al-
though 42 cells were classified as simple, we present results from only 25
cells. Seventeen cells were discarded from the analysis: seven cells for
responding inconsistently with high response variability across repeats
and with receptive-field reconstructions showing no spatial features and
10 cells for responding very sparsely, with receptive-field reconstructions
dominated by individual images. The cells were classed as simple because
their receptive fields had separate parallel ON and OFF regions (Hubel
and Wiesel, 1959), and because their responses to moving gratings were
highly modulated in time with the movement of the bars (relative mod-
ulation, >1.4) [Movshon et al., 1978; Dean and Tolhurst 1983; Skottun
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etal., 1991; but see Mechler and Ringach (2002) for a re-examination of
cell classification]. OFF is shorthand for the parts of the receptive field in
which the presentation of a dark spot of light would cause excitation and
where a bright spot of light would be expected to cause inhibition during
its presentation and possibly a rebound burst of action potentials at its
offset (Hirsch et al., 1998). The orientation tuning and spatial-frequency
tuning of each cell were determined with moving sinusoidal gratings of
Michelson contrast 0.7. Gratings of up to 16 different orientations and/or
directions of movement were presented at a near-optimal spatial fre-
quency. At least 20-30 cycles of the grating (moving at 1-2 Hz) were
presented. Next, up to 12 different spatial frequencies was presented at
the optimal orientation; again, at least 20—30 cycles of each grating were
presented. Modified Gaussian curves were fitted to the graphs of the
average firing rate against orientation and spatial frequency to determine
the optimal orientation and frequency and the bandwidths at half height
of the two tuning curves (Baker et al., 1998). The Gaussians were modi-
fied to have different spreads above and below the maximum of the
function.

The responses of each simple cell were then determined for mono-
chrome photographs that had been digitized and linearized to >1000
gray levels. Some of these were pictures of animals, people, flowers, trees,
and landscapes (Tolhurst et al., 1992), and we also included pictures of
ferrets and the “ferret’s-eye” view of terrain. A sequence of =5000 flashed
presentations was presented. Each static picture was flashed on for 100
msec, and after it was removed, the display screen was held at a spatially
uniform gray (36 or 54 cd/m ~?, depending on the monitor) for 170 msec
before the next picture was presented (see Fig. 1 A). The digitized pictures
were scaled to have 256 equally spaced luminance steps; the brightest
pixel in each picture had twice the luminance of the blank display,
whereas the darkest had a nominal luminance of zero. The space-
averaged mean luminance of most pictures was less than the luminance
of the blank display. Although the changes in overall luminance and
contrast between stimuli may invoke subtle response nonlinearities, the
task of normalizing natural stimuli actually requires previous knowledge
of the receptive field, the very property we are trying to infer (Tolhurst
and Tadmor, 1997). We feel it is important to stimulate the system with
natural stimuli that are likely to include changes in luminance and con-
trast. The long flash presentation and 170 msec blank interval allowed us
to distinguish clearly between the offset response to one picture and the
onset response to the next; although in three simple cells, there was no
blank interval between pictures.

The displayed pictures each comprised 150 X 150 pixels, and frag-
ments were drawn at random from a set of 128 larger pictures, each
measuring 256 X 256 pixels. The display “zoomed” the displayed frag-
ments by a factor of four to match the 600 pixel screen height. Thus, each
effective pixel (0.14 or 0.4°, depending on the monitor) was four times
greater than the screen resolution but was still generally smaller than
would be resolved by ferret visual neurons, which rarely respond to spa-
tial frequencies as high as 1 cpd ~' (Price and Morgan, 1987; Baker et al.,
1998). The pictures measured 21.5 or 59.4° square, compared with a
typical “minimum response field” (Barlow et al., 1967) size of ~4-15°
square. For some experiments, the 5000 pictures in the sequence were all
different fragments that were cut from 128 digitized photographs. More
often, there was one set of just 500 different fragments, and this set was
presented =10 times, with the 500 fragments presented in a different
random order each time.

Although each picture in our experiments was represented as 150 X
150 effective pixels (each of which occupied 4 X 4 screen pixels), the sizes
of the arrays were reduced to 50 X 50 to ensure that the computational
algorithm was tractable on a personal computer. Usually, this was
achieved by averaging the luminance values in groups of 3 X 3 effective
pixels. However, in some cases, we took a 100 X 100 region of interest
and averaged groups of 2 X 2 pixels or, for very small receptive fields, we
took a 50 X 50 region of interest for subsequent analysis.

Response analysis. Most of the simple cells responded sparsely to the
sequence of flashed natural scenes (i.e., each simple cell responded to
relatively few of the pictures presented but responded reliably to repeated
presentations of those few effective pictures) (see Fig. 1 B). Furthermore,
as might be expected from cells that show quasilinear spatiotemporal
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summation, the 25 simple cells responded either at the onset of a partic-
ular picture flash or at its offset; they did not give both onset and offset
responses to any single picture (see Fig. 1 B).

For each picture, we counted the number of action potentials in a 100
msec interval starting 30-50 msec after the onset or the offset of the
stimulus. Offset responses were counted as negative, because the offset of
a picture might be the same as the onset of its contrast-reversed image,
and we presume that an offset response would have followed inhibition
during the 100 msec that the picture was present (Hirsch et al., 1998). In
experiments in which the picture fragments were each presented =10
times, the individual responses were averaged. Poststimulus time histo-
grams of the responses to =5000 presentations were generated to extract
the latency of the visual response and hence the position of the 100 msec
window. It also identified those cells that reliably showed both onset and
offset responses to different pictures (see Fig. 1B). Most of the cells
presented in this study had very little, if any, spontaneous activity. More-
over, our method of subtracting offset responses from onset responses
should cancel on average any background activity that is underlying the
neuronal response train.

For the few cells (n = 4) that gave only onset (positive) or offset
(negative) responses, those stimuli that failed to give any response are
ambiguous. If the cells have no spontaneous activity, it is not clear
whether an absence of action potentials implies zero response or hidden
inhibition (Movshon et al., 1978; Tolhurst and Dean, 1987). For these
cells, the many responses of zero were deemed to be ambiguous and were
discarded from subsequent analyses. However, in those cells (the major-
ity) in which both clear onset and offset responses were seen, all responses
(positive, negative, and zero) to all pictures were used in subsequent
analyses, providing a much greater number of constraints on the
receptive-field reconstructions. Including a blank interval between pic-
ture presentations is one of the strengths of our experimental design.

Gabor models of receptive-field structure. The field of computational
visual neuroscience has traditionally used the Gabor function as a realis-
tic model of receptive-field structure of simple cells in V1 (Marcelja,
1980; Jones and Palmer, 1987a; Ringach, 2002). The Gabor model uses a
Gaussian-windowed sinusoidal pattern, thereby fitting comfortably with
the use of sinusoidal gratings as the stimulus pattern of choice. Given our
experimental protocol, one plausible method of RF estimation would be
to fit a Gabor function that predicts the responses of a real neuron to a
given set of natural stimuli. We achieved this by applying a simulated
annealing algorithm (Press et al., 1992), combined with evolutionary
computation methods, to fit a seven parameter Gabor function (Mar-
celja, 1980) that maximizes the linear correlation between the actual and
predicted responses to the natural stimuli.

However, the whole point of using natural stimuli to reconstruct re-
ceptive fields is to avoid making these “single sinusoid” assumptions
about the stimulus tuning of a cell. In theory, we do not know the struc-
ture of simple-cell receptive fields to natural stimuli and therefore need a
reasonably nonparametric approach. We present an approach below that
evolved from reverse-correlation methods that we feel satisfy this
criterion.

Receptive-field estimation. If a simple cell were to summate the influ-
ences within its receptive field linearly, then the scalar response, r, to a
two-dimensional stimulus, s, would be given by the dot product of s and
the spatial weights within the two-dimensional receptive field, f, as
follows:

r= > sy X £ (1)
x oy

We presented 500 stimuli (=10 times each) or =5000 stimuli (once
each). The set of scalar responses, r, to all of the stimuli, S, can be written
more conveniently as a matrix equation as follows:

r=8Xf, (2)

where r and fare both column vectors and § is a matrix in which each row
represents one stimulus. We wanted to obtain an estimate, f, of the
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receptive-field structure; initially it seems that this can be done simply by
rearranging Equation 2 as follows:

f=s"!xr, (3)

where S 7! is the matrix inverse of S. However, this is problematic be-
cause the matrix inverse only exists under certain conditions (i.e., when S
is square and its rows are linearly independent). These conditions can be
met by some stimulus sets (e.g., white-noise stimuli) but not by a ran-
domly chosen set of natural-scene stimuli; the set would typically not be
linearly independent because of pixel-to-pixel correlation within scenes,
as demonstrated by Field (1987).

Smyth et al. (2000) and Ringach et al. (2002) used iterative methods to
find least-squares solutions to Equation 2. These methods provide accu-
rate receptive-field estimates when large numbers of stimuli are pre-
sented. However, under circumstances (such as in this study) where the
number of available stimulus-response pairs is limited and the re-
sponses, 1, are subject to response variability, Equation 2 is likely to be
underdetermined [fewer equations than unknowns (i.e., fewer stimuli
than pixels)] and inconsistent. As a result, any least-squares solution is
likely to contain a large amount of high-frequency noise that reflects
overfitting of the variable neuronal responses.

Reverse correlation. In the special case in which the stimuli, S, are
orthogonal (as well as being linearly independent), inversion of S is
straightforward, because the inverse, S ~1 is the same as the transpose,
ST, which is obtained simply by swapping the rows and columns of S.
This is the case when receptive fields are mapped with two-dimensional
patterns of random black and white dots or with white noise (Reid et al.,
1997). An estimate of the receptive field can then be obtained by reverse
correlation; the white noise patterns are simply added together and
weighted by the number of action potentials evoked by each pattern as
follows:

f=8"Xr=8"!Xr (4)

This is the response-weighted average of the stimuli presented. It is
tempting to apply the same response weighting to the digitized pictures
of our stimuli (i.e., to add the pictures in the set, weighted by the response
evoked by each one). However, the lack of orthogonality in the stimulus
set means that the transpose of S is not the same as the inverse, and the
procedure gives a receptive-field estimate that is biased (Smyth et al.,
1999; Theunissen et al., 2001). It is possible to remove the bias from the
receptive-field estimate by removing the pixel-to-pixel correlation from
the stimulus set as follows:

f=8" X C'Xr=8"Xr, (5)

where Cg is the pixel-to-pixel cross-correlation matrix of S. This is
achieved by dividing the Fourier transform of the response-weighted
average by the average of the power spectra of the pictures in S (Theunis-
sen et al., 2001; Willmore, 2002).

Regularized pseudoinverse. Alternatively, a least-squares solution to
Equation 2 can be found using singular value decomposition. This pro-
vides a pseudoinverse, which is an approximation to S ~'. However, for
small numbers of stimulus presentations, this is still likely to produce a
receptive-field estimate, f, which is corrupted by high-frequency noise as
a result of overfitting.

To avoid this problem, we propose a method for obtaining a high-
resolution estimate of the receptive field, f, from relatively few “noisy”
responses, 1, to a set of pictures, S. We use a regularized pseudoinverse
(Press et al., 1992) in which any ambiguities and inconsistencies may be
resolved by applying some a priori constraints on the solution. A very
simple and plausible constraint is to assume that the sensitivity within the
receptive field changes continuously and smoothly with the position.
That is, the Laplacian of the field (L, = V), will be close to zero at all
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points within the field. We approximate the two-dimensional Laplacian
of a receptive field using a 3 X 3 pixel element (which is previously zero)
as follows:

0o -1 0
L= -1 4 -1 (6)
0 -1 0

We construct a matrix L of 2500 such “Mexican-hats,” each embedded in
a matrix of 50 X 50 zeroes, aAnd one for each of the 50 X 50 locations in
the estimated receptive field f. The a priori constraint is that the receptive
field should be smooth at each point (i.e., that the dot product of the
Laplacian at each point in the receptive field should produce a response
of zero) as follows:

O O O

L X f= (7)
0
Thus, we have two sets of equations imposing constraints on the

receptive-field reconstruction (Eqs. 2 and 7), and these can be combined
to form the following single equation that demands solution:

r

A
0

where A is a scalar “regularization parameter.” The solution of f is now
overdetermined, because the number of Laplacian constraints is equal to
the number of pixels, and the inconsistencies are resolved using singular
value decomposition to find a least-squares solution (Press et al., 1992).
The parameter A determines the relative weight to be given to the a priori
(smoothness) and a posteriori constraints (actual responses to pictures)
where they conflict. Simulation shows that the value of A needed for a
good solution depends on many factors, such as the number of pictures
that evoked a response, the magnitudes of those responses, and the vari-
ability of response (Willmore, 2002). It is also (arbitrarily) affected by the
fact that the Laplacian (Eq. 6) ranges in value from —1 to 4 and has a total
sum-of-squares of 20, whereas each picture ranges from 0 to 255 and has
atotal sum-of-squares of >107. The effects of changing the value of A are
illustrated in Figures 4 and 5, along with a method for choosing a near-
optimal value.

Fourier spectral analysis of receptive-field maps. We applied a two-
dimensional Fourier transform to each of our receptive-field map esti-
mates to determine the dominant orientation and spatial frequency.
First, each map was windowed using the Welch formula to avoid edge
effects (Press et al., 1992). To increase resolution, the 50 X 50 element
receptive-field map was embedded in a 500 X 500 array of zeroes before
the Fourier transform. In most cases, the spectrum contained one major
localized feature, and the dominant orientation and spatial frequency
were taken as those of the coefficient with greatest magnitude. We fitted
single Gaussians centered on the best orientation and spatial frequency
separately to estimate the two bandwidths. In some cases, the spectra
were not “clean” enough to make such fitting worthwhile.

Evaluation of correlation coefficients between actual and predicted re-
sponses to natural scenes. We compare the magnitudes of the measured
responses to natural scenes with the values predicted by the estimated
receptive field. Graphs measured against a predicted response (see Fig. 7)
show considerable scatter, and the correlation coefficients are not always
high. We tried to determine how much of the scatter is attributable to the
failure of the receptive-field model and how much is attributable to the
inherent response variability of simple cells (Tolhurst et al., 1981, 1983;
Vogels et al., 1989; Geisler and Albrecht, 1997). For comparison with real
experimental data, we simulated the effects of response variability on the
expected correlation coefficients. First, a theoretical noise-free response
of each neuron to each picture fragment was calculated as the dot product
of the estimated receptive field with the picture. The noise-free estimate
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Figure1. A, Schematicillustration of the protocol for presentation of digitized pictures. Each

picture was presented for 100 msecand then replaced for 170 msec by a blank screen of medium
gray (mean of brightest and darkest luminance) before the next picture was presented. Re-
sponses consisted of trains of action potentials, generated either at stimulus onset (first and
third picture) or at offset (second picture). B, In most experiments, a sequence of 500 pictures
was presented =10 times. The graphs show the responses of one simple cell (f32609) to the 10
repetitions of pictures 300-350. The onset responses for each stimulus are shown directly
above the offset responses for the same stimulus. The area of each square shows the number of
action potentials generated. The largest square represents 17 action potentials.

was then taken as the parameter of a Poisson distribution. For each
picture presentation, one instance was chosen from the Poisson distribu-
tion to represent the actual noisy response. For pictures that were re-
peated =10 times, =10 simulated responses were averaged. The noisy
predicted responses were plotted against the noise-free theoretical pre-
diction, and the correlation coefficient was calculated to show the highest
coefficient that could reasonably be expected from each neuron.

Results

We examined the responses of 25 simple cells in ferret V1 to 100
msec of flashed presentations of digitized monochrome photo-
graphs of natural scenes, including pictures of ferrets and terrain
seen from a ferret’s viewpoint. Typically, each cell responded to a
relatively small proportion (sometimes <5%) of the pictures pre-
sented, as found by previous studies (Baddeley et al., 1997; Gal-
lant et al., 1998; Vinje and Gallant, 2000) and as expected from
modeling of Gabor-like simple-cell receptive fields (Field, 1994;
Willmore and Tolhurst, 2001). The cells responded either at the
onset or offset of effective pictures but not both. When the same
pictures were presented repeatedly, the cells responded consis-
tently, but the responses were subject to variability (Fig. 1B).
From the responses to the pictures, we attempted to deduce the
spatial receptive-field structure of the cell and determine whether
the responses of the cells to these spatially complex natural scenes
were consistent with their responses to simple sinusoidal
gratings.
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Figure2. The top row shows the reverse-correlation (Revcorr) feature maps of five simple cells. Each represents the two-dimensional spatial organization of those features in the natural scenes
that evoked responses from the cells. The sides of the square maps measure 14.3° (4), 21.5° (B), 28.7° (C), 59.4° (D), and 28.7° (E). Most cells were like those shown in A-D, having a pronounced
orientation in their maps. Two cells (including that shown in £) failed to show a feature map, and they were discarded from all additional analysis. The second row shows the two-dimensional Fourier
amplitude spectra of the reverse-correlation maps. The brighter the pixel, the greater the magnitude of the Fourier coefficient. The spectra are effectively polar plots with the origin in the center of
the representation. Feature orientation is coded in the orientation (6) of a diameter through the origin; radial distance from the origin represents spatial frequency (f). The square spectra measure
the following radii from the center: A, +0.7°" " B, +0.47°" ", (, +035°~; D, +0.177°" ", £, +035°"".
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Reverse correlation

A powerful method for determining receptive-field structure is to
determine the responses to a large number of presentations of
different spatial noise patterns (Marmarelis and Marmarelis,
1978; Reid et al., 1997). The receptive field is then reconstructed
by reverse correlation; the stimulus patterns are added together
and weighted in proportion to the response that each evoked (Eq.
4). Figure 2 shows some examples when the same procedure is
performed, by analogy, on our results: the stimulus pictures were
added together and weighted in proportion to the responses that
each evoked. Reverse-correlation maps are shown for five simple
cells in the top row. They are represented as gray levels; bright
areas suggest excitatory (ON) receptive-field regions, whereas
dark areas suggest inhibitory (OFF) receptive-field regions.
Other maps are shown in Figs. 4 and 6.

In four of the examples (Fig. 2A-D), the reverse correlation
(or response-weighted average) of the pictures shows a relatively
distinct feature consisting of ON and OFF regions. The features
show an obvious elongation and orientation, as would be ex-
pected if these features represented the elongated orientation-
specific receptive fields of the simple cells. The second row shows
the two-dimensional Fourier amplitude spectra of the reverse-
correlation maps as gray-level representations of the magnitudes
of the Fourier coefficients (see legend to Fig. 2). For Figure 2A-C,
the spectra show a primary pair of features reflected about the
origin. These localized spectral features seem to reflect the limited
orientation and spatial-frequency response of simple cells (cf. De
Valois et al., 1982; Jones et al., 1987). These maps and their spec-
tra show that the cells responded primarily to features in the
pictures that had a specific location, specific orientation, and
specific bright-dark polarity. In other maps, it is possible to dis-
cern some specific elements of just a few of the pictures, as if the
reverse correlation has been dominated by the responses to these
very few pictures (see Fig. 6C,D).

The result for the cell shown in Figure 2 E is different. There is
no sign of any discrete excitatory or inhibitory features in the top
reverse-correlation spatial map, and the Fourier spectrum is dif-
fuse and featureless. There is no clue in these data as to which
features in the pictures may have evoked responses from this cell.
The cell had all of the properties of a typical simple cell (see
Materials and Methods) in its responses to sinusoidal gratings,

and its responses to natural images were selective and reliable. We
have no explanation for the failure of reverse correlation to sug-
gest any features in this case. The reverse-correlation map is a
very coarse indicator of the linearity of spatial summation; any
cell producing no reverse-correlation map must have grossly
nonlinear behavior and would not be susceptible to our basically
linear method. One other cell similarly failed to give a reverse-
correlation map; both of these cells were excluded from addi-
tional analysis. Although these cells may prove to be the most
interesting to study, by providing a behavioral difference between
artificial and natural stimuli, we leave such investigations to ad-
ditional studies using more advanced experimental and analytical
tools.

Thus, in most cases, reverse-correlation maps resemble the
oriented receptive fields of simple cells, and the Fourier spectra of
the maps resemble the very restricted response spectra of simple
cells. The question therefore arises as to how similar these
reverse-correlation parameters are to those of the actual cells. The
circles in Figure 3A show the responses of the simple cell in Figure
2B to gratings of different orientations; the cell responded to a
narrow range of orientations just off horizontal (180°). The dot-
ted curve shows the orientation tuning derived from the reverse-
correlation map: the magnitude of the spectrum along a circle
drawn through the coefficient with the largest magnitude. The
curve peaks within 15° of the grating orientation that evoked
the largest response from the cell. However, the bandwidth of the
dotted curve is considerably greater than the orientation tuning
curve of the cell. Figure 3B plots the orientation of the dominant
coefficient in the spectrum of the reverse-correlation map against
the optimal orientation of sinusoidal grating for the 23 simple
cells for which a reverse-correlation map was obtained. With few
exceptions, the dominant orientation of the reverse-correlation
map is very close to the preferred grating orientation of the cell,
and the least-squares regression (solid line; r = 0.91; n = 23) is
very close to the line of equality (dashed line).

The circles in Figure 3D show the responses of the simple cell
in Figure 2 B to sinusoidal gratings of different spatial frequen-
cies. The dotted curve shows the spatial-frequency bandpass of
the reverse-correlation map: the magnitudes of the coefficients
in the spectrum along a radius drawn through the coefficient with
the greatest magnitude. The dotted curve peaks more than an



Smyth et al. ¢ Simple-Cell Receptive Fields from Natural Scenes

1 11D
_’g 0.8 _g 0.8
Eo.s E‘ 08
B B |
g | (]
- 04 > 04
!
202 0.2
= ~
100 150 200 10 107 107 10°
Orientation (deg) Spatial frequency (c/deg)

225 5 10°
=~ |B o E
® . —
180 ®
= 8
8 3
§135 3

Q

] g
g 810

x E
-1 o
£ h
24 5
2 &
g 0 £104
& 0 45 90 135 180 225 102 10°

Best orientation - gratings (deg)

c ” § ) "
= 8| C I B F o it
2 ° 8 o o
2 e k) e

00 o R ~ R
gef 0 © - g 4 S
g ol ° 2 ®
- = o P
o o K X
? 40 o " é o o ','
2 %0 o
20 . 3§ )
g o ] 7
g ‘ g
5 2 9
S 20 40 60 B0

Orientation BW - gratings (deggo SF bandwidzlh - grating: (c/deg)
Figure3. Comparison of the properties of the reverse-correlation maps with the preferences
for sinusoidal gratings. 4, The circles and connecting solid lines show the responses of cell
31205 (Fig. 2 B) to sinusoidal gratings of different orientations but near-optimal spatial fre-
quency. The dotted curve is the orientation bandpass of the main spectral feature in the two-
dimensional Fourier transform of the reverse-correlation map. The smooth curve and the grat-
ing responses are normalized to a peak value of unity. B, The dominant orientation in the
spectrum of the reverse-correlation map is plotted against the optimal orientation of sinusoidal
grating for 23 simple cells. The continuous line here and in G, £, and F is the least-squares
regression, whereas the dashed line is the line of equality. C, The orientation bandwidth (BW)
(full width at half height) of the spectra of the reverse-correlation maps is plotted against the
bandwidth of the orientation tuning curves measured with gratings (n = 16).D, The circles and
connecting solid lines show the responses of cell f31205 to sinusoidal gratings of different
spatial frequencies at the best orientation. The dotted curve is the spatial-frequency bandpass
of the main spectral feature in the two-dimensional Fourier transform of the reverse-correlation
map. £, The dominant spatial frequency (SF) in the spectrum of the reverse-correlation map is
plotted against the optimal spatial frequency of sinusoidal grating for 23 simple cells. £, The
spatial-frequency bandwidth (octaves full width at half height) of the spectra of the reverse-
correlation maps is plotted against the bandwidth of the spatial-frequency tuning curves mea-
sured with gratings (n = 11).

octave below the preferred spatial frequency of the cell, and its
bandwidth (in log units or octaves at half height) is much broader
than the actual tuning curve of the cell. Figure 3E plots the dom-
inant spatial frequency in the spectrum of the reverse-correlation
map against the preferred spatial frequency of sinusoidal grating
for the 23 simple cells. The dominant frequency in the reverse-
correlation map is consistently lower than the true preferred grat-
ing frequency. The regression (solid line; r = 0.64; n = 23) lies 0.5
log units (1.6 octaves) below the line of equality (dashed line).
Figure 3, C and F, plots the orientation and spatial-frequency
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bandwidths of the two-dimensional Fourier spectra of the
reverse-correlation maps against the bandwidths that were actu-
ally measured for gratings, for those cells in which the two-
dimensional Fourier transform contained a well defined domi-
nant feature that could be fitted (such as those in Fig. 2A-D). As
for the single-cell example in Figure 3A, both the orientation and
frequency bandwidths of the reverse-correlation maps are sub-
stantially broader than those actually measured with gratings.

Thus, simple reverse correlation reveals the preferred orienta-
tions of the cells (cf. Smyth et al., 1999; Theunissen et al., 2001;
Ringach et al., 2002) but systematically underestimates the pre-
ferred spatial frequencies of the cells and overestimates their tun-
ing bandwidths.

Receptive-field reconstruction with

regularized pseudoinverse

In the experiments, we presented a set of picture stimuli to a
neuron and recorded a set of noisy responses. We used a regular-
ized pseudoinverse method (see Materials and Methods) to esti-
mate the receptive-field map that describes the linear portion of
each response of the cells. This incorporates a simple a priori
constraint: the sensitivity of the receptive-field estimate should
change smoothly as a function of two-dimensional location
within the receptive field (Eq. 8). This constraint reduces the
noise in the receptive-field estimates, increasing the spatial reso-
lution possible from the limited number of stimulus
presentations.

Figure 4 compares receptive-field reconstructions and their
two-dimensional Fourier spectra performed with reversed corre-
lation and the regularized pseudoinverse methods. Fields are
shown for three cells and five different values of the regulariza-
tion parameter A. This parameter balances the constraints of re-
sponse prediction and smooth receptive fields. For most values of
A, the major features in the pseudoinverse spectra are at the same
orientation as those in the reverse-correlation spectra, but they
are farther from the central origin (i.e., the dominant frequencies
are higher in the pseudoinverse maps because the ON and OFF
subregions are smaller and tighter together).

For the cell in Figure 4A (£31205), the regularized pseudoin-
verse has produced a receptive-field map with distinctly localized
parallel ON and OFF regions, and the Fourier spectrum shows a
clear, highly localized feature. This is the case for most values of A
illustrated. When A is low (Fig. 4, column 1 of the Reginv maps),
there is obvious spatial noise obscuring the field, and this is re-
flected as a diffuse pattern in the Fourier spectrum. Here, the
solution to the pseudoinverse is dominated by the actual (noisy)
responses to the pictures; the system of equations is underdeter-
mined and badly affected by the inconsistencies resulting from
response variability and probably from nonlinearities of spatial
summation. When A is high (Fig. 4, columns 2—4 of the Reginv
maps), the smoothness constraint becomes more dominant so
that the field seems larger and more blurred. Similar behavior is
seen with the cell in Figure 4 B (£32610). For the cell in Figure 4C
(f39101), localized and credible fields are again seen in the recon-
structions, although these tend to be badly obscured by noise at
low A values, and the spectral features are less obviously highly
localized. At the three second-to-highest A values, the fields have
consistent orientation, and localized spectral features emerge at
fixed orientations. If A is increased much higher (Fig. 4, column 5
of the Reginv maps), then the smoothness constraint dominates
too much and the reconstructions become homogenous blobs of
only one polarity, obviously bearing little relation to real recep-
tive fields.
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the reverse-correlation map (Revcorr) and its two-dimensional Fourier transform, as in Figure 2 (cell in A is the same as Fig. 2 B). For each cell, receptive-field maps (Reginv) are shown after
calculation with five different values of the regularization parameter A, with their two-dimensional Fourier spectra below. When A is relatively small (left), the fields are dominated by high
spatial-frequency noise; when A is relatively high (center), there is less noise but the fields seem blurred. However, a basic localized and oriented map is visible in all of the reconstructions, and a
localized spectral feature is also clearly discernible. When A is very high (right), the map becomes very blurred, loses the localized features, and is dominated by one polarity. A, The receptive-field
maps are 21.5° square; the Fourier transforms measure =0.70°~ " square. B, The receptive-field maps are 28.7° square; the Fourier transforms measure +0.52°~ " square. C, The receptive-field

maps are 19.8° square; the Fourier transforms measure =0.76°" " square.

It can be seen from the receptive-field maps and the orienta-
tion of the paired localized features in the spectra that the domi-
nant orientations of the receptive fields are primarily unaffected
by changes in A, and this confirms that it is relatively easy to
extract the orientation of the receptive field from the responses to

natural scenes. However, the dominant spatial frequency in the
reconstructed fields does depend on A. Because the parameter A
controls the level of spatial smoothing in the map, the most sen-
sitive tuning measure is the peak spatial frequency. Other mea-
sures, such as orientation preference, orientation half-width, and
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spatial-frequency bandwidth are less sensitive. This dependency
is shown for the same three cells in Figure 5 in which the domi-
nant spatial frequency in the reconstructed field is plotted against
the value of A. The dashed lines show the optimal spatial fre-
quency determined from the responses to moving sinusoidal
gratings and, for comparison, the dotted lines show the rather
lower estimates of optimal spatial frequency derived from
reverse-correlation maps. In general, the dominant spatial fre-
quency falls as A increases, so that there is a choice as to which
field we should take as the solution to the problem of deducing
the field from the responses to natural scenes. However, in Figure
5, A and B, there is a range of A in which the dominant spatial
frequency changes little (between 10*and 10° for A and 10> and
10° for B). We have accepted the best field reconstructions as
those with A values in the midpoints of such plateaus. This mid-
point is a compromise between the noisier spatial maps at lower
values of A and weaker response predictability at higher A values.
In most cells, the eye could identify a plateau, but we acknowl-
edge that there is a subjective component to this approach. In
contrast, the cell in Figure 5C shows no convincing plateau region
from which we could choose the receptive-field reconstruction. It
also responded optimally to a particularly high spatial frequency
of sinusoidal grating, and our failure to find a convincing field
may be because the pixelation in the stimulus pictures was too
coarse.

Figure 6 illustrates the receptive-field reconstructions and
their two-dimensional Fourier spectra for an additional six sim-
ple cells. These show that the fields were not always a clean set of
parallel ON and OFF regions, and that the spectra did not always
consist of a single reflected pair of discrete features. In some cells,
the regularized pseudoinverse produced a spectrum with two
features representing orientations at right angles (Fig. 6 B), and
sometimes the spectrum was quite diffuse (Fig. 6C—F), although
a dominant feature could usually be discerned. Although the Ga-
bor model is traditionally used to describe simple-cell receptive
fields, it is important to point out that only Figure 6 A fits this
description. The other examples do not fit such a model, because
they are either spatially diffuse or their spectrum implies energy
at more than one dominant orientation.

The examples in Figure 6, C and D, are interesting in that the
cells responded very sparsely, so that the reverse-correlation
maps show clear “ghosts” of single pictures (C shows a child’s
face). The cell in Figure 6C evoked only 231 action potentials in

the entire experiment of 10 repetitions of 500 pictures; 25% of
those action potentials were in response to only 3 of the 500
pictures, and an additional 25% of the action potentials were in
response to only 10 additional pictures (Fig. 7D). The regularized
pseudoinverse has produced credible fields without ghosts from
the same response data. The reverse correlation is based on only
the very few pictures in which a response was actually generated,
whereas the pseudoinverse must also account for why so many
(>400) pictures failed to evoke a response. It is also worth point-
ing out that although some cells appeared to produce their best
RF reconstructions with repeated stimuli, others needed 5000
different stimuli. Although this lack of conformity is undesirable,
it can be understood in terms of the compromise between cover-
ing a sufficient subspace of natural scenes to trigger all relevant
properties of the RF and averaging response variability across
repeats to avoid the effects of misleading noisy responses on the
reconstruction process.

Of the 25 simple cells that we recorded, two were not consid-
ered because their reverse-correlation maps had shown no sign of
receptive-field structure (Fig. 2E), suggesting their responses
were strongly nonlinear. Two additional cells did not produce
regularized pseudoinverse maps, although they had produced
reverse-correlation maps. For the remaining 21 cells, the domi-
nant orientation in the regularized pseudoinverse reconstruction
was robust over a very wide range of A values. Eighteen of these
cells showed a convincing plateau in the graph of dominant spa-
tial frequency plotted against A (Fig. 5A); the spatial-frequency
tuning of the other three could not be evaluated. For many of the
21 orientation cells and 18 spatial-frequency cells, it was possible
to estimate the bandwidths of the features dominating the Fou-
rier spectra of the pseudoinverse maps (see Materials and
Methods).

Evaluation of the reconstructed receptive fields
Responses to pictures
Receptive-field reconstructions can be used to predict the relative

response to any given picture, and this can then be compared
with the actual neuronal response for that picture. For four of the
simple cells illustrated in earlier figures, Figure 7 shows how well
the best regularized pseudoinverse receptive-field reconstruc-
tions account for the responses to the pictures. Note that the
value of A chosen for the best reconstruction was determined
from the examination of the relative invariance of their Fourier
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spectra and not from a desire to provide a good fit to the actual
picture responses. Indeed, we would expect better fits in the latter
respect from the lowest A values. For the four cells, the recon-
structed fields provide convincing predictions of the responses to
individual pictures. There are few data that lie away from the
main diagonals. The correlation coefficients are high (Table 1,
column 4).

The excellent fits may, at first sight, suggest that the simple-
cell responses to natural scenes have been determined only by
linear summation processes. However, the predicted responses
do show a nonlinear relationship to the actual responses. This is
particularly clear in Figure 7, B and C, in which the actual re-
sponses at the extremes of the distribution deviate from the pre-
dicted straight line and may reflect the known threshold or ex-
pansive response nonlinearity of V1 neurons (Tolhurst et al.,
1981; Albrecht and Hamilton, 1982; DeAngelis et al., 1993; Gard-
ner et al., 1999). One consequence of this nonlinearity will be to
increase the sparseness of responses from a purely linear model
(Baddeley et al., 1997; Vinje and Gallant, 2000). Furthermore, we
would not expect perfect correlations because of the well known
response variability of cortical neurons. Figure 7E shows the cor-
relation coefficients between actual and predicted responses to
the pictures for all 21 cells. Many of the correlation coefficients
are high, like those for the four cells illustrated in Figure 7A-D.
We expect lower correlation coefficients for some cells, especially
those for which picture presentations were not repeated or few
pictures contributed to the receptive-field estimates. Figure 7F
accounts for this by showing the actual correlation coefficients

divided by the highest coefficient that we expected after simulat-
ing the experiments (see Materials and Methods). The ratio is
high and close to 1 for most cells, implying that our receptive-
field estimates account for much of the variability in the data. Six
cells have a relative correlation of <0.5; it may be that these
represent genuinely poor fits, or that the responses of these cells
were substantially more variable than the Poisson noise that we
modeled.

Our simulations assumed that response noise is Poisson, al-
though many V1 cells have greater variability (Table 1, column
3). Thus, for some cells, the expected correlation between pre-
dicted and measured responses should have been less than we
found. The picture-response data may have been overfitted, and
noise and nonlinear behavior may have been approximated with
a linear solution, perhaps by introducing features outside the
spatially localized CRF or by introducing spectral features outside
the single quasi-Gaussian feature that was expected. Some of the
fields and spectra in Figure 6 do show features that would not be
expected from a simple CRF and its spectrum. For instance, Fig-
ure 6D shows a cell that seems to have two receptive fields,
whereas Figure 6 B shows a cell that has two pairs of features in its
spectrum. However, there are some important kinds of nonlin-
earity that the method would be unable to approximate with a
linear solution (e.g., the identical responses of complex cells to
bright and dark stimuli).

Table 1 examines to what extent the picture responses may
have been overfitted in four cells that we have used as examples
throughout. Column 11, shows what percentage of the total data
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Figure 7.  A-D plot the predicted responses to pictures against the actual responses. The
predictions were taken as the dot product of the picture with the best regularized pseudoinverse
reconstruction; the best value of A had been determined (as in Fig. 5) by examining the stability
of the two-dimensional Fourier spectrum of the field. Negative values of actual responses are
offset responses. The dashed lines are the lines of equality. Some statistics of these fits are
shown in Table 1. A, Same cell as in Figures 28, 34, D, 4 A, and 5A. B, Same cell as in Figures 4B
and 58. C, The stimuli presented to this cell were not repeated, so the actual responses are all
integer spike counts. D, Same cell as in Figure 6C. £, Pearson’s correlation coefficient between
the actual and predicted responses to pictures is shown for 21 simple cells. F, The relative
correlation is shown for the same 21 cells. The relative correlation is the actual correlation
coefficient (£) divided by the correlation coefficient in a simulated experiment in which the
linear responses of the fitted field are presumed to be affected by Poisson response noise.

variance can be explained by the best pseudoinverse reconstruc-
tion; the balance must be attributable to response noise and un-
fitted nonlinearities. Column 12 shows how much of the data
were explained when the reconstructed field was windowed to
exclude the space outside the localized features that we presume
represent the CRF. Column 13 shows how much of the data can
be explained when the Fourier spectrum of the field is windowed
to include just the single feature that is most like the spectral
tuning of a simple cell measured with gratings (De Valois et al.,
1982; Jones et al., 1987). Windowing in space and windowing the
spectrum might not be exclusive in removing overfitted spatial or
spectral features. In all cases, although to different degrees, the
quality of the fit is decreased by excluding parts of the reconstruc-
tion outside the CRF or the “classical spectral tuning.” It is pos-
sible that the regularized pseudoinverse method has used space
outside the CRF to fit noise or nonlinearities in the neuronal
responses, but the nonlinear processes may actually originate
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from these specific locations (Walker et al., 1999; Vinje and Gal-
lant, 2000).

One of the implications of these results is that the traditional
Gabor model of the receptive fields should be weaker. Although
columns 7-10 of Table 1 show that orientation and spatial-
frequency peaks from the Reginv and Gabor kernels are similar,
column 6 shows that the correlation between the actual responses
and the best Gabor-fit to the response data is always less than that
between the actual responses and Reginv-predicted responses
listed in column 4.

Responses to gratings

It may not be a surprise that a field reconstruction on the basis of
the responses to pictures is capable of explaining those responses.
Therefore, it is important to ask whether the same field recon-
structions can explain the responses to a different set of stimuli
altogether. The circles in Figure 8 A show the responses of the cell
in Figure 4 A (the same as Fig. 3A) to gratings of different orien-
tations. The dotted curve shows the orientation bandpass of the
reverse-correlation map, replotted from Figure 3A. The dashed
curve is the bandpass of the receptive-field reconstructed by the
pseudoinverse method using a A value in the middle of the pla-
teau range, in which the dominant spatial frequency did not
change much. This curve is an excellent fit to the actual grating
responses of the cell. Not only is the peak orientation close to the
true one, but the bandwidth is also now as narrow as the true
orientation tuning curve of the cell. Figure 8 B plots the optimal
orientation predicted from the best reconstructed receptive-field
map against the true optimal orientation for all 21 simple cells.
The correlation coefficient is very high (r = 0.96; n = 21), and the
regression line is almost identical to the line of equality.

The circles in Figure 8 D show the responses of the same cell as
a function of the spatial frequency of sinusoidal gratings. The
dotted curve is the badly fitting bandpass of the reverse-
correlation map, replotted from Figure 3D. The dashed curve is
the bandpass of the best regularized pseudoinverse field recon-
struction. The curve is a near-perfect fit (the fits in other cells
were not always as good). In particular, the optimal spatial fre-
quency predicted from the receptive-field reconstruction is very
close to the true optimum, and the bandwidth of the curve is close
to the true bandwidth. Figure 8 E plots the optimal spatial fre-
quency predicted from the best reconstructed receptive-field
map against the true optimal spatial frequency for the 18 cells for
which we could convincingly choose the best field (Fig. 5). The
correlation is again high (r = 0.89; n = 18) and, unlike the case
with the reverse-correlation maps (Fig. 3E), the regression line
(solid line) is close to the line of equality (dashed line). The
spatial-frequency optima derived from natural scene stimulation
are lower than those derived from gratings by only 0.072 log units
(0.24 octaves). This may reflect a small but genuine difference in
tuning under the two conditions; however, it may be an artifact
resulting from a slightly conservative choice of A or from the
finite size of the pixels in the stimuli (Tadmor and Tolhurst,
1989).

Figure 8, Cand F, shows the orientation and spatial-frequency
bandwidths of the best pseudoinverse maps, plotted against the
bandwidths of the tuning curves actually measured with gratings.
Compared with reverse correlation (Fig. 3C,F), the predicted
bandwidths are now more nearly the same as those actually mea-
sured. However, the predicted orientation bandwidths in partic-
ular are still systematically a little greater than the true ones mea-
sured with gratings; this is the expected effect of an expansive
output nonlinearity (Gardner et al., 1999). We might expect a
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Table 1. Quality of receptive-field fits for four cells illustrated in Figures 3-7
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Correlation coefficient Kernel parameters Sum-of-squares deviation
1 2 3 4 5 6 7 8 9 10 n 12 13
Cell ID Rsps V/IM Actual Bound Gabor Or.R. Or.G. SER. SF.G Reg. Spat. Spec.
131205 4276 0.8 0.89 0.96 0.82 160 161 0.1 0.1 76% 63% 69%
132610 1531 3.58 0.81 0.89 0.7 176 7 0.15 0.13 65% 51% 45%
31008 359 0.81 0.96 0.7 165 163 0.13 0.09 66% 44% 55%
132203 231 1.56 0.62 0.75 0.45 172 172 0.07 0.06 39% 16% 20%

The total number of action potentials generated in each experimentis shown (column 2), along with the ratio of the response variance to mean response for the 50 pictures giving the greatest mean response to the 10 —12 repetitions (column
3). For cell 31008, each picture was presented only once, so no variance measure is available. The actual correlation coefficient between the measured and predicted responses to pictures (column 4) is compared with the upper bound
(column 5) if the field had been a perfect reconstruction corrupted only by Poison response variance, in which response variance equals the response mean (but see column 3). Column 6 shows the correlation coefficient between the actual
responses and those predicted from the best Gabor-fitted receptive-field map. Columns 7— 8 show the peak orientation derived from the Reginv and Gabor kernel estimates, whereas columns 9 —10 show the peak spatial frequency from the
Reginv and Gabor kernels. Columns 11-13 show the sum-of-squares deviation between the measured responses and those predicted by three different models (Reginv kernel, spatial window, spectral window) as percentages of the total
sum-of-squares of the measured response values. The models are described in Results. Rsps, Responses; V/M, variance to mean ratio; Or.R., Reginv peak orientation; Or.G., Gabor peak orientation; SF.R., Reginv peak spatial frequency; SF.G.,

Gabor peak spatial frequency; Reg., Reginv; Spat., spatial; Spec., spectral.

similar effect in the spatial-frequency bandwidths. The fact that
the bandwidths are actually consistent with those measured with
gratings may reflect a conservative choice of the regularization
parameter A (as was also suggested by the slight underestimation
of optimal spatial frequency). In general, the simple-cell receptive
fields reconstructed using the regularized pseudoinverse are in
excellent agreement with the major aspects of the orientation and
spatial-frequency tuning of the responses of the cells to sinusoidal
gratings.

Some previous studies have compared the tuning of spatial
receptive fields with that derived from sinusoidal gratings by fit-
ting Gabor functions to the RF structure (Jones and Palmer,
1987a; Ringach, 2002). When we fitted Gabors to maximize re-
sponse predictability, we found that the spatial frequency optima
of the Gabors were indeed well correlated to the spatial frequency
optima derived from sinusoidal gratings (r = 0.89; n = 21), a
similar relationship compared with that found with Reginv. Sim-
ilarly, the optimum was consistently underestimated with Gabors
by 0.070 log units (0.23 octaves) when compared with the pre-
ferred grating.

Discussion

We have shown that standard reverse correlation can recover
estimates of the receptive-field maps of simple cells in V1 from
their responses to relatively small numbers of natural scene pre-
sentations. Although these maps are strongly biased toward low
spatial frequencies, they do give estimates of the orientation pref-
erences of cells that are in close agreement with the preferences
measured with moving sinusoidal gratings.

More importantly, we have presented a novel application of
the regularized pseudoinverse that allows recovery of receptive-
field estimates with high spatial resolution and is theoretically
accurate in both spatial frequency and orientation (Willmore,
2002). Comparison with the tuning curves measured with grat-
ings shows that, in many cases, the tuning of simple cells in re-
sponse to natural scenes is compatible with their tuning in re-
sponse to gratings. However, the data cannot be completely
described using a linear model, suggesting that nonlinear mech-
anisms operate during natural vision.

Comparison with other methods

There are two ways of inferring RF structure from neuronal re-
sponse data. One can apply a parametric model, such as the Ga-
bor, which assumes selectivity to a single orientation bandpass
localized in space (Marcelja, 1980; Jones and Palmer, 1987a;
Ringach, 2002), or one can use a nonparametric approach, which
makes few assumptions about the exact spatial structure of the RF
map (Smyth et al., 2000; Ringach et al., 2002). Although the Ga-

bor model appears to predict tuning parameters very well, this is
not surprising, because those same parameters are an explicit
component of the fitting process. However, our nonparametric
approach can generate not only comparable fits to tuning param-
eters but also better predictions of response variance (Table 1).
This suggests that the Gabor model, although good, must in fact
be an incomplete description of the responses of the cells to nat-
ural images.

The regularized pseudoinverse is an efficient nonparametric
method for recovering linear receptive-field estimates (first-
order kernels) from limited numbers of neuronal responses.
However, other nonparametric methods exist. Theunissen et al.
(2001) have shown that it is possible to recover linear kernels by
using reverse correlation but then correcting the resulting spike-
weighted averages to remove the bias produced by using non-
orthogonal stimuli. Smyth et al. (2000) and Ringach et al. (2002)
used iterative methods that find least-squares solutions. All of
these methods offer accurate receptive-field estimation in princi-
ple, given very large numbers of stimulus presentations. They also
have the virtue that they make no a priori assumptions about the
receptive-field structure.

However, all assumption-free methods suffer because of neu-
ronal response variability, and the methods do not provide a way
to separate signal (receptive-field estimate) from noise (overfit-
ting of response variability). This effectively limits the receptive-
field resolution that can be produced from a given number of
stimuli. Thus, although these methods have quantified the orien-
tation tuning of cortical cells under natural stimulation, they
have not been able to reveal the spatial-frequency tuning. A direct
comparison of all of these methods was made previously using
simulated neurons under controlled conditions (B. Willmore
and D. Smyth, unpublished observations). In summary, the reg-
ularized inverse method described here produces more efficient
reconstructions than existing methods (Smyth et al.,, 2000;
Theunissen et al., 2001; Ringach et al., 2002).

The Laplacian-constrained estimation method that we have
developed is an example of a class of regularized solutions to
linear problems. Regularization involves incorporating a priori
information about the structure of the signal and noise, to reduce
noise while minimally corrupting the signal. The Laplacian-
constraint implements a minimal assumption that the true
receptive-field map is smooth on the scale of the stimulus pixels.
This assumption means that a more accurate receptive-field map
can be obtained from a given number of stimuli. This has enabled
us to show that, for many cells, the orientation and spatial-
frequency tuning characteristics under natural stimulation are
compatible with those for stimulation with drifting gratings.
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Figure 8.  Comparison of the properties of the reqularized pseudoinverse receptive-field
reconstructions with the preferences for sinusoidal gratings. Conventions are the same as in
Figure 3. A, The circles and connecting solid lines show the responses of cell 31205 to sinusoidal
gratings of different orientations but near-optimal spatial frequency. The dotted curve is the
orientation bandpass of the main spectral feature in the two-dimensional Fourier transform of
the reverse-correlation map (replotted from Fig. 34). The dashed curve, in comparison, is the
orientation bandpass of the main spectral feature in the best reqularized pseudoinverse recon-
struction. B, The preferred orientation predicted from the spectrum of the regularized pseudo-
inverse field is plotted against the optimal orientation of sinusoidal grating for 21 simple cells.
(, The orientation bandwidth (BW) (full width at half height) of the spectra of the best pseudo-
inverse reconstruction is plotted against the bandwidth of the orientation tuning curves mea-
sured with gratings (n = 19). D, The circles and connecting solid lines show the responses of cell
131205 to sinusoidal gratings of different spatial frequencies at the best orientation. The dotted
curve is the spatial-frequency bandpass of the main spectral feature in the two-dimensional
Fourier transform of the reverse-correlation map replotted from Figure 3. The dashed curve is
the spatial-frequency bandpass of the main spectral feature in the best reqularized pseudoin-
verse reconstruction. £, The preferred spatial frequency (SF) predicted from the spectrum of the
regularized pseudoinverse field is plotted against the optimal spatial frequency of sinusoidal
grating for 18 simple cells. F, The spatial-frequency bandwidth (octaves full width at half
height) of the spectra of the best pseudoinverse reconstruction s plotted against the bandwidth
of the spatial-frequency tuning curves measured with gratings (n = 14).

The regularized pseudoinverse is a general method for recov-
ering linear kernels from arbitrary stimulation and could be ap-
plied to many different classes of quasilinear neurons. The high
resolution of the method allows receptive fields to be estimated
either at a high level of detail over a large area of visual space or at
a large number of stimulus dimensions. A limitation of the tech-
nique is that it is only appropriate for receptive fields that are
approximately smooth; however, other related regularization
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Figure 9. A comparison of a simple-cell receptive field mapped conventionally with that
reconstructed from the responses to natural scenes; cell 31205 is the same as in many previous
figures. A, The receptive field was mapped with small bright and dark squares, with one side
parallel to the preferred grating orientation of the cell. In the gray-level representation, the
brightness of the bright squares shows the magnitude of response to the bright stimuli; the
darkness of the dark squares shows the magnitude of response to the dark stimuli. The separate
ON and OFF regions of the field are shown by the rectangular outline and the + and — symbols.
B, The raster shows the magnitude of the offset response to 10 repetitions of 40 of the 500
picture fragments presented. The cell responded especially well to the offset of picture fragment
340, which is shown in Cin relation to the conventionally mapped receptive field (shown by the
diagram redrawn from A). Dand £ show two picture fragments (332 and 321) that evoked good
onset responses. Fragment 332 (D) was drawn from the same larger original as fragment 340
(Q). F, The best regularized pseudoinverse field for this cell (Fig. 4 4) is shown in relation to the
conventionally mapped field (diagram redrawn from A). A and (—F measure 21.5° square.

methods are available (Press et al., 1992) that might provide con-
straints that are more appropriate for other classes of neurons.
Another limitation of the present method is that it can only
recover the first-order kernel, and therefore only describes the
linear part of the neuronal response. David et al. (1999), Theunis-
sen et al. (2001), and Ringach et al. (2002) have shown that by
applying nonlinear transformations to the stimuli, it is possible to
gain insight into the behavior of neurons that have simple non-
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linear behavior (e.g., cortical complex cells). Regularization
could be incorporated into these methods to improve their effi-
ciency. A more general approach would be to directly recover the
second-order Wiener kernels (Marmarelis and Marmarelis,
1978) using a regularized estimation method.

Linearity of responses to natural scenes

For most of the cells we analyzed, we could recover a linear kernel
that conformed to our expectations about the structure of
simple-cell receptive fields (Hubel and Wiesel, 1959; Jones and
Palmer, 1987a; DeAngelis et al., 1993; Ringach, 2002). Moreover,
the spatial frequency and orientation tuning predicted by these
receptive-field maps is compatible with the tuning measured with
drifting sinusoidal gratings. This suggests that most cells were
performing approximately linear summation (although this does
not exclude output nonlinearities) and they had roughly Gabor-
like receptive fields.

Simple cell 31205 (illustrated throughout this study) is a par-
ticularly strong example of this. For this cell, we mapped the
receptive field conventionally with small spots of light (Fig. 9A) to
reveal a single OFF region above a stronger ON region; this is
shown by the diagram drawn over the gray-level representation.
This cell responded strongly to the onset and offset of different
stimuli (Fig. 9B). Figure 9C shows one particular natural stimulus
(320). The cell responded very strongly to the offset of this image.
Figure 9C shows that one high-contrast dark-bright edge in the
picture fragment was almost perfectly oriented and aligned to the
border between the ON and OFF regions. The polarity of the edge
is complementary to the polarity of the ON and OFF regions, and
so an offset response was evoked. The preferred natural trigger
feature of the cell seems exactly what would have been predicted
from the conventional receptive field in Figure 9A. Figure 9, D
and E, shows other natural images that invoked strong responses
to the stimulus onset. Again, the stimulus profile in Figure 9D
clearly matches the receptive field, whereas that in Figure 9E is
less immediately obvious, because the cell is integrating across
several small features. Finally, Figure 9F shows the success of our
regularized pseudoinverse method in recovering that field. Note
how well it matches the conventional field (Fig. 9A) and optimal
stimuli (Fig. 9C-E).

Nonlinearities in the responses to natural scenes

In addition to cells that performed broadly linear summation,
our sample included some cells with responses that were poorly
described by the linear model and two cells that totally failed to
produce a reverse-correlation map. This suggests that, despite
being simple cells (as defined by their relative modulation), some
of these cells had strongly nonlinear behavior. This is consistent
with the recent suggestion (Mechler and Ringach, 2002) that the
strict classification of simple and complex cells in V1 may need
revision (cf. Dean and Tolhurst, 1983).

In addition, all of the cells in our sample show some nonlinear
behavior; even the highly linear cell of Figure 9 shows a clear
output nonlinearity (Fig. 7C). It is well known that simple-cell
responses are subject to thresholding (Movshon et al.,, 1978;
Schumer and Movshon, 1984; Tolhurst and Dean, 1987; Caran-
dini and Ferster, 2000) or half-squaring (Albrecht and Geisler,
1991; Heeger, 1992, Tolhurst and Heeger, 1997), which is evident
in our results. Indeed, this output nonlinearity is responsible for
mismatches in the predictions of grating responses from conven-
tional receptive-field mapping (Tadmor and Tolhurst, 1989;
Heeger, 1992; DeAngelis et al., 1993; Gardner et al., 1999; Lampl
et al.,, 2001). Future studies should compare the output nonlin-
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earities inferred from responses with gratings and natural scenes.
As with conventional mapping, the receptive fields that we recov-
ered from the responses to natural scenes systematically overes-
timate the orientation tuning bandwidths (Fig. 8C). It is surpris-
ing that the spatial-frequency bandwidths (Fig. 8 F) seem less
affected systematically, although we consider an explanation for
this in Results.

Our results also demonstrate more profound deviations from
the linear Gabor model of simple cells. First, many of the spatial
receptive-field maps that we have recovered (Fig. 6) show struc-
ture that is far outside the central receptive field of the cells. It is
likely that this structure reflects a linear approximation of the
effects of nonlinear contextual mechanisms, such as those found
using classical stimuli (Blakemore and Tobin, 1972; Nelson and
Frost, 1985; Bonds, 1989; Knierim and Van Essen, 1992; Walker
et al., 1999; Kapadia et al., 2000). Similarly, some of the Fourier-
space maps of the receptive fields (Fig. 6) show structure at or-
thogonal orientations, suggesting that the cells were influenced
by stimuli that lay outside their classical spectral tuning (DeAn-
gelis etal., 1992; Shevelev et al., 1994; Sillito et al., 1995). This may
primarily be the result of contextual mechanisms that have been
revealed by experiments with classical stimuli (Bonds, 1989).

However, it is also possible that these results reflect novel
nonlinear mechanisms that operate only under naturalistic stim-
ulation conditions. They may reflect optimizations of V1 for the
efficient coding of the information in natural scenes (Rao and
Ballard, 1999; Vinje and Gallant, 2000; Schwartz and Simoncelli,
2001), or perhaps specialization for some perceptual process such
as figure/ground segregation (Knierim and Van Essen, 1992;
Zipser et al., 1996; Northdurft et al., 1999) or contour integration
(Nelson and Frost, 1985; Kapadia et al., 2000). To investigate the
relative contributions of known and novel nonlinear mecha-
nisms, it will be necessary to investigate more closely the circum-
stances under which these mechanisms operate during visual
stimulation with more naturalistic temporal properties (Smyth et
al., 2002).
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