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Early Skill Learning Is Expressed through Selection and
Tuning of Cortically Represented Muscle Synergies
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The Neurosciences Institute, San Diego, California 92121

Skill learning may be based on integrating and adapting movement building blocks organized in the CNS. We examined at what level
integration and adaptation occur during early skill learning, the level of individual muscles, muscle synergies or combinations of
synergies through time, and whether these operations are expressed through the primary motor cortex (M1). Forelimb muscle and M1
cell activity were recorded over the first day of training on a reach-to-grasp task in rodents. Independent components analysis was used
to assess how well muscle activation patterns could be described as time-varying combinations of synergies. In 3 of 11 animals, prereach
M1 activity predicted the activation of different combinations of independent components (ICs) to perform the task. With training,
animals increasingly adopted postures and prereach patterns of M1 activity that supported activation of the more successful combina-
tion. With training, animals also adjusted the activation magnitude (6 of 11 animals) and weights (11 of 11) of specific ICs that constituted
the selected combination. Weights represent how IC activation patterns were distributed to forelimb muscles; this distribution pattern
was adapted with training. M1 cells (37 of 100) had task-related firing rates that were significantly correlated with IC activation patterns.
Changes in M1 firing rates were associated with corresponding changes in either the activation magnitude or weights of the correlated IC.
Our data suggest that early skill learning is expressed through selection and tuning of M1 firing rates, which specify time-varying patterns
of synergistic muscle contractions in the limb.
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Introduction
Motor skill learning may be based on integrating and adapting
movement building blocks organized in the CNS (Mussa-Ivaldi
and Bizzi, 2000). Muscle synergies represent one type of building
block. Synergies refer to task-dependent muscle groupings con-
trolled by the CNS as a single degree of freedom (Bernstein,
1967). Evidence for such modules is based on findings that sub-
jects scale, phase shift, combine, and reuse muscle synergies to
generate various behaviors (Grillner, 1981; Raasch and Zajac,
1999; Tresch et al., 1999; Kargo and Giszter, 2000a). A second
type of building block, termed motor program (Morris et al.,
1994), refers to the manner in which multiple synergies are acti-
vated through time in the absence of significant feedback effects.
CNS structures generating motor programs have been termed
pattern generators (Grillner, 1981) or internal controllers (Wol-
pert et al., 2001). Evidence for such modules is based on findings
that subjects scale, blend, and switch between discrete, tempo-
rally complex motor patterns (Wolpert and Kawato, 1998; Ear-
hart and Stein, 2000; D’Avella et al., 2003).

It is unclear how synergies and motor programs are integrated
and adapted at the onset of skill learning and where in the brain
such operations are expressed. The primary motor cortex (M1) is

an interesting structure with respect to this question because M1
is strongly engaged during motor learning (Pascual-Leone et al.,
1994; Kleim et al., 1998; Nudo et al., 1996; Karni et al., 1998; Wise
et al., 1998; Li et al., 2001; Muellbacher et al., 2002), encodes
muscle activations (McKiernan et al., 2000; Graziano et al., 2002;
Holdefer and Miller; 2002; Jackson et al., 2003), and contributes
to action selection (Kettner et al., 1996; Carpenter et al., 1999;
Laubach et al., 2000). To address the role of M1 in early skill
learning, we recorded patterns of forelimb muscle and M1 cell activ-
ity over the first day of training on a reach-to-grasp skill in rodents.
Learning this skill has been correlated with changes in M1 represen-
tations (Kleim et al., 1998), synaptic strengths (Rioult-Pedotti et al.,
1998, 2000), and synapse numbers (Kleim et al., 2002).

We hypothesized that early improvements on the reach task
occurred at the level of individual muscles, muscle synergies, or
motor programs. To test these alternatives, we used independent
components analysis to assess how well muscle activation pat-
terns could be described as time-varying combinations of syner-
gies. We determined whether animals increased the probability of
activating specific synergy combinations over time. We deter-
mined whether the timing or amplitude of synergies comprising
specific combinations were adapted. We also determined
whether synergy compositions were adjusted with training,
which supports individual muscle regulation. Finally, we exam-
ined how M1 firing rates were related to changes in muscle, syn-
ergy, and motor program activations. Our results provide evi-
dence for parallel mechanisms of early skill learning and for
expression of learning through task-related M1 assemblies.
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Materials and Methods
Animals and presurgical training. Eleven
Sprague Dawley rats weighing 240 –360 gm
were handled daily 1–3 weeks before surgery.
One week before surgery, animals were given a
restricted diet (two or three food pellets per
night) and trained to run back on a runway to
obtain sugar pellets (20 mg; Research Diets,
Inc.). One day before surgery, animals were
placed in a reach box that had a vertical opening
at one end and an outside attached tray
(Whishaw and Gorny, 1996). Pellets were posi-
tioned on the tray so rats could retrieve pellets
with the tongue. Subsequent pellets were placed
out of the reach of the tongue to force reaching.
After four or five consecutive attempts with the
right or left forelimb, rats were categorized as
right- or left-handed. Rats displayed clear
handedness in this task even at the earliest
stages of testing (Hyland and Jordan, 1997).

Surgery. Rats were anesthetized intraperito-
neally with Nembutal (50 mg/kg, i.p.) and sup-
plemented as needed for the remainder of sur-
gery with Isoflurane. The animal was placed on
a heated water pad. The breathing rate and re-
sponse to a tail pinch were assessed throughout
surgery to monitor the anesthesia level. Beta-
dine was applied to skin areas where two or
three small incisions were made on the forelimb
over target muscles. A single dose of cefazolin
(antibiotic, 22 mg/kg, s.c.) was administered.
Target muscles were implanted with a pair of
EMG wires (single-stranded, Teflon-coated,
stainless steel wire; A-M Systems, Inc.), which
had a hardened wax ball at one end preceded by
a 1–2 mm exposure under the ball. Wires were
inserted into the muscle belly and pulled
through until the ball came to rest on the belly. EMG wires were braided,
tunneled under the skin to a scalp incision, and soldered into pin con-
nectors. Fascia and skin incisions were closed with a suture. Ten to 12
muscles were implanted in each rat. The muscles included, from proxi-
mal to distal (primary anatomical functions in parentheses), cervical part
of the trapezius (scapular stabilization), cervical part of the pectoralis
major (shoulder adduction and flexion), clavicular part of the deltoid
(shoulder flexion), teres major (shoulder extension and internal rota-
tion), lateral head of the triceps (elbow extension and shoulder abduc-
tion), medial head of the triceps (elbow extension and shoulder exten-
sion), long head of the biceps brachii (elbow flexion and supination and
shoulder flexion), brachialis (elbow flexion), flexor carpi ulnaris (FCU)
and flexor carpi radialis (FCR) (wrist and finger flexion), and extensor
carpi ulnaris (ECU) and extensor carpi radialis (ECR) (wrist and finger
extension).

The fascia on the skullcap was removed; bleeding vessels were cauter-
ized; and the skullcap was dried with an etchant (3M; purchased through
Henry Schein). Bone screws were placed around the skullcap, and a
ground screw was placed 2–3 mm rostral and 1–2 mm lateral to bregma.
A small window spanning 2–5 mm lateral to bregma and 0 –3 mm rostral
to bregma was drilled through the skull. Dura covering the exposed
motor cortex (M1) was removed. An array of stereotrode microelec-
trodes (25 �m Teflon-coated tungsten wires twisted together, gold-
plated tips with 5–10 M� resistance) was stereotaxically placed over M1,
2.5 mm lateral and 1.0 mm rostral to bregma. The array was lowered 0.5
mm into M1, and the exposed window was filled with agarose (0.9% in
water). The array was then lowered slowly 1.1 mm to layer 5. The array
and EMG connectors were secured to the skull bone screws with dental
cement.

Correct placement of the array into forelimb M1 was assessed at the
end of training. Animals were anesthetized with ketamine (50 mg/kg)

and xylazine (10 mg/kg). A stimulus train (300 msec in duration, bipolar
pulses, 0.5 msec duration, 20 – 60 �A, 200 Hz) was delivered through
each wire, and evoked responses were observed. Stimulation through
most electrodes evoked forelimb responses and sometimes combined
forelimb–vibrissae (or face) responses. After stimulation, animals were
deeply anesthetized and perfused with 4% paraformaldehyde. Fixed
brain tissue was analyzed for the depth and site of electrode tips. Analysis
of brain tissue showed no evidence for obvious cortical damage, includ-
ing dimpling of superficial layers. Furthermore, mean learning curves
were comparable with other published data (Kleim et al., 1998; Bury and
Jones, 2002).

Data acquisition. Beginning 2 d after surgery, rats were exercised daily
on the runway task. EMG and array connectors were secured to the
amplifier deck via a tethered wire system. Each tether had a preamplifier
array (field-effect transistor; NBLabs, Denison, TX) to increase the
signal-to-noise ratio and an array of infrared diodes to track the head
position with an infrared camera at 60 Hz. EMG signals were filtered
(0.1–3 kHz), and amplifier gains were adjusted on the basis of on-line
computer displays to prevent signal saturation. EMG data were digitized
at 1–3 kHz and stored on a hard disk using custom-written software
(Matt Wilson, Massachusetts Institute of Technology, Cambridge, MA).
Signals from individual stereotrode wires were filtered (0.6 – 6 kHz), and
amplitude thresholds for triggering data collection (�5 msec) were indi-
vidually set for each wire. An amplitude-crossing event on one wire
triggered data collection for the stereotrode pair.

The reach-to-grasp training was initiated 5–7 d after surgery (see setup
in Fig. 1 A). A digital video camera was placed 15 feet away and perpen-
dicular to the long axis of the reach box. A second CCD camera was
placed 1 foot above the box and focused on the tray where the sugar
pellets were placed. Each camera recorded data at 30 frames or 60 fields/
sec. A piezoelectric strip (6 inches long, 1 inch wide, and 0.01 inch thick;
Measurement Specialties, Inc.) was placed on the tray. Voltage levels

Figure 1. A, Task setup. Rats reached through an aperture for sugar pellets. Data were recorded from stereotrode arrays in
motor cortex (1; M1), forelimb EMG electrodes (2), a piezoelectric strip (3; pellet contact), and a video camera (lateral, top views).
B, Example data for a reach trial. Top graph, Spikes from three M1 cells; middle graph, rectified EMGs (gray lines) and filtered EMGs
(black) from deltoid (top) and biceps (bottom); bottom graph, rectified piezoelectric voltage. PR, Period preceding reach onset
(reach onset was the onset of the deltoid EMG burst); R, period between reach onset and pellet contact (contact was the onset of
high amplitude piezoelectric activity); PC, postcontact period. C, Example of the shift predictor correction of cross-correlations
between firing rates of an M1 cell and EMGs. Left graph, Black line, Cross-correlation between time-matched cell activity and EMGs
at lags of�1.0 sec; gray line (75 superimposed lines), cross-correlation between time-shifted cell activity and EMGs (see Materials
and Methods). Right graph, Corrected cross-correlation after subtraction of the mean shift predictor (dashed lines, 95% confi-
dence intervals).
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across the strip were amplified, stored on a hard disk at 1–3 kHz, and
synchronized to EMG data. The piezoelectric strip was extremely sensi-
tive to small forces; therefore, it monitored precisely the time at which the
animal’s hand contacted the tray.

The following procedure was used to synchronize EMG and video data
approximately. The first video field in which the hand contacted the tray
was estimated and termed field 1. The onset of contact forces was termed
contact time 1 (in milliseconds). All video fields were transferred to a
hard disk (Sony Digital Video Editor) and were time-matched to EMG
data by the following: (field number � contact time 1)/field 1, where field
number is the current video field. In the present study, we did not at-
tempt to relate muscle activation to limb kinematics or dynamics in a
rigorous manner. This requires precise EMG motion synchronization
and high-speed film. The main aim of the present study was to quantify
how patterns of muscle activity and M1 activity change during skill learn-
ing. Thus, we monitored changes in a few key kinematic parameters (see
below) and related these changes to motor pattern changes.

On each day of training, animals were placed into the reach box. A
single pellet was placed on the outside tray. Successes and failures were
monitored on-line through manual key presses, which marked on EMG
records the timing of the event. A successful trial was one in which the rat
reached through the aperture, grasped the pellet, and retrieved and
brought the pellet to the mouth. Failures were reaches that missed, failed
to grasp, or dropped the pellet before reaching the mouth. After each
trial, rats were given 30 sec to 1 min before another pellet was placed on
the tray. This was to prevent sequential or overlapping reaching move-
ments and to encourage the rat to back away from the opening between
attempts. Each rat was given �100 –130 pellets/d (one session/d) for a
total of 10 d.

Data analysis. EMGs were analyzed off-line using Matlab (Math-
Works, Natick MA). Data for each training day (�30 – 60 min) were
parsed to provide 3 sec of EMG data before and after tray contact for each
reaching attempt. Parsed EMG records were rectified and filtered with a
40-point tapered boxcar filter (Kargo and Giszter, 2000b).

Four procedures were performed on EMG data: quantification of in-
dividual muscle EMGs, measurement of pattern similarity during train-
ing, decomposition of EMG patterns into underlying variables using
temporal independent components analysis (tICA) and discriminant
analysis of successful and failed patterns. Individual EMGs were analyzed
for peak amplitude, time of peak amplitude, and burst duration (half-
peak onset to half-peak offset) during the period 2.0 sec before and 2.0 sec
after tray contact. For muscles with multiple bursts of activity, burst
duration was determined for each identifiable burst. To analyze within-
day effects, we divided the day 1 training session into three successive
blocks with equal numbers of reaching attempts per block (�30 – 40
attempts per block). Paired t tests were used to test for significant differ-
ences in EMG parameters between (1) successes and failures, (2) first and
last thirds of successes, and (3) first and last thirds of failures on each day.

We calculated motor pattern similarity between the pattern of each
trial and the mean successful motor pattern. To calculate pattern simi-
larity, the EMG (rectified and filtered) of each muscle across the training
session was normalized to its peak magnitude so that a particular muscle
did not dominate the 12-dimensional EMG vector; e.g., EMG magni-
tudes might differ depending on electrode placement, signal-to-noise
quality, and muscle size, and small muscles might have large effects at-
tributable to having large moment arms or actions at the wrist and fin-
gers, which have smaller masses. Thus, at each time point of the reach (in
milliseconds), each muscle potentially contributed equally to a 12-
dimensional EMG vector. The 12-dimensional vector was then normal-
ized to a unit vector with magnitude of 1.0. This was done at each time
point from 2.0 sec before to 2.0 sec after pellet contact. We normalized
the EMG vectors because we were interested in whether the balance (or
ratio) of muscle activity at a particular time point during the reach
changed across the first day of training. The dot product was calculated
for time-matched unit vectors (e.g., EMG vector at 50 msec for trial 1 �
mean EMG vector at 50 msec, where � refers to the dot product operator).
A dot product of 1.0 represents perfect similarity between vectors, and
–1.0 represents oppositely pointing, or most dissimilar, vectors. In addi-
tion to comparing muscle balance across time, we determined the mag-

nitude of the (un-normalized) EMG vector across time and compared
magnitudes between failures and successes and between early- and late-
reaching blocks.

EMG patterns for the first day of training were decomposed into a
plausible set of underlying synergies using tICA. In its simplest form, the
problem of tICA is to separate N statistically independent inputs, which
have been mixed linearly in N output channels, without further knowl-
edge about their distributions or dynamics (Makeig et al., 1997). In its
application to EMG data, it is assumed that the output of each EMG
channel is a time-varying signal mixture xi � {xi

1, xi
2, . . .} t. Each EMG

channel receives activation from several underlying (neural) source sig-
nals, sj, and each source distributes its signal to multiple muscles. The
mixing matrix Aij specifies the relative (linear) contributions of the
source signals s to each channel xi. This linear transformation can be
reversed to recover an estimate u of the source signals s from the EMG
signals x, s � u � xW, where the separating matrix W � A �1 is the
inverse of A. This separating matrix W maps the set of N mixtures x to a
set of N source signals s � u. To recover an estimate u � xW given the
assumption that the source signals are mutually independent, ICA itera-
tively adjusts the separating matrix W to make the estimated source
signals u mutually independent. This is achieved by adjusting W until the
entropy of a fixed function, g, of signals recovered by W is maximized
(where g is assumed to be the cumulative density function of the source
signals; Makeig et al., 1997; Stone, 2002). Because maximum entropy
signals are independent, it can be shown that this ensures the estimated
source signals recovered by W are also independent.

In the present study, ICA was performed using the ICA toolbox for
Matlab (Scott Makeig, University of California San Diego, San Diego,
CA; Makeig et al., 1997). For purposes of standardizing usage of this
toolbox in other EMG studies (in rodents), we used the algorithm as follows.
First, we input a matrix x where the rows were the EMG signals from indi-
vidual muscles, and the columns were time points (in millisecond intervals).
The algorithm zero-means each EMG signal and then computes and applies
a sphering matrix s(m,m), where m is the number of EMG channels, to
zero-phase whiten the EMG data across time; the EMG data has length, l, in
milliseconds, e.g., 90 trials � 4.0 sec (wherein each trial is �2.0 sec relative to
pellet contact). The program outputs a matrix u in which the rows are the
time courses of activation of the ICA components and a matrix W in which
the columns of W�1 are the relative projection strengths of the respective
components at each EMG electrode pair. The unmixing matrix W�1 � A
was used to calculate how much of the EMG signal x(:,l) was accounted for
by source signal j by A(:,j) � u( j,l).

In repeated trainings, the Matlab random-number generator will
cause the ICA toolbox program (runica.m) to deliver the EMG data to
the training algorithm in different random orders. This had little effect
on the outcome; components with large projections were unchanged,
although small components did vary somewhat. However, we were al-
ways interested in the first five to seven components (a reduced descrip-
tion of the EMG data), which accounted for the largest (70 – 85%) per-
centage of EMG variance and were the same from ICA training session to
session. In the 11 rats forming this study, a few (five to seven) underlying
source signals, u, described �80% of the EMG signal, x; therefore, tICA
performed well at reducing the dimensionality of the 10 –12 muscle data
set. In the present study, we termed the set of muscles that had W( j,:) �
0.0 a synergy (e.g., belonging to synergy j). The weights W( j,:) represent
the muscle distribution pattern of the underlying source signal.

We performed tICA to address two questions. First, tICA was per-
formed on the entire day’s training session to test whether underlying
source signals or synergies with constant w are activated differently (e.g.,
in amplitude or timing) in the first versus the last third of trials. Second,
tICA was performed incrementally over M trial segments 1 to N � 1 [e.g.,
trials 1–10, 2–11, . . . (N � 9), to N, where N is the number of attempts
and M � N � 9] to test whether the weight matrices change during
training. To assess whether the weights of the most similar synergies
changed significantly across trial segments, we computed the Euclidean
distance between w1(i,:) and wM(i,:) by [w1(i,:) � wM(i,:)] � [w1(i,:) �
wM(i,:)]	, where 	 denotes the transpose. This measure was used in addi-
tion to using the dot product because it was very sensitive to changes in
the weights vector of an IC, and we were interested in detecting poten-
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tially small changes during training, e.g., the range of distance measures
between the vector (1.0, 0.5) and the vectors (1.0, 0.6), (1.0, 0.7), and (1.0,
0.8) is 0.3 U, whereas the range of dot product measures is 15 times less,
or 0.019 U. We used the dot product measure in addition to verify that,
primarily, the balance of weights was changing, and not simply the mag-
nitude (or scaling), because ICs that are returned by the algorithm may
be subject to some degree of arbitrary scaling. In addition to reach ICs, we
computed the mean Euclidean distance between the weights of the most
similar locomotor synergies, which were extracted during lap running
before and then after the reach session. We reasoned that locomotor
synergies and their corresponding weights should not change over time.
Thus, if the Euclidean distance between reach weights fell outside 2 SD of
the mean locomotor distance, we considered the reaching weights to
change significantly with training (at p 
 0.05).

Discriminant analysis was used to test how well behavioral success and
failure could be predicted from EMG and M1 activity patterns. Discrimi-
nant analysis was performed using the Matlab Statistics toolbox. This
discriminant algorithm classified the pattern of each trial (EMGs and M1
cells) into either success or failure on the basis of a prespecified training
set (composed of 1⁄10 of the day’s reaching attempts, i.e., �20 reaches).
The algorithm fit a multivariate normal density function to each of the
specified groups in the training set (success or failure), with a pooled
estimate of covariance, and then returned an estimate of the misclassifi-
cation error rate for the entire set of reaching attempts.

Fuzzy c-means clustering (FCM) was used to assess how well motor
patterns clustered into distinct types. We determined the peak activa-
tions of ICs on each trial. This set of values (on one trial) formed a
10-dimensional vector in the case in which 10 muscles were recorded and
10 ICs were obtained with ICA. For 100 trials, there were 100 ten-
dimensional vectors. These vectors occupied some multidimensional
space. We assessed how well FCM could group the vectors into a specific
number of different clusters within this space. We used the Fuzzy Logic
toolbox in Matlab to perform FCM. FCM assigned each vector a mem-
bership grade to a cluster and iteratively updated the cluster centers and
membership grades for each vector. The iteration was based on minimiz-
ing an objective function that represented the distance from any given
vector to a cluster center weighted by the membership grade of that
vector.

To determine goodness of clustering, we compared our data with sim-
ulated data, which comprised 100 two-dimensional vectors (see Fig. 4 A).
Vector components for the first 50 simulated trials were randomly dis-
tributed in the interval (0, 1) with variance � 0.1. Vector components for
the next 50 trials were randomly distributed in the intervals [(0, 1), (0.5,
1.5), (1, 2), (2, 3), and (4, 5)] with variances � 0.1; i.e., the distance
between mean motor patterns of the first and second 50 trials was suc-
cessively increased. Because the distance was increased, the number of
trials that belonged strongly to one or another cluster, i.e., with member-
ship grades of �0.85 based on a 0.0 –1.0 scale, increased (see Fig. 4 A).
With minimal overlap between the first and second 50 trials (distance �
1.0), FCM strongly clustered 75% of trials into one or the other cluster.
Thus, we considered 75% a target percentage for “good” clustering. We
specified different numbers of clusters for our IC activation patterns (two
to five) to see which cluster number provided the best clustering
(�75%). We also performed FCM using an additional 10 parameters
that described the timing of peak IC activation, e.g., 100 twenty-
dimensional vectors.

Single-cell activity patterns were discriminated from raw stereotrode
data used custom-written software (Matt Wilson). M1 cells were distin-
guished primarily on the basis of the relative amplitudes of their spikes on
the two stereotrode wires (Poe et al., 2000). As many as five or six cells
could be identified and isolated on one stereotrode with a cluster-cutting
technique. This method involves extraction of a set of spike waveform
parameters (mainly spike height and width) for each spike from the two
stereotrode channels and the separation of units on the basis of these
parameters using interactive graphics software. Different combinations
of parameter pairs were projected as two-dimensional scatterplots.
When this was performed, points derived from single cells tended to
form recognizable clusters. The spikes within a cluster were enclosed in a
polygon drawn using the computer mouse. The data points were then

projected into new two-dimensional plots in which the earlier partitions
of the data were preserved by color coding the points lying within the
polygon boundaries. This process was performed until a multidimen-
sional set of boundaries was established that provided the subjectively
best separation of spike waveform clusters. The times of spikes in each
cluster (or for each cell) were exported to Matlab for analysis.

In Matlab, perievent histograms (PETHs) of cell spike times were
computed relative to the instant of pellet contact (�4 sec). All reach trials
(e.g., 100 trials) were aligned at pellet contact to generate a data array,
e.g., 100 rows � 4000 columns. PETHs were computed in 20 msec bins
(or columns) and expressed as a rate (spikes per second) or probability. A
three-point boxcar filter was used to smooth PETHs. Significant changes
in the peak amplitude, time of peak, and integrated area of PETHs be-
tween blocks were determined using paired t tests.

Linear cross-correlations were performed using the Matlab system
identification toolbox m-file cra(Z,M ) where Z � ( y u), u is the input
signal, y is the output signal, and M is the number of lags (�750 msec) for
which the cross-correlation function between u and y was computed.
Cross-correlations were computed between low-pass-filtered (five-point
Gaussian; moving time window, 5 msec) PETHs (u), rectified, filtered
EMGs ( y1), and IC activations ( y2). A shift predictor correction was
determined by computing cross-correlations between u and time-shifted
y values (e.g., shifted by 1 � 4 to N � 4 sec, where N is the number of trials,
and 4 is the length in seconds of each trial (�2 sec relative to pellet
contact; for more thorough description of the shift predictor, see Miller
et al., 1993). Significant cross-correlations (at p 
 0.05) were determined
by assessing whether peaks or valleys of the original cross-correlation
were �2 SD outside the mean shift-predicted correlation in the function-
ally important time window of �150 msec; i.e., we looked for correla-
tions with positive lags (see shift predictor example in Fig. 1C). A causal-
ity u 3 y would result in a positive lag. However, we recognized that
positive lags do not necessarily imply causality u3 y.

Videotaped reaches were analyzed off-line by transferring digital video
to a hard disk and by importing video frames into Matlab. The approxi-
mate positions of the base of the fingers, wrist, elbow, and shoulder joint
centers were digitized from the lateral view. We determined the wrist,
elbow, and shoulder angles and the trajectory of the hand (velocity and
position) for each of these trials. The normalized path distance of the
hand to the pellet was computed as described by Kargo and Giszter
(2000b); this is a measure of curvature of the hand path. We tested for
significant differences in starting limb position, limb position at tray
contact, peak hand velocity, and normalized path length across blocks on
the first day. From the top view, we determined and tested for differences
in the length of time spent on the tray and finger spread (distance be-
tween the tips of the first and fourth digits) on tray contact.

Results
Behavioral evidence for early skill learning
On the first day of skill training, animals displayed fast, within-
day improvements (n � 11 animals). Animals also displayed
more gradual, across-day improvements. Each day’s training ses-
sion was divided into three successive blocks with equal numbers
of attempts per block. On day 1, success rates increased from
38 � 5% (SD) in the first block to 54 � 8% in the last block (16%
increase per �120 attempts). All rats increased success rates from
the first to last blocks on day 1. Systematic within-day increases
were not observed on later days, but interday success rates still
increased gradually from 45 � 9% on day 1 to 75 � 5% on day 10
(30% increase per 1200 attempts). Thus, these data support at
least two stages of skill learning, early and later, more gradual
learning. Below, we focus on EMG mechanisms underlying the
early stage (day 1) and its M1 correlates.

Early skill learning was expressed through two
general mechanisms
Success rates improved potentially for one of two reasons: either
the probability of activating motor patterns that succeeded versus
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ones that failed increased, or the probability of success of a single
motor pattern increased over time by tuning the pattern. To test
these possibilities, we calculated the similarity between the motor
pattern of each trial and the mean successful pattern for the last
block (see Materials and Methods). We reasoned either that suc-
cessful patterns would be fundamentally different than failures,
and so similarity measures would cluster into distinct groups
(selection), or that motor patterns later in the day would be dif-
ferent than the initial patterns, and so similarity measures would
incrementally increase over the day (tuning).

Skill improvement was associated with both motor pattern
selection and pattern tuning. One group of animals (3 of 11; rats
D, K, and L) appeared to switch between motor patterns under-
lying the reach portion of the task. Figure 2A shows data for rat K.
Each point is one trial (black, failures; gray, successes) and repre-
sents how similar the motor pattern of the trial was to the mean
successful pattern of block 3. Similarity measures were averaged
across the reach duration; reach duration was the period from 50
msec before reach onset up to the time of pellet contact (�280 –
380 msec). Reach onset was defined as the onset of the deltoid
(clavicular head) EMG burst, which preceded limb advancement
to the pellet by 16.67–50 msec (as determined from video in three
animals) and which was reliably activated in all animals an aver-
age of 302 � 18 msec before pellet contact. Measures of motor
pattern similarity during this period separated into two groups
associated with either failure or success. The combined mean
similarity for failed motor patterns was significantly less than that

for successes in these three animals [Fig.
2B, failures (F), 0.85 � 0.05 (SD); suc-
cesses (S), 0.93 � 0.04; significant at p 

0.02].

In contrast to the first group of animals,
a second group (8 of 11; rats E, G, I, M–P,
and R) appeared mainly to tune a single
starting motor pattern over time. Figure
2D shows data for rat E. Similarity mea-
sures for failed and successful motor pat-
terns overlapped and did not cluster into
separate groups; the same 10 muscles were
recorded in rat E as in rat K. For this sec-
ond group, we found that all motor pat-
terns activated in the first block were sig-
nificantly less similar to the mean
successful pattern of block 3 compared
with all motor patterns activated in the last
block, which indicates changes in the mo-
tor pattern over the day (Fig. 2E; Block 1,
0.83 � 0.07; Block 3, 0.94 � 0.04; signifi-
cant at p 
 0.02).

The two groups of animals did not dif-
fer significantly in the level of skill im-
provement on day 1 (Fig. 2C,F). The selec-
tion group (3 of 11) started at a success
probability of 0.38 � 0.04 in block 1 and
finished at 0.52 � 0.10 in block 3. The tun-
ing group (8 of 11) started at a success
probability of 0.39 � 0.06 in block 1 and
finished at 0.55 � 0.09 in block 3.

Similarity measurements for postcon-
tact motor patterns (after pellet contact)
always separated into distinct success and
failure groups. Combined means for all
animals were significantly different at p 


0.001 (failures, 0.65 � 0.12; successes, 0.92 � 0.08). The striking
difference in postcontact patterns was attributable to the finding
that if the hand was inappropriately targeted or oriented at pellet
contact, the grasp and retraction phases of the motor pattern
were not activated or weakly activated, or a new reach was initi-
ated. Thus, although it is possible that improved success rates
were attributable to an increased probability of activating mus-
cles more appropriately after pellet contact, the main mechanism
for skill improvement probably was attributable to either selec-
tion or tuning of precontact motor patterns.

Below, we examine whether selection and tuning of muscle
activation patterns occurred with respect to motor programs (se-
quences of synergistic contractions), individual synergies, or in-
dividual muscles. To examine these possibilities, we used ICA to
extract underlying synergies from the EMG data (see Materials
and Methods).

Motor program selection
The selection group of animals appeared to switch between the
activation of different motor programs, where motor program
refers to a specific sequence of synergy activations or of indepen-
dent components (ICs). Figure 3 shows the activation pattern of
seven ICs in rat D. These seven ICs accounted for 83% of the
EMG variance during reaching (10 muscles recorded). IC activa-
tions are shown from trial to trial [Fig. 3, left columns; each row
is one trial; only the first and last 10 failures (F) and successes (S)
are shown, and red represents regions of highest IC activity].

Figure 2. Evidence for two early learning strategies. A, D, Similarity values between motor patterns of individual trials (up to
pellet contact) and the mean successful pattern of block 3 (plus signs, successes; circles, failures, left-to-right trial numbers, 1–3
denote trial blocks). A, Similarity values in rat K organized into two groups, one associated mainly with successes and another
associated with failures. B, In 3 of 11 animals (including rat K), failure motor patterns were significantly less similar compared with
successful patterns ( p 
 0.01; mean � SD shown). C, Success rates for these three animals across blocks. D, In rat E, similarity
values for success and failure motor patterns overlapped throughout training. E, In 8 of 11 animals (including rat E), motor patterns
activated in Block 3 were significantly more similar to the mean successful pattern of Block 3 than were patterns activated in Block
1 ( p 
 0.05). F, Success rates for these eight animals.
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Middle columns show averaged IC activations (red, failures; blue,
successes). In both the left and middle columns, the period be-
tween the vertical bars represents the time window over which the
reach to the pellet occurred, which is the period in which switch-
ing occurred. The period after the second vertical line represents
the time window of pellet contact, grasping and limb retraction.

Right columns show the manner in which ICs were distributed to
forelimb muscles; these are the IC weights. In rat D, IC1 was
strongly activated to start most successful attempts and was fol-
lowed by activation of ICs 2–5. IC1 was only weakly activated
during failed attempts (Fig. 3, top row). In contrast, IC6 and IC7
were strongly activated to start most failed attempts and were
followed by activation of IC2, IC4, and then IC3. IC1 was distrib-
uted to lateral triceps, trapezius, and ECR, whereas IC6 was dis-
tributed mainly to brachialis and ECU.

To examine more thoroughly the observation of motor pat-
tern switching, which occurred before pellet contact, we per-
formed FCM of IC activation patterns to attempt to group pat-
terns into specific clusters (see Materials and Methods). The
precontact activation pattern of each trial was described by the set
of peak IC activations that occurred before pellet contact (e.g., a
four- or five-dimensional vector). To evaluate the FCM goodness
of clustering, we simulated two-dimensional motor patterns (a1
and a2), where a1 and a2 represent peak activations of virtual ICs
(see Materials and Methods). Figure 4A, top three graphs, shows
three different 100-trial simulations in which the mean distance
between two different motor patterns (filled, open symbols) was
progressively increased (diamond, overlapping motor patterns;
circle, mean distance between motor patterns � 0.5; square,
mean distance � 1.0). The bottom graph shows the percentage of
trials for each simulation run that were classified as belonging
strongly to one or another motor pattern cluster, i.e., member-
ship function �0.85. When the two motor patterns were not
overlapping in the activation space (filled squares, distribution of
motor pattern 1; open squares, distribution of pattern 2), FCM
classified �75% of the trials as belonging strongly to one or an-
other cluster, i.e., FCM �0.85. Thus, we considered 75% a base-
line measure for FCM goodness of clustering.

Figure 4B, top graph, shows the distribution of membership
functions for rats D (black) and E (gray), animals that respec-
tively did and did not appear to exhibit switching. Seventy-five
percent of trials (150 of 200) in rat D were strongly clustered into
one or another motor pattern type (75% of FCM values �0.85).
In the three animals exhibiting switching, 77 � 12% (SD) of trials
were strongly clustered into two pattern types (Fig. 4B, bottom
graph, black). Specification of three or more clusters reduced the
goodness of clustering (Fig. 4B, bottom graph). This suggests that
these animals switched mainly between two pattern types. In con-
trast to rat D, only 12% of trials (17 of 140) in rat E were strongly
clustered (Fig. 4B, top graph, gray line). In the eight animals not
exhibiting switching, only 18 � 8% of trials were strongly clus-
tered (Fig. 4B, bottom graph). Even when temporal parameters
were included in the data vector describing the pattern of each
trial (e.g., IC1 amplitude . . . ICN amplitude, IC1 onset time . . .
ICN onset time), only 19 � 9% of trials were strongly clustered in
these eight animals. Thus, motor patterns occupied an overlap-
ping region of the activation parameter space and therefore
formed a single pattern type.

Different motor pattern clusters had different probabilities of
success. In rat D, 72% of motor patterns belonging to cluster 1
were successful (i.e., patterns with membership grades of �0.85).
Only 18% of motor patterns belonging to cluster 2 were success-
ful. In each of the three animals exhibiting switching, one cluster
had a higher probability of success (68 � 7%) compared with the
other cluster (21 � 9%). Importantly, the probability of activat-
ing motor patterns that had the higher probability of success
increased over the first day of training and accounted in part for
the improved success rates (block 1 probability of activating suc-
cessful cluster, 40 � 8%; block 2, 48 � 10%; block 3, 57 � 8%).

Figure 3. Evidence for motor pattern switching during early learning. Left column, Activa-
tion of ICs over time as contour plots (each row is 1 trial). Red, Regions of highest activity
(normalized to 1.0); blue, regions of lowest activity (0). First vertical line, Approximate reach
onset; second line, time of pellet contact. The first and last 10 failures (F 1, 3) and 10 successes
(S, 1, 3) are shown. Middle column, Averaged IC activations for failures (red) and successes
(blue). Right column, Bar plots showing IC weights (muscles from left to right: lateral triceps,
biceps, pectoralis, medial triceps, deltoid, trapezius, FCU, ECU, ECR, brachialis). The first five
rows show ICs activated strongly during successes: IC1, associated with initial hand supination;
IC2, limb advancement; IC3, limb extension and hand positioning before contact; IC4, grasping;
IC1, supination; IC5, retraction. The last two rows show ICs activated more strongly during
failures: IC6, elbow flexion and wrist extension; IC7, limb advancement.
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Switching between motor patterns depended in part on the
initial posture of the animal. On failed reaches, rat D had an
increased probability of starting the reach with the contralateral
hand on the ground (83 of 114 or 73% of failed attempts). In
contrast, on successful reaches, rat D had an increased probability
of starting the reach with the contralateral hand supported
against the wall (64 of 84 or 76% of successes). The probability of
placing the contralateral hand against the wall before reach onset
increased over time (40% first block and 55% last block). This
was correlated with an increased probability of success (32% first
block and 50% last block) and with an increased probability of
activating motor patterns belonging to the more successful clus-
ter. Rats K and L showed a similar dependency on initial posture,
but the specific postural dependencies varied. Rat K activated one
motor pattern more often when the longitudinal body axis was
parallel to the aperture (59 of 85 or 70% of failures) and a differ-
ent motor pattern when the body axis was at an acute angle to the
aperture, which forced reaching across the chest and a different
starting pattern of hindlimb– contralateral forelimb support (49
of 65 or 75% of successes). Rat L showed a dependency on
whether reach onset occurred solely with hindlimb support (70 of
85 failures) or with tripedal support (hindlimbs and contralateral
forelimb; 40 of 61 successes).

There were obvious functional differences associated with
switching between motor patterns and starting the reach from
different postures. In rat D, the final position of the hand (wrist
joint center) at the time of tray contact differed significantly be-
tween failures and successes: in failures, the wrist was –5.2 � 2.5
(SD) mm relative to the pellet location; successes, –1.8 � 2.5 mm
(see representative digitized reaches in Fig. 4C). The inappropri-
ate targeting of the hand to the pellet was common to all three

animals and consistent with activation of
different motor patterns to start the reach:
significantly short of the pellet (two of
three animals) or medial to the pellet (i.e.,
the arm was overly adducted in one of
three animals) in failed attempts com-
pared with successful ones.

Activity patterns in motor cortex (M1)
well before reach onset provided informa-
tion about subsequent behavioral perfor-
mance in these animals. Discriminant
analysis of M1 activity patterns was per-
formed to assess whether and when behav-
ioral performance could be predicted (11
M1 cells in rat D, 14 cells in rat L, and 5
cells in rat K). Figure 5A shows mean ac-
tivity patterns of the ensemble across time
in rat D; the top panel is the successful pat-
tern, and the bottom panel is the failure
pattern. Each row represents firing rates of
one cell across time [white is highest firing
rate (40 Hz), black is lowest rate (0 Hz)].
Behavioral performance was predicted sig-
nificantly above chance at relatively early
times before reach onset (Fig. 5B; data
from the three animals). The maximum
prediction rate was 80 � 4% (SD) during
the 0.5–1.0 sec before reach onset. Predic-
tion rates increased at reach onset to 90 �
7% and to 93 � 5% at pellet contact. The
ability of prereach M1 activity to predict
performance was related to its ability to

predict motor pattern selection. The maximum prediction rate
was 83 � 5% (for predicting activation of motor patterns belong-
ing to one or the other cluster, which had different probabilities
of success). In contrast, in the other eight animals that did not
show evidence for motor pattern switching, maximum predic-
tion rates of behavioral performance were significantly above
chance only near the time of pellet contact (92 � 6%; see data
from two representative animals in Fig. 5C; rat R, 20 cells; rat M,
8 cells).

The ability of prereach muscle activity patterns to predict be-
havioral performance was above chance (maximum of 71 � 6%
from 0.5 to 1.0 sec before reach onset) but considerably lower
than prereach M1 activity patterns. Similarly, prereach IC activa-
tion patterns (usually the activation amplitude of one posture-
related IC) were less effective than M1 patterns in predicting
behavioral outcome (71 � 5%). The 10% difference in prediction
capabilities before reach onset might be attributable to M1 re-
ceiving proprioceptive feedback in addition to driving postural
muscle activity.

Adaptation of synergy composition
The majority of animals did not show evidence for switching
between motor patterns on day 1 (n � 8). These animals ap-
peared to activate a similar motor pattern for both failed and
successful attempts and adjusted this motor pattern gradually
over time to increase its probability of success, i.e., motor pat-
terns later in the day were less similar to starting patterns. We
examined the substrate for this tuning.

Every animal (n � 11) showed evidence for adapting the com-
position of muscle synergies with training, where synergy com-
position refers to the IC weights. IC weights represent how an

Figure 4. Quantification of motor pattern switching during early learning. A, Simulated data to assess goodness of clustering
by the fuzzy c-means algorithm (FC; see Materials and Methods). Top graphs, Two motor patterns with different means and equal
variance (0.1) were simulated (filled, unfilled symbols, respectively; a1, a2, activations of two actuators on any one trial; dia-
monds, equal means; circles, mean difference � 0.5; squares, mean difference � 1.0). When the two patterns were nonover-
lapping (squares), FC assigned 75% of the simulated trials (200) to one or another motor pattern cluster, i.e., 75% of FCM functions
�0.85. B, Top graph, Distribution of FCMs for ratD (black) and ratE (gray). More than 75% of FCMs were �0.85 in ratD; only 12%
were �0.85 in ratE. Bottom graph, Goodness of clustering for three animals exhibiting switching (black) and eight animals not
exhibiting switching (gray). More than 75% of FCMs were �0.85 in the three animals when only two clusters were specified.
Goodness of clustering was reduced when more (3 or 4) clusters were specified. C, Representative kinematics of forelimb during
failure (bottom) and success (top) in rat D, shown at 16.67 msec intervals; white dots, position of contralateral hand; arrows,
direction of ipsilateral hand movement.
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(estimated) source signal was distributed to coactive muscles.
This distribution pattern might be invariant or adaptable. To test
this, we first compared the weights of ICs that were extracted
from two locomotor sessions (see Materials and Methods). We
hypothesized that weights for muscle synergies activated during
locomotion should be invariant across time. The Euclidean dis-
tances between the weights of the most similar locomotor ICs
(from running sessions 1 and 2) formed a single distribution with
a mean of 0.22 � 0.10 (SD) (Fig. 6, left-most graph, combined
data for five animals); the mean dot product between the weights
of most similar ICs was 0.96 � 0.04. The most similar ICs were
those that had the smallest distance between the vector of IC
weights (see Materials and Methods). We then applied ICA to M
successive overlapping segments of reaching trials in individual
animals (e.g., trials 13 10, 23 11 . . . N–93 N, where N is the
last trial) and compared the weights of the most similar ICs in the
first segment and all later segments. In contrast to the locomotor
data, distance values for reaching ICs formed two groups (Fig. 6,
middle graph, gray bars, combined data for eight animals). One
group of distance values overlapped with the locomotor data.
Thus, the weights of some reaching ICs were mostly invariant
with training. A second group of distance values was outside the
range of the locomotor data. The mean Euclidean distance for
this second group was 0.67 � 0.31; the mean dot product between
weights in this second group was 0.75 � 0.21 (compared with
0.96 � 0.04 for locomotor pairs), which indicates that the balance

of muscle activations within an IC was considerably more vari-
able during the initial reach training.

Two observations further support the idea that IC weights
were adapted or fine tuned with training, in contrast to activating
completely new ICs with training. First, distance values for ran-
domly compared IC pairs, i.e., those that were not the most sim-
ilar from reach segment to segment, were much farther outside
the locomotor range (Fig. 6, black histogram bars) compared
with the most similar reaching IC-pairs. Second, most similar
reaching ICs had the same onset time and time of peak activation
across reaching segments. In summary, many source signals ap-
peared to have similar time courses of activation over the day, and
mainly the weights (or distribution patterns) were changed with
training for specific source signals.

In individual animals, the weights of only specific ICs were
adapted during training. To demonstrate this finding, we de-
scribe a result that was common in the majority of animals. Six of
11 animals showed specific changes during training in the weights
of an IC that was activated �100 –150 msec before pellet contact.
This IC was distributed primarily to wrist and extrinsic finger
muscles. We referred to this IC as a “hand-related” IC. Figure 7A,
left column, shows the activation patterns of five ICs, which ac-
counted for 71% of the EMG variance in rat E (black lines are
averaged activity for the 54 trial segments, and each row repre-
sents IC activity for one trial segment). The fourth IC from top
was the hand-related IC. IC weights for the first trial segment are
shown in the middle column; IC4 was distributed initially to the
extrinsic hand muscles FCU, ECU, and ECR. IC4 weights
changed during training. That is, similarity values between the
initial IC4 weights (IC41) and IC4 weights on later trial segments
(IC423M, where M is the number of trial segments) were �1 SD
away from the mean distance between most similar locomotor
ICs [Fig. 7A, right column; the mean locomotor distance was
0.22 � 0.10 (SD)]. The other four ICs were stable over the day,
i.e., within 0.22 � 0.10. Specific changes to the muscle balance
within IC4 are shown in Figure 7B (blue, FCU; red, FCR; black,
ECU). The balance of spatially coherent activity was shifted so
that wrist–finger flexors (FCR and FCU) were activated more
strongly during this coherent burst of activity; ECU activation

Figure 5. Prereach M1 activity predicts performance in animals exhibiting motor pattern
switching. A, Top panel, Mean pattern of M1 activity during successful reach in rat D. Bottom
panel, Mean pattern during failed reach. Each row represents the firing rate of one M1 cell over
time. Firing rates were normalized from 0% (black) to 100% (white) of the maximum firing rate
in the ensemble (n � 11 neurons). Vertical lines, 500 msec intervals, and reach onset occurred
at 2000 msec. Different temporal modulations of M1 firing occurred between success and failure
trials. B, Discriminant analysis showed that firing patterns predicted significantly above chance
behavioral success and failure. Discriminant analysis was performed –2 to �2 sec relative to
reach onset. In three animals exhibiting motor pattern switching, the maximum predictive
ability of M1 patterns before reach onset approached 80%, a full 1 sec before reach onset (gray
bars, times 1200 – 800 msec before reach onset). Predictive ability increased at reach onset
(first vertical line) to 85–100% and increased further at pellet contact (second vertical line) to
90 –100%. C, Discriminant analysis in animals not exhibiting switching showing that M1 pat-
terns predicted performance above chance only at the time of pellet contact. Data for two
animals are shown (rat M, 8 units; rat R, 20 units).

Figure 6. Muscle synergy composition was adapted during early learning. Left graph, Bar
plot of Euclidean distances between the weights of most similar ICs, which were extracted from
separate lap-running sessions in five animals [k, IC number (e.g., 1– 6); 1, 2, lap sessions). The
distribution was unimodal. Right graph (gray bars), Distribution of Euclidean distances between
the weights of reaching ICs extracted during the first 10 attempts (segment 1) and the weights
of most similar ICs extracted during later 10-trial segments (M, last segment; 8 animals). This
distribution was bimodal. One group of values had a similar distribution as the locomotor data
(normal fits of locomotor data are scaled and superimposed). A second group was outside the
locomotor range. Black bars, Distribution of distances between the weights of randomly com-
pared reaching ICs (n � 4 animals). These data were much farther outside the range of loco-
motor values.
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was reduced, whereas ECR activation remained unchanged (data
not shown).

The finding that IC4 composition was specifically changed
without changing either the composition of other synergies or the
basic motor pattern (i.e., the sequential and partly overlapping
pattern of IC activations) suggests that functional changes might
have been produced solely through IC4 adaptation. One ob-
served change was a reduced finger extension angle, on entry
through the aperture, over time [Fig. 7D, top row, early (5th)
reach, bottom row, late (50th) reach]. Comparison of the orien-
tation angle of the digits relative to horizontal for the first and last
20 reaches revealed a significant decrease over time [Fig. 7C,
Block 1, 5 � 10° (SD); block 3, �30 � 12°]. This reduced exten-
sion was correlated with a reduced delay between reach onset and
pellet contact (first 20 reaches, 305 � 15 msec; last 20 reaches,
272 � 13 msec). Most importantly, these functional changes in
hand–finger kinematics and contact times were correlated with
increased success rates over time (first block, 40%; last block,
52%).

We next examined M1 correlates for synergy adaptation. First,
we examined generally whether M1 activity was related to IC
activations across time. Second, we cross-correlated the firing
rates of individual M1 cells with muscle and IC activations to
quantify this relationship. Last, we examined whether coactive
M1 cells, which were correlated with the same adaptable IC, were

regulated differently with training (see Materials and Methods;
rat D, 11 cells; E, 8; I, 2; K, 6; L, 14; M, 8; N, 1; O, 5; P, 3; R, 20; and
S, 22).

The mean firing rates of M1 cells were closely related, with
appropriate time delays, to the mean activation patterns of spe-
cific ICs. Figure 8 shows data for rat L. Each graph shows the
mean firing rate of one cell (black) and mean activation of the
corresponding IC (gray) to which each cell was significantly cor-
related (correlations after subtraction of the shift predictor are
shown to the right of each graph). M1 cells and the corresponding
ICs were activated in a sequential and partly overlapping manner
through time (top to bottom). ICs were named in Figure 8 to
correspond to the function of the activated muscles and the time-
matched kinematics: an initial postural IC (often tonically acti-
vated; muscles FCU, triceps group, and trapezius), an initiation
IC (begins the reach to the pellet; deltoid, brachialis, biceps, and
pectoralis major), a hand-related IC (activated during transport
to the pellet; lateral triceps, ECU, ECR, and FCR), a grasp IC
(activated at pellet contact; FCU, FCR, ECU, deltoid, and medial
triceps), and a retraction IC (retracts forelimb; biceps, teres ma-
jor, ECU, FCU, and brachialis). Muscles activated by these five
ICs were generally consistent among animals.

Firing rates of M1 cells were positively correlated most often
with the activation patterns of multiple muscles across the 4 sec
trial period (�2 sec relative to pellet contact) but primarily with

Figure 7. Adaptation of hand-related synergies during early learning. A, (similar format as Fig. 3), Contour plots showing the activation pattern of five ICs; each row is one attempt (65 attempts
total); red, highest activity. Mean activations are superimposed (black lines). Bar plots in the middle column show IC weights for the first 10 trials (muscles from left to right: lateral triceps, biceps,
teres major, FCR, deltoid, trapezius, FCU, ECU, ECR, brachialis). ICs were activated sequentially through time (top to bottom: IC1 associated with prereach posture; IC2, limb flexion; IC3, reach onset;
IC4, elbow extension, hand positioning; IC5, grasping. Bar plots in the right column show the distribution of Euclidean distances between IC1 weights and IC23 M weights, where 1 refers to trials
1–10; 2, trials 2–11, and M, last 10-trial segment. Red lines, Mean distance between initial and later IC weights. Only IC4 weights were significantly changed during training (i.e., �0.22 � 0.10,
see Results, Adaptation of synergy composition). B, Specific changes to IC4 weights across the day (blue, FCU; red, FCR; black, ECU). The balance of activity was shifted so that during block 3,
wrist–finger flexors were activated more strongly within this burst of activity. C, The orientation angle of the fingers (relative to horizontal) was reduced from block 1 to block 3. D, Four consecutive
frames of the hand during early and late reaches (in 16.67 msec intervals). Notice that the orientation angle of the fingers was reduced in the later reach.
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the activation of only one IC. The percentage of M1 cells that had
significant positive cross-correlations (in the functionally impor-
tant time window of 0 –150 msec) with both muscles and ICs,
after correcting correlations with the shift predictor (see Materi-
als and Methods), was 37% (37 of 100 cells). The mean peak
correlation of these 37 cells with muscle activations was 0.29 �
0.04 (SD). The mean lag at which peak correlations occurred was
62 � 18 msec. These cells were correlated with an average of 3.5 �
1.3 forelimb muscles. The mean peak correlation for these same
cells and IC activations was 0.20 � 0.05. In contrast to M1 corre-
lations with multiple muscles, M1 cells were correlated with only
1.19 � 0.40 ICs (30 cells correlated with only one IC, and 7 cells
correlated with two ICs). Individual cells were not usually corre-
lated with all muscles constituting an IC to which it was also
correlated. That is, computed ICs had an average of 5.25 � 2.32
muscles with positive weights (i.e., that received excitation),
whereas the averaged cell was positively correlated with only
3.51 � 1.36 muscles. In addition, M1 cells were not usually cor-
related with muscles in the IC that had negative weights (i.e., that
did not receive excitation from the source signal). M1 cells were

positively correlated with only 0.81 � 0.50 muscles that had neg-
ative weights within the IC to which the cell was also correlated.

In summary, 37% of M1 cells were positively correlated with
specific IC activations. Cells were positively correlated with most
muscles that were activated by the IC but not all muscles. Cells
correlated with an IC were not usually correlated with muscles
that were not activated by the IC. We focus our analysis below on
these 37 cells, which had positive correlations with multiple mus-
cles and primarily one IC.

Coactive M1 cells, which were correlated with the same adapt-
able IC, were often regulated differently during training. That is,
the peak firing rates of M1 cell pairs were either increased or
decreased in parallel during training but in a disproportionate
manner or were oppositely affected (e.g., increases in one and
decreases in the other). Figure 9A shows spike cross-
correlograms for three cells in rat L (shown as the probability of
spiking in 20 msec bins). Cross-correlograms for cells n10 and
n11 were performed with respect to cell n03. The third cross-
correlogram for n11 was performed with respect to n10. Cells n10
and n11 had significantly correlated activity with n03, and cell
n10 had correlated activity with n11 ( p 
 0.05; 95% confidence
interval shown in Fig. 9A). The times of peak firing in these three
cells were constant over the day [n03, 905 � 15 (SD) msec; n10,
921 � 13 msec; n11, 897 � 21 msec]. However, the peak rates
changed differently; e.g., the ratios of firing (n03: n10: n11)
started at 1.00:1.12:2.25, changed to 1.00:1.00:0.64 at midday,
and ended at 1.00:0.92:0.38 (Fig. 9B).

Each of the above three cells had firing rates that were signif-
icantly correlated with the activation of similar but different sets
of muscles (Fig. 9C; peak correlations within the 0 –150 msec time
window are shown between each cell and each muscle; asterisks
mark significant correlations). All cells were correlated with lat-
eral triceps (muscle 4) and deltoid (muscle 5); cells n03 and n10
were correlated with trapezius (muscle 6) and brachialis (muscle
10); and cells n10 and n11 were correlated with biceps (muscle 2).
Each cell was also correlated with the same IC (initial weights for
this IC are shown in Fig. 9D, top). The weights for this IC were
adapted with training (Fig. 9D, bottom, dark gray, brachialis ac-
tivity was increased; black, deltoid was increased and then de-
creased; light gray, trapezius was decreased). Cells n03 and n10
were both correlated with trapezius and showed reduced firing
rates over time, consistent with a reduction in trapezius weights
over time. Cell n11 was correlated with biceps and showed in-
creased firing rates over time, consistent with increases in biceps
weights over time.

In 7 of 11 animals, there was at least one M1 cell pair on the
first day of training that had correlated spiking activity (i.e.,
wherein there was a significant increase in the probability of spik-
ing when the other cell spiked at p 
 0.05). There were 11 total
cell pairs. We calculated the mean (peak) firing rate of cell pairs in
the first, second, and last blocks of reaching trials and assessed
whether both cells showed significant increases, decreases, or no
change in peak firing rate over the day. Of the 11 pairs (3 in rat D,
3 in rat L, 1 in rat E, 1 in rat M, 1 in rat O, 1 in rat P, and 1 in rat
R), 6 showed different patterns of regulation during training; i.e.,
one cell had significantly increased, and the other had signifi-
cantly decreased or no change in peak firing rate. Five of 11 cell
pairs had the same pattern of regulation, i.e., either no change in
both or significant, proportionate increases or decreases in firing
rate. Thus, these data provide some evidence that certain coactive
M1 cells were correlated with the same synergistic pattern of
muscle activation and that fine tuning the balance (or ratios) of

Figure 8. M1 firing rates were related to the mean activation pattern of ICs during the reach.
Left column, Black lines, Mean firing rates of different M1 neurons in rat L (mean of 40 successful
reaching trials, each normalized to 1.0); gray lines, IC activations to which the corresponding
cells showed significant positive cross-correlations. The cross-correlations are shown in the
right columns [black, cross-correlation computed at lag times of –500 to �500 msec; dotted
lines, 95% confidence interval for the shift-predictor cross-correlation (see Materials and Meth-
ods)]. M1 neurons and ICs were activated in a sequential and partly overlapping manner during
the task. The ICs shown here were distributed to similar muscles between animals: IC1 (prereach
posture), FCU, triceps muscles, and trapezius; IC2 (reach initiation), deltoid, brachialis, and
biceps; IC3 (limb extension, hand shaping), lateral triceps, ECU, and ECR; IC4 (grasping), FCU,
FCR, medial triceps, and deltoid; IC5 (retraction, supination), biceps, teres major, ECU, and
brachialis.
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activity within this group of coactive cells changes how the syn-
ergy activation pattern was distributed to muscles.

Adaptation of muscle synergy activations
Adapting the balance of muscle activations within a synergy was
one mechanism associated with improvement. A second mecha-
nism that was observed in 6 of 11 animals was adaptation of the
amplitude of synergy activation alone.

A common finding, which elucidates this mechanism (in
three of six animals: rats I, N, and O), was reduced activation of a
coherent burst of activity that was distributed to antagonistic
muscles around both the shoulder and elbow joints. Figure 10A
shows the activation pattern of six ICs, which accounted for 79%
of the EMG variance in rat N. The third IC to be activated (from
the top) was distributed to antagonist muscles at the elbow (tri-
ceps muscles and biceps brachii) and at the shoulder (deltoid,
teres major, and trapezius). The activation of IC3 was dramati-
cally reduced in the last block compared with the first block of
trials (40% reduction in mean integrated area; significant differ-
ence in means at p 
 0.001); in Figure 10A, first column, third
row, the solid black line represents the mean activation of IC3 in
the first block of reach trials, and the dashed line represents the
mean activation of IC3 in the last block. Importantly, similarity
values between the initial IC3 weights and IC3 weights later in the

day were not significantly different than values between most
similar locomotor ICs. This indicates that IC3 weights were rela-
tively stable over the training session, whereas only the amplitude
of this distributed signal was modified. A similar IC that was
widely distributed to antagonist muscles at the shoulder, elbow,
and sometimes wrist was activated in the other two animals (rats
I and O). In each animal, this “cocontraction” IC was activated
most strongly during the limb transport phase before pellet con-
tact and was significantly reduced in magnitude (integrated area)
during block 3 compared with block 1. The reduction was not
apparent to all ICs constituting the motor pattern and was there-
fore specific; e.g., IC2, which initiated the reach in rat N, was
increased in amplitude in block 3 compared with block 1 (Fig.
10A, first column, second row).

The reduced amplitude of IC3 activation in rat N (in combi-
nation with increased IC2 amplitude) was correlated with two
functional changes: more direct hand paths to the pellet and re-
duced delay between reach onset and pellet contact. The reduced
delay between IC2 activation (reach onset) and pellet contact can
be appreciated from Figure 10A, in which the trials are aligned at
the time of contact [the time between IC2 onset and pellet contact
(black vertical line) gradually decreased over time]. Figure 10B
shows three representative and successive reaching frames for rat
N on entry through the aperture (top row, early reach; bottom

Figure 9. The firing rates of coactive M1 cells could be regulated differently with training. A, Cross-correlations between spiking activity of three coactive M1 neurons (n03, n10, n11) in
rat L, represented as probability of spiking in 20 msec bins. Cross-correlations in the middle and right panels were performed with respect to n03 (for cells n10, n11); cross-correlation in left
panel was performed with respect to n10 (for cell n11). Each cell had significantly increased probabilities of spiking when a spike occurred in another cell (95% confidence interval shown).
B, Peak firing rates changed disproportionately with training (dark gray, n03; light gray, n10; black, n11), but the time of peak firing was constant and coincident [n03, 905 � 15 (SD) msec;
n10, 921 � 13 msec; n11, 897 � 21 msec[. C, Correlation strengths between the firing rates of cells n03, n10, and n11 and muscle activations. Asterisks, Muscles in which cross-correlations
were significant (from left to right: lateral triceps, biceps, pectoralis, medial triceps, deltoid, trapezius, FCU, ECU, ECR, brachialis). D, Each M1 cell was significantly correlated with the same
IC, which was activated at reach onset. Weights for this IC in the initial and final training segments are shown in the top and bottom bar plots, respectively. E, The weights for this IC showed
significant changes with training. Weight changes across the first day (relative to the initial training segment) are shown for three muscles [dark gray, brachialis (Bi); light gray, trapezius
(Trap); black, deltoid (Delt)]. Weight changes were associated with changes in the ratio of M1 activities that were correlated with this IC.
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row, late reach). In the early reach, the hand followed a more
curved path to the pellet because the limb was raised higher rel-
ative to the tray and was held above the tray for a longer period
(i.e., presumably because of increased muscle cocontraction).
The normalized path lengths (of the hand to the pellet) were
computed for the first and last blocks for the three animals show-
ing reduction of this cocontraction IC. We found a small but
significant reduction in path length over time [at p 
 0.05; first
block, 1.35 � 0.11 (SD); last 20, 1.20 � 0.10) and a significantly
reduced delay between initial IC activation and pellet contact
(first block, 330 � 17 msec; last block, 279 � 17 msec). These
changes were associated with improved success rates.

Ten of 37 M1 cells that were significantly correlated with mus-
cle activations were positively correlated with stable ICs (corre-
lated with 1.13 � 0.35 ICs; i.e., seven of eight were correlated with
just one IC, and one cell was correlated with two ICs). Stable ICs
were those in which the mean Euclidean distance between

weights over the day was not significantly different from the
mean distance between the weights of most similar locomotor
ICs; 31 of 66 or 47% of ICs (six ICs per animal, which described
65–75% of EMG variance, 11 animals) were considered stable.
Mean peak correlations for these 10 cells with IC activation pat-
terns were 0.21 � 0.7 (SD). Of the 10 cells, 8 had significantly
increased or decreased peak rates in block 3 compared with block
1 ( p 
 0.01; 6 of 8 were decreased by 14 � 6 Hz; 2 of 8 were
increased by 11 � 3 Hz). These rate changes were accompanied
by corresponding changes in the activation magnitude of ICs to
which they were correlated. Figure 10C shows data for an M1 cell
(in rat N) that had firing rates correlated with IC3 activation. The
left panel shows firing rates for this cell, in which each row is data
for one trial (red is highest activity), and the right graph shows the
cross-correlation between the firing rate of this cell and IC3 acti-
vation. Both IC3 magnitude (Fig. 10A) and the firing rate of the
cell were reduced with training. Figure 10C, bottom graph, shows

Figure 10. Adaptation of the amplitude of synergy activation. A, (same as Fig. 7), Contour plots showing activation pattern of six ICs for rat N. Each row is one attempt (90 attempts); red, highest
activity. Mean activations are superimposed (black lines, for IC2, IC3; solid lines, mean of block 1; dotted lines, mean of block 3). Bar plots in middle column show IC weights for the first 10 trials
(muscles from left to right: FCU, brachialis, medial triceps, lateral triceps, ECR, deltoid, ECU, biceps, trapezius, teres major). ICs were activated sequentially (top to bottom: IC1, prereach posture; IC2,
reach initiation; IC3, cocontraction of shoulder and elbow flexors, extensors; IC4, limb extension, hand positioning; IC5, grasping; IC6, retraction). Activation of IC2 was increased, and activation of
IC3 was reduced with training. Bar plots in the right last column show the distribution of Euclidean distances between IC1 weights and IC23 M weights, where 1 refers to trials 1–10, 2, trials 2–11,
and M, last 10-trial segment. Red lines, Mean distance. IC2 and IC3 weights were not significantly changed during training (see Results, Adaptation of muscle synergy activations). B, Representative
kinematics for early and late reaches; frames are synchronized to aperture entry. Hand path length was reduced with training. C, Top left, Contour plot of the PETHs of an M1 cell significantly
correlated with IC3 activation (cross-correlation shown in the top right graph). Each row represents data from one attempt; red, highest firing rates. Bottom graph, Integrated PETH area (between
250 and 450 msec) versus integrated IC3 area (between 300 and 500 msec). 1, 90, Trial numbers; arrow, direction of IC3 PETH reduction through time. The linear regression was significant at p 

0.01 (R 2 � 0.49).
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a scatterplot of the integrated area of the PETH (250 – 450 msec)
versus the integrated area of IC3 activation (300 –500 msec). The
linear regression was significant ( p 
 0.01; R 2 � 0.50). All eight
cells that were correlated with stable ICs showed significant linear
relationships between integrated PETH area (t � t � 200 msec; t
is time) and integrated IC area (t � 50 – t � 250); all were
significant at p 
 0.05, and 3 were significant at p 
 0.01. The
mean R 2 statistic was 0.41 � 0.07 (SD). These findings suggest
that M1 cells and muscle synergies could be regulated as a coher-
ent unit, and this unit was in certain cases related to a widespread
cocontraction signal.

Discussion
Muscle synergies and motor programs
Muscle synergies were defined in the present study as ICs. ICs
were extracted from EMG patterns with the statistical algorithm
called ICA (Makeig et al., 1997). In its application, we assumed
that each EMG channel received activation from several source
signals originating in the CNS, and each source distributed its
signal to multiple muscles. ICA was used to estimate these source
signals and their distribution patterns. That ICs exhibited all-or-
nothing activation patterns (e.g., switching), that ICs could be
individually regulated (e.g., activation amplitude) without affect-
ing other ICs, that M1 firing patterns were correlated with IC
activations, and that the sequences and distribution patterns
(weights) of ICs were consistent among animals provide evidence
that ICs, or muscle synergies, may indeed be represented in the
CNS (see below).

We distinguished between muscle synergies and motor pro-
grams by defining motor programs as sequences of synergy acti-
vation. We focused on sequences (of three or four synergies) that
occurred between reach onset and pellet contact. Because correc-
tive submovements appeared only after pellet contact (Whishaw
et al., 1998), animals probably relied heavily on accurate feedfor-
ward control of this movement portion. Such feedforward pat-
terns have been termed motor programs (Morris et al., 1994) and
are thought to represent the output of a pattern generator or
internal controller (Shadmehr and Mussa-Ivaldi, 1994; Wolpert
and Kawato, 1998; Wolpert et al., 2001). That animals switched
between motor programs provides evidence that discrete CNS
controllers may have generated these patterns. Interestingly, an-
imals improved early performance by increasing the probability
of activating the more successful controller.

Motor pattern adaptation
Early improvements were also related to the appropriate adapta-
tion of selected motor programs. Adaptation occurred at the level
of both individual muscles and muscle synergies. Animals ap-
peared to reconfigure preexisting muscle synergies with training
(Porter and Lemon, 1993; Nudo et al., 1996; Wolpert et al., 2001).
We quantified this by determining how the distribution of coher-
ent muscle activities (IC weights) changed during training rela-
tive to the weights of locomotor ICs, which are likely to be stable.
Animals modified the weights of one or two synergies during
training, and most animals modified one synergy in particular,
which was distributed to extrinsic hand muscles and activated
just before pellet contact. These weight changes were associated
with changes in hand and finger kinematics before pellet contact
and with improved grasping. The adaptation of IC weights pro-
vides evidence that animals regulated motor patterns at the level
of individual muscles.

Animals also regulated motor patterns at the level of individ-
ual synergies, i.e., modified the amplitude of synergy activations

without changing the balance of muscle activities within the syn-
ergy. We referred to these synergies as being stable. Regulation of
the amplitude and onset times of a small number of stable syner-
gies potentially accelerates learning by reducing the degrees of
freedom of the activation parameter space (Winters, 2000). In
support of this, we found that animals commonly adjusted the
amplitude of several stable synergies in parallel (e.g., Fig. 10, in
which IC2 was increased in amplitude and IC3 was simulta-
neously decreased during training). Animals reduced the ampli-
tude of one synergy in particular that was distributed to antago-
nistic muscles around the shoulder, elbow, and wrist. This
adjustment was associated with straighter hand paths, reduced
movement times, and improved targeting. Humans similarly reg-
ulate the amplitude of a widespread cocontraction signal during
motor learning and thus rely less on viscoelastic properties of the
limb (Thoroughman and Shadmehr, 1999; Osu et al., 2002).

Most animals (8 of 11) activated the same basic motor pattern
from the onset of training, i.e., did not exhibit switching. This
suggests that a motor pattern and synergies were learned already,
were innately specified (Whishaw et al., 1998; Tresch and Bizzi,
1999), were quickly adapted from other behaviors (e.g., locomo-
tion; Georgopoulos and Grillner, 1989), or were careless solu-
tions wherein reasonable success rates obtained with initial, ap-
proximate solutions did not induce alternative search paths
(Scheidt et al., 2001). Nonetheless, that success rates increased by
20% on the first day and 50% over the following 10 d supports the
idea that module tuning is an important component to skill
learning (Mussa-Ivaldi and Bizzi, 2000).

Motor cortical basis for early skill learning
Although M1 may contribute to learning itself (Pascual-Leone et
al., 1994; Sanes and Donoghue, 2000; Li et al., 2001; Muellbacher
et al., 2002), our results address the role of M1 in expressing
learning-related mechanisms. These mechanisms were related to
action selection and motor adaptation. We found that prereach
M1 activity predicted significantly above chance the switching
between motor patterns. Prereach muscle activity was not as ef-
fective. Thus, prereach M1 activity appeared to reflect both
motor-related output and sensory input (Asanuma, 1981; Evarts,
1981; Singh and Scott, 2003), and this information may contrib-
ute to state estimation (Naito et al., 2002) and action selection
(Kettner et al., 1996; Carpenter et al., 1999; Laubach et al., 2000).

M1 cells (37%) had firing rates during the task that were sig-
nificantly correlated with the activation of multiple muscles
(McKiernan et al., 2000; Holdefer and Miller, 2002) and with
primarily one IC. The mean latency for M1–IC and M1–muscle
correlations was � 60 msec, which is in the range observed for
M1–muscle correlations in monkeys (50 –75 msec; Morrow and
Miller, 2003). That latencies were not shortened in rats (e.g.,
because of shorter conduction lines) suggests that the average
(effective) synapse number from M1 to muscles might be in-
creased or that conduction velocities might be reduced. At these
latencies, the mean firing rates of individual cells appeared very
similar to the activation patterns of ICs (see Fig. 8). However,
cells were in most cases significantly correlated with only a subset
of muscles that constituted the IC (on average, 3.5 of 5 muscles).
Thus, a population of coactive M1 cells rather than individual
cells specifies the IC activation pattern (i.e., both the weights and
activation waveform; the activation waveform itself may be spec-
ified by individual cells).

M1 cell pairs were recorded that had a high probability of
coincident spiking during the task and that were correlated with
the same IC. Coincident spiking is common among M1 cells (Fetz
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et al., 1991; Hatsopoulos et al., 2001; Schieber, 2002), especially
those with overlapping muscle projections (Jackson et al., 2003).
The peak firing rates of these coactive cells were regulated either
proportionately or disproportionately during training. We sug-
gested that disproportionate or opposite changes in the firing
rates of coactive cells underlie changes in how the IC activation
pattern was distributed to muscles (see Fig. 9; adaptation of IC
weights). However, establishing a direct correspondence between
IC weight changes and firing rate changes is likely to be difficult
because tens of cells appear to control any one muscle activation
pattern (Morrow and Miller, 2003), and cells may be correlated
with overlapping but slightly different sets of muscles (McKier-
nan et al., 2000). In contrast to weight changes, we suggested that
changes in the amplitude of synergy activation were likely to be
attributable to in-parallel and proportionate changes in the firing
rates of coactive cells (Fig. 10). Because only a small population of
coactive cells was recorded, which were correlated with the same
IC (three cells at the most), this was again difficult to prove de-
finitively. Despite this, our data support the existence of func-
tional M1 assemblies (coactive cells) that specify synergy activa-
tions and that form tunable modules during learning.

Many cells (63%) were not correlated with forelimb muscle
activations on day 1. Seventy-six percent of these cells (48 of 63)
had significantly increased or decreased firing rates in block 3
compared with block 1 and thus were adapted with training.
These cells might instead specify kinematics (Georgopoulos et al.,
1986; Kakei et al., 1999; Reina et al., 2001), dynamics (Li et al.,
2001; Gribble and Scott, 2002), posture (Sergio and Kalaska,
2003), or pellet location, alone or in combination (Fu et al.,
1995). Alternatively, some of these cells might encode only the
onset or amplitude of synergy activations rather than the time
course, which is encoded elsewhere (e.g., spinal cord; Tresch and
Bizzi, 1999). Furthermore, extended training might enhance the
apparent connectivity between M1 cells and muscles through
changes in M1 reliability, synchrony, or both (Schieber, 2002).
Finally, it is unclear whether cells were pyramidal tract cells
(PTNs), corticomotoneuronal cells, or M1 interneurons, which
will affect parameter encoding (Beloozerova et al., 2003). How-
ever, we expect that many cells were PTNs (electrolytic lesions
were in layer V in all animals).

In summary, the present study showed that early skill learning
was expressed through motor program selection and tuning. Se-
lection was predicted in part by prereach M1 activity. Reach-
related M1 activity was correlated with the activation of specific
muscle synergies. This M1 activity was adapted with training, and
these changes were associated with changes in either the ampli-
tude of activation or composition of the correlated synergy. Both
forms of motor pattern tuning were associated with performance
improvements.
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