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Cooperation between Area 17 Neuron Pairs Enhances Fine
Discrimination of Orientation

Jason M. Samonds,! John D. Allison,> Heather A. Brown,! and A. B. Bonds!'-2
Departments of 'Biomedical and ?Electrical Engineering, Vanderbilt University, Nashville, Tennessee 37235

We examined 66 complex cells in area 17 of cats that were paralyzed and anesthetized with propofol and N,0. We studied changes in
ensemble responses for small (<10°) and large (>10°) differences in orientation. Examination of temporal resolution and discharge
history revealed advantages in discrimination from both dependent (e.g., synchronization) and independent (e.g., bursting) interspike
interval properties. For 27 pairs of neurons, we found that the average cooperation (the advantage gained from the joint activity) was
57.6% for fine discrimination of orientation but <<5% for gross discrimination. Dependency (probabilistic quantification of the interac-
tion between the cells) was measured between 29 pairs of neurons while varying orientation. On average, the dependency tuning for
orientation was 35.5% narrower than the average firing rate tuning. The changes in dependency around the peak orientation (at which the
firing rate remains relatively constant) lead to substantial cooperation that can improve discrimination in this region. The narrow tuning
of dependency and the cooperation provide evidence to support a population-encoding scheme that is based on biologically plausible

mechanisms and that could account for hyperacuities.
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Introduction

The principles by which sensory information is represented in the
brain are controversial. One classical viewpoint is Barlow’s
(1972) cardinal cell theory, in which neurons are considered in-
dependent. This would appear to be true in the visual cortex, in
which information-theoretical methods have shown that the cor-
relation between pairs of neurons is either slightly redundant
(Gawne et al., 1996) or independent (Victor, 2000; Reich et al.,
2001). The output of an individual neuron can represent sensory
information in the form of both the average firing rate and the
temporal structure of individual spike trains (Richmond and Op-
tican, 1987; Victor and Purpura, 1996; de Ruyter van Steveninck
et al., 1997). However, synchronous activity between LGN pairs
enhances information by as much as 40% (Dan et al., 1998), and
the representation of faces appears to be distributed across infe-
rior temporal cortical cells (Rolls et al., 1997a,b), contradicting
the convergence and specialization expected with independent
neurons.

The idea that information can be represented by synchronous
activity distributed across many neurons was proposed by Hebb
(1949), who suggested that information could be passed between
regions of the brain as spatiotemporal patterns. The difficulties of
obtaining a sufficient number of simultaneous recordings and
determining the relationship between a pattern and sensory input
have impeded the empirical testing of Hebb’s idea, but recent
improvements in multiunit recording and population analysis
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techniques have led to supporting evidence (Maldonado and
Gerstein, 1996; Nicolelis et al., 1997; Doetsch, 2000; Martignon et
al., 2000; Nadasdy, 2000). These studies describe spatiotemporal
activity that is related to stimuli, but do not examine directly how
information is encoded in the temporal structure of individual
spike trains (von der Malsburg, 1981). This issue has been ad-
dressed more directly with the analysis of bursts (clusters of
spikes with <8 msec intervals) (Cattaneo et al., 1981a,b; DeBusk
et al.,, 1997) and gamma (40-70 Hz) oscillations (Gray et al.,
1989). Both are intrinsic properties of neurons (Gray and Mc-
Cormick, 1996) and have been demonstrated as possible mecha-
nisms by which spatiotemporal patterns of synchronous neural
activity are selectively transmitted across brain regions (Gray et
al., 1989; DeBusk et al., 1997; Snider et al., 1998).

In this study, we examine what joint aspects of the spike trains
from pairs of neurons contribute to orientation discrimination.
The method we use (type analysis) (Johnson et al., 2001) makes
almost no assumptions about the nature of the neural code and
provides a formal comparison of two stimuli with respect to the
neural activity. We find that orientation discrimination is most
efficient when using a temporal resolution that matches the
bursting intervals (DeBusk et al., 1997) and when we consider
enough discharge history to include synaptic delays. We find that
the greatest cooperative advantage in discrimination is found
when examining small differences in orientation (<10°), in
which tuning of the dependency between the neurons is signifi-
cantly narrower than their individual spike rate tuning curves.
Expansion of this principle to a broader population could sup-
port phenomena (e.g., hyperacuity discrimination) that are not
well explained by the integration of single-cell responses.

Materials and Methods

Preparation. Seven adult cats (2.5—4.0 kg) were prepared for electrophys-
iological recordings in area 17 (recordings were also made for additional
experiments not described in this paper). Experimental procedures were
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performed under the guidelines established by the American Physiolog-
ical Society and the Animal Care and Use Committee at Vanderbilt Uni-
versity. Each cat was initially injected intramuscularly with 0.5 ml of
acepromazine maleate and 0.5 ml of atropine sulfate. Anesthesia was
induced with 5% halothane in O, and maintained with intravenous in-
jection of 0.3 mg-kg '-hr ! propofol after cannulating one of the
forelimb veins. A second forelimb vein and the trachea were then cannu-
lated. Once the cat was mounted in a stereotaxic device, a small craniot-
omy (2 X 5 mm) was performed over the area centralis representation
(Horsley-Clark coordinates P4-L2). The underlying dura was excised,
and once the electrode was positioned, the hole was covered with agar
mixed with mammalian Ringer’s solution. Melted paraffin was poured
over the agar to provide stability.

During recording, paralysis was induced with 6 mg and maintained
intravenously with 0.3 mg kg ~' - hr ' pancuronium bromide (Pavu-
lon). The cats were artificially ventilated with a mixture of N,0:0,:CO,
(75:23.5:1.5), and Po, was held at 3.9%. Anesthesia and health were
maintained by monitoring the electrocardiogram and electroencephalo-
grams and making bolus injections of propofol when necessary. The
rectal temperature was maintained at 37.5°C with a servo-controlled heat
pad. The nictitating membranes were retracted with 10% phenylephrine
hydrochloride, and the pupils were dilated with 1% atropine sulfate.
Contact lenses with 4 mm artificial pupils were fitted, and auxiliary lenses
were added to render the retina conjugate at a viewing distance of 57 cm
with direct ophthalmoscopy.

Stimuli. Initially, bars of light rear-projected onto a large tangent
screen were used to characterize receptive field location and properties.
Because multiple cells were recorded, the receptive field of the aggregate
activity was determined and the activity center was identified. Individual
receptive fields could not be distinguished because the spike sorting is
performed offline. Stimuli were then generated using the Cambridge
Research Systems (Rochester, UK) VSG2/4 controller board and a 21
inch Sony (Tokyo, Japan) Trinitron graphics display with a frame rate of
120 Hz and a mean luminance of 73 cd/m?. The orientation, spatial
frequency, temporal frequency, and diameter of drifting sine wave grat-
ings were varied to determine optimal stimulation characteristics for the
collective response. Gratings were presented within a circular aperture
with a diameter that varied from 4 to 16° (average, 9°). The stimulus size
does not necessarily represent individual or even multiple or overlapping
classical receptive-field sizes. The grating size was determined only by the
maximum summed response of all responding cells to increase the
chances of obtaining sufficiently large spike samples for type analysis.

For single electrode experiments, we collected multiunit recordings
from 30 to 300 two second stimulus repetitions. We randomly repeated
this for variations of orientation of 3, 7, 12, 18, 25, and 33° on both sides
of the peak response (maximum combined firing rate of all neurons) or
variations of spatial frequency from 0.03, 0.07, 0.12, 0.18, 0.25, and 0.33
cycles per degree on both sides of the peak. We also measured responses
to spatially optimal stimuli at contrasts of 10-100% in 10% intervals.

For the multielectrode array experiment, we first used light bars to
characterize receptive fields of single units. With these qualitative mea-
surements, we determined that the population of cells could be stimu-
lated with a single 10° sinusoid grating centered with respect to the re-
ceptive field of the aggregate activity. We then collected recordings from
84 and 104 stimulus repetitions of 2 sec each while varying orientation
from 100 to 190 and 200 to 280°, respectively, at 10° increments and at
spatial frequencies of 0.3, 0.5, and 0.7 cycles per degree. We used these
data to measure orientation tuning with respect to firing rate and selected
20 pairs of cells with similar preferred orientations to perform type anal-
ysis calculations. The preferred orientations of these cells were grouped
around two orientations. We collected recordings from 560 and 538
stimulus repetitions of 2 sec each while varying the orientation across 28°
around these two orientations at 2° increments.

Data acquisition and spike classification. Recordings of multiunit activ-
ity for six cats (44 cells) were made with a single tungsten-in-glass micro-
electrode (Levick, 1972). The signal was amplified by 5000, band-limited
between 300 and 3000 Hz, and sampled at 30 kHz by an AT&T (Allen-
town, PA) DSP32C digital signal processing board. The threshold for
event acceptance was set at 5 SD above or below the mean noise level
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(Snider et al., 1998). The action potential was stored from 1 msec before
to 3 msec after the trigger point (a total of 4 msec, or 120 sampled points).

Classification of cortical spikes is difficult because of amplitude
shrinkage during bursting. Our classification procedure of action poten-
tials has been described in detail previously (Snider and Bonds, 1998;
Snider et al., 1998). In brief, each waveform is projected as a 120 dimen-
sion vector. Each waveform is represented as a point in space, and the
waveform space is partitioned into many small clusters using the method
of binary tree bisection. Although waveforms can change shape through-
out recording, the method is able to combine clusters on the assumption
that these changes are gradual. A score is assigned for pairs of clusters
based on the individual cluster densities and the density between each
cluster. If the clusters are essentially smeared together (as would be ex-
pected with the gradual nonstationary waveform), the score will be rela-
tively low. A plot of this score versus the number of clusters can be used
to determine a threshold. This plot typically yields a plateau that repre-
sents a threshold for reasonably separated clusters.

After separating the waveforms, a small number of samples remained
unclassified because they resulted from noise or overlapping waveforms
that could not be unambiguously separated. These waveforms typically
represented only 1-3% of the data. Because of the long recording times
(as long as 12 hr for a single group), the data were broken down into
several files for classification. Typically, in a given recording only a pair of
neurons was present with a steady response throughout all of the files and
the entire recording time. Because neuron firing patterns beyond those of
the strongest pair usually represented <2% of all the samples and were
not consistently recorded, we limited our analysis to pairs.

Multiunit activity was recorded from an additional cat (22 cells) using
the 5 X 5 Utah Intracortical Electrode Array (Bionics, Salt Lake City,
UT). The array was inserted to a depth of 0.6 mm using a pneumatic
implantation tool (Rousche and Normann, 1992) to minimize tissue
damage. The signal on each channel was amplified by 5000 and band-
limited between 250 Hz and 7.5 kHz. The threshold for each electrode
was set at 3.25X the mean activity, and waveforms were sampled at 30
kHz for 1.5 msec windows. Twenty-two of the electrodes recorded single-
unit activity for 30 hr; Bionics Data Acquisition spike classification soft-
ware was used to remove noise and artifact.

Type analysis. We used the method of type analysis described in detail
by Johnson etal. (2001), which allows examination of how neural ensem-
ble responses differ as stimulus features (orientation, spatial frequency,
and contrast) are varied. The procedure determines how two population
responses vary across time in terms of the ability of an optimal classifier
to discriminate them.

Each stimulus repetition is first converted into a sequence of “letters.”
The letter is determined by the firing pattern that occurs within a time
window (bin). We use a binary alphabet in which each neuron can have
a value of 1 or 0, depending on whether a spike occurs within the bin.
Each neuron represents a place in the binary representation. For exam-
ple, if a population of three neurons has the first and third neuron fire
within a bin, the letter would be 101 (base 2) or:

22X 14+2'X0+2°X1=5 (1)

Once this procedure is complete, each response collected is represented
as a sequence of letters across 2 sec ranging from 0 to 2 "umber of neurons _
1 or 0 to 7 for our example. The sequence length is the number of bins
determined by dividing 2 sec by the bin width.

Types or probability mass functions are then formed from the repeti-
tions of each stimulus. Essentially, a probability distribution is estimated
for each bin across time for each possible letter in the alphabet. Types can
then be used from two different stimuli to calculate a “distance,” which
provides an estimate of the reduction in classification error when using
an optimal classifier. The classification error is proportional to 2 =4
(where d(t) is the distance at time t). An increase in the distance measure
results in an exponential decrease in the classification error.

We use a modified version of the Kullback—Leibler distance described
by Johnson et al. (2001) to provide an estimate of the Chernoff distance.
The distance (referred to as the resistor average) is the harmonic average
of the Kullback—Leibler distance from response 1 to response 2 and from
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response 2 to response 1. The Kullback-Leibler distance d( p||q) for bins
1 to B and for K possible letters over M stimulus repetitions is:

number of k for stimulus a

Pa(k) - M (2)
B K-1

P\(k,)
d(PP) = 2 3 Pilky) X logs 5 3)

b=1 k=0 2

The resistor average is
d(P,||P,) X d(P,|P

(ppy = APIP) X PP "

d(P,\|[P,) + d(P,|[P))

The method can be extended to incorporate discharge history into the
distance measure by forming conditional types on the patterns that occur
in previous bins. The number of previous bins examined is the Markov
order of analysis (D previous bins). Conditional types are formed from
joint types, which are the probabilities of sequences of letters occurring.
The joint types are formed by essentially expanding the alphabet to de-
scribe the bin of the letter (alphabet size = 2P), The conditional type
is equal to the joint type of the sequence of letters from the current bin
and all previous bins considered divided by the joint type of the sequence
of letters occurring only in the previous bins.

P(kb)kbflr .. )kbe)

P(kb|kb*1:kb*2)- .. )kbe) = })(kbi1 kb—z . kb—D) (5)

The Kullback-Leibler distance d( pl|q) for bins I to B and for K possible
letters over M stimulus repetitions and a Markov order D is

B K-1

d(PlHPz) = E E Pl(kt»kb—p- . >kb—D)
b=1 k=0
Pl(kh|kh71)kh72)~ e kb*D)
X 1 6
082 Pz(kb|kb—1>kb—z>- .. )kb*D) ( )

The Markov order D is limited by the available data (M stimulus repeti-
tions) and the population size (N neurons):

lo
_ logM+ 1) )

log(2" + 1)

Because the estimation can depend on discharge history, it could be in
error when using a Markov order that is too small. We examined the data
to determine the extent of discharge history required for the distance
measurement to reach a stable value (i.e., when additional bins did not
change the measure). We wanted to use the smallest possible Markov
order because of the data limitations of equation (7), but at the same time
needed to ensure that the order was sufficiently large to describe the
distance accurately.

Because many times a limited data were available, many bins ended up
with probabilities of 0 for certain letters. This would result in possible
infinite distances in the Kullback—Leibler calculations. To avoid this
problem, the Krichevsky—Trofimov estimate (Johnson et al., 2001) was
used, which initializes each probability to 0.5. The types are then normal-
ized to compensate for the 0.5 added to the probability of each letter.

Because the Kullback—Leibler distance must always have a positive
value, there will tend to be an upward bias in the estimate. The procedure
we use to estimate the bias and to provide confidence limits on our
measures is the bootstrap method (Efron and Tibshirani, 1993; Johnson
etal., 2001). The bootstrap method creates new data sets from the orig-
inal by randomly selecting samples from the M repetitions and allowing
for repeats (i.e., the same sample can be chosen for multiple random
selections). Distances are calculated for all of these new data sets (we use
200) and averaged, and the bias is obtained by subtracting the original
distance measure from this average. The data sets are sorted in ascending
order; depending on the confidence limits desired, certain data sets are

Samonds et al. » Area 17 Cooperation Enhances Orientation Discrimination

used to produce these limits (i.e., 5th and 95th percentiles for a 90%
confidence interval).

To test for the redundancy or cooperativity of neurons in a population,
we form types using the ensemble alphabet (e.g., eight letters for three
neurons) and form types for each individual neuron (having only two
letters). The procedures for conditional types can then be repeated for all
of the measures to include discharge history. The sum of the individual
neuron’s distances (d;, gependent) €31 then be compared with the distance
computed from the ensemble alphabet (d,

ensemble)

densemble - dindependem

synergy = (100%) (8)
ynergy

dindependent
When these distances are equal, the neurons can be considered indepen-
dent. When the ensemble measure is smaller, the neurons have negative
synergy and are redundant. When the ensemble measure is larger, the
synergy is positive and the neurons are cooperative. The bootstrap
method (Efron and Tibshirani, 1993; Johnson et al., 2001) was used on
the synergy calculation to produce confidence limits to assess the signif-
icance of these differences.

In this article, we will refer to all Kullback-Leibler resistor average
distance calculations as the KL distance (Eq. 6) and all percentage synergy
calculations as synergy (Eq. 8). Although the KL distance has units of bits,
the calculation is not the same as an entropy or mutual information
measure.

Functional dependency. The last method we explored from Johnson et
al. (2001) was the measurement of transneural correlation (throughout
the article we will call this the dependency). The dependency of neurons
in a population is quantified and presented as a distance measure over
time. A type is formed under the assumption that the neurons are acting
independently (forced-independent type). The first step is to sum the
probabilities of all letters in the original type that indicate a particular
neuron discharged. This is then repeated for all of the neurons, and the
procedure is then repeated for when the neuron does not discharge.
Multiplying the proper sequence of discharges and nondischarges then
forms the independent type for each letter. For example, with two
neurons:

probability of discharge of neuron 1 = P, = P(1) + P(3)
9)
P, = P(2) + P(3) (10)

probability of no discharge of neuron 1 = P,;, = P(0) + P(2)

(11)

P,;» = P(0) + P(1) (12)
forced-independent Py(0) = P4 X P, (13)
Pi(1) = Py X P,p» (14)

Pi(2) = P,y X Py, (15)

Pi(3) = Py X Py, (16)

This type is compared with the original type (using a zero-order KL
distance) to compare how dependent the neurons are and how this varies
over time. The method can be used to determine dependency that arises
from either connectivity or from shared input. By extending the measure
across another dimension (i.e., orientation), we are able to examine the
tuning of dependency.

We use dependency with cross-correlation (Aertsen et al., 1989; Snider
et al., 1998) for pairs of neurons to assess functional dependency. The
single electrode recordings of multiunit activity focus on connectivity
between neurons rather than neurons paired by common input, because
waveforms correlated around a zero lag time will overlap on a single
electrode, and it is usually impractical to identify the individual wave-
forms. The multielectrode array recordings tend to focus on longer dis-
tance interactions because of the electrode spacing (400 wm). Pairs of
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neurons were classified as strongly synchronized when we found a large
peak in the cross-correlogram at 0—4 msec and a width of 1-3 msec,
moderately synchronized when we found a broader (3—10 msec) peak
just above the baseline in the cross-correlogram, and uncorrelated with
no noticeable correlated activity.

We emphasize again that the measures of KL distance and dependency
should not be confused with other information measures. The measure-
ments are based partly on information theory (in addition to classifica-
tion theory), so the measurements are subject to many of the same ob-
stacles that occur in entropy calculations, and we do end up with the unit
of bits for both KL distance and dependency. The KL distance and de-
pendency measures should not be confused with each other. The KL
distance is a relative measure of the difference between neural responses
to two different stimuli and the dependency is an absolute measure of a
neural response to a single stimulus.

Results

Temporal resolution

Although type analysis is essentially unconstrained, it does de-
pend on temporal resolution and response history. We first ex-
amined the temporal resolution used to bin the responses. Re-
cordings were made with 30 usec precision, but responses were
represented as a letter determined by neuron activity within a
longer time window. Window size was varied from 1 to 8 msec for
analysis of responses for discrimination of fine and gross changes
of orientation. Twenty-seven pairs of neurons were examined for
orientation differences of <10 and >10° from the peak response.
The number of stimulus repetitions collected for each pair of
neurons ranged from 200 to 560, with a mean of 471.

Johnson et al. (2001) predicted that bin width would be essen-
tially independent of the KL distance when discharge probabili-
ties were relatively small. However, these predictions were made
for a single-neuron, zero-Markov-order scenario in which the
response difference is a difference in average firing rates. We
consistently found larger KL distances when using a 2—-5 msec bin
width. There are two possible reasons that there is an advantage in
discriminating neural responses (an increase in KL distance) in
this range of temporal resolutions. First, independent interspike
interval (ISI) statistics over the short term (i.e., bursting) carry
information about the stimulus feature being discriminated (De-
Busk et al., 1997); this information is extracted by filtering the
response to emphasize this time frame. Second, dependent ISI
statistics (i.e., synchronization) between the pair of neurons carry
stimulus-related information that provides the best discrimina-
tion within this temporal window, which corresponds to the av-
erage delay or variation found in cross-correlation histograms.
To identify the relative contribution of each of these mechanisms,
we first measure the KL distance versus the bin width of the
original responses and then measure the function after shuffling
the stimulus repetitions for each neuron to remove spike train
dependencies between the neurons.

Figure 1 shows a histogram of the number of pairs of cells
versus the bin width that resulted in the largest KL distance for
that particular pair of neurons. Figure 1 A shows the optimal bin
widths for fine discrimination of orientation for the original data
and the shuffled data (dependencies between the neurons re-
moved). The average optimal resolution for 27 pairs of neurons
for fine discrimination before shuffling was 3.1 = 0.9 msec. The
KL distance of these peaks provided an average increase in KL
distance 26.4 = 16.0% higher than the minimum distance seen.
After the responses were shuffled, a peak remained, demonstrat-
ing that independent ISI properties of the responses (e.g., burst-
ing) provide sizable advantages for orientation discrimination.
The peak provided, on average, 40.2 = 29.3% more KL distance
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Figure1.  TheKL distance varies with respect to the bin width used to calculate types. 4, The

number of pairs of cells at the bin width that resulted in the largest KL distance (best discrimi-
nation) for fine differences in orientation of the original response and the response after shuf-
fling out dependencies between the neurons. B, The number of pairs of cells at the optimal bin
width for gross differences in orientation before and after shuffling the responses.

than the minimum and shifted to a finer temporal resolution of
2.8 * 0.9 msec, suggesting that the dependent advantages are
slightly coarser than this resolution. Similar results were found
for gross discrimination of orientation (Fig. 1B), except the in-
creases in KL distance were proportionally smaller. The average
peak for gross discrimination was at 3.6 = 1.3 msec, witha 10.2 =
5.0% increase in KL distance; after shuffling, the peak was at
3.1 = 1.2 msec, with an average increase of 14.3 = 9.6%. For both
small and large orientation differences, the results suggest an op-
timal bin width in the range of 2-5 msec, and only 2 of 27 pairs of
cells did not show any changes in KL distance with respect to bin
width. We also found similar qualitative results when examining
four pairs of neurons for spatial frequency discrimination.

Discharge history

We next tested the contribution of discharge history to discrim-
ination. Types were formed using the conditional probabilities
that particular letters occur depending on the letters that occur in
previous bins. When determining the characteristics of discharge
history that will most improve discrimination between re-
sponses, the actual temporal duration is of most importance, not
the Markov order (i.e., the number of previous bins). However,
this becomes more complicated when the temporal resolution
has effects on the KL distance calculation, as we have shown in the
previous section. Because the conditional probabilities are calcu-
lated across more history, the KL distance measure should reach
a point at which there is no more to gain. For all pairs of neurons
we tested, we found that no additional distance was gained from
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Figure 2.  Determination of the relevant discharge history in a response and the Markov
order used to form conditional types. The KL distances for a 5° difference in orientation using a
bin width of 3 msec and a Markov order of D = 0-3. A conditional type depending on the
previous bin (Markov order of D = 1 or 3 msec of discharge history) nearly doubles the KL
distance, but no improvement is found with higher orders.

a Markov order of >1, so we determined that the appropriate
Markov order was 1. Figure 2 shows a representative example of
the change in KL distance as the Markov order (D) is raised from
0 to 3 (the highest D possible for our data; see Eq. 7) with a bin
width of 3 msec (discharge history of 0-9 msec). There is no
increase in KL distance by increasing the Markov order from 1 to
2 or 3, but a large gain from 0 to 1, so we adopted a measure that
includes 1 bin of discharge history into the types. We chose the
smallest possible Markov order that still accurately described the
distance to minimize the data requirements of Equation 7 and to
maximize the reliability of the measurement.

We also wanted to examine how discharge history contributed
to discrimination independent of the temporal resolution (i.e.,
what duration of previous time maximizes the KL distance and
how much distance the previous time contributes). Because the
temporal resolution affects the distance measure, it distorts the
impact of discharge history on the KL distance. To unconfound
this distortion, we calculated the percentage increase in KL dis-
tance from a zero-order calculation to a first-order calculation at
several bin widths.

The responses of the same 27 pairs of neurons were tested with
bin widths from 1 to 6 msec to determine the impact of increasing
discharge history from 0 to 1 bin (Markov order of 0—1). As with
temporal resolution, both independent and dependent spike
train characteristics might lead to advantages in discrimination as
aresult of the discharge history information. For example, burst-
length modulation (DeBusk et al., 1997) will lead to changes in
the probabilities of spikes occurring in the discharge history of
the individual neurons. Synchronization modulation between
synaptically connected neurons will be revealed in discharge his-
tories that include enough time to allow for synaptic delays. To
separate the contributions of independent and dependent prop-
erties, we again compared the original results with the result after
shuffling the stimulus repetitions for each neuron.

Figure 3 shows a histogram of the number of pairs of cells
versus the percentage increase found in the KL distance from a
Markov order of D = 0 to D = 1 for fine and gross differences in
orientation. The histogram suggests that fine differences in ori-
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Figure3. Ahistogram of the percentage increase in KL distance from a Markov order of D =

0to D =1 (i.e., only the current bin to conditional on one previous bin) for fine and gross
differences in orientation. The percentage increases are also shown for responses that have
been shuffled (to remove dependencies between the neurons) for fine differences in orienta-
tion. The removal of dependencies yields a slight shift in the histogram to a smaller percentage,
suggesting some dependent (e.g., synchrony) influences in the discharge history. For fine dif-
ferences in orientation, the KL distance appears to be first-order; for gross differences in orien-
tation, the KL distance generally has a Markov order of 0.

entation result in first-order distances with an average increase in
KL distance of 79.1 = 47.4% at an average bin width (discharge
history) of 2.9 = 1.2 msec. In general, the KL distances to gross
differences in orientation appear to have zero-Markov-order sta-
tistics, with an average increase from D = 0 to D = 1 of only
12.1 * 8.5%. For 12 pairs of neurons that showed a shifted peak
in the cross-correlogram (described in the section on functional
dependency), we also found a decrease in the percentage increase
from a zero- to first-order KL distance after shuffling responses
(removing dependencies between the neurons), suggesting that
the discharge history for these particular pairs of neurons pro-
vided some dependent advantages in discrimination. The average
percentage increase from dependencies (subtracting the shuffled
percentage increase from the original percentage increase) for
these 12 pairs of cells was 27.1 = 17.8% at an average bin width of
2.7 = 0.9 msec. The remaining 15 pairs of cells resulted in only
independent (e.g., bursting) increases in KL distance. For all 27
pairs of cells, 2-5 msec of independent discharge history (exam-
ining a total of 4—10 msec) results in an average increase of 60.6 =
33.4%.

Synergy

To quantify how much the cooperation between the pair of neu-
rons contributes to fine and gross discrimination of orientation,
the ensemble KL distances were calculated for the same 27 pairs
of neurons mentioned above and compared with the sum of the
KL distances for each individual neuron in the pairs.

Figure 4 shows a histogram of the number of cells and the
percentage increase from the independent KL distance to the
ensemble KL distance (i.e., synergy) for fine and gross differences
in orientation. The average amount of synergy produced across
all 27 pairs of neurons for fine discrimination of orientation was
57.6 * 31.9% using an average bin width of 4.6 * 1.1 msec
(Markov order D = 1). For the most part the neurons work
independently for the gross discrimination of orientation, with
an average synergy of only 2.0 = 4.4%.

The results for gross orientation discriminations agree with
previous conclusions that cortical neurons act essentially inde-
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Figure 4. A histogram of the number of cells and the percentage synergy (KL distance not

available from the KL distances for each independent cell) for fine and gross differences in
orientation. A negative synergy suggests redundancy between the cells, a positive synergy
suggests cooperation, and a synergy of 0 suggests that the cells discriminate independently.

pendently (Gawne et al., 1996; Victor, 2000; Reich et al., 2001).
However, we find that when the neurons are strongly or even
moderately synchronized, they cooperate for fine discrimination
of orientation. We also examined four pairs of neurons for fine
spatial frequency differences (<0.1 cycles per degree) and found
that to a lesser extent (average, 25%; range, 15-40%), coopera-
tion was also present in these cases. One reason for the significant
amount of cooperation across this small segment of the tuning
curve for the pair of neurons is that it is in this region that syn-
chronization is highly modulated, whereas the average firing rate
(and even burst length) is nearly constant (Snider et al., 1998).
We will demonstrate this idea in detail in the section on func-
tional dependency.

Confidence in KL distance and synergy estimations
Here we have reported differences between both the D = 0 and
D = 1 Markov-order KL distances and the ensemble and inde-
pendent KL distances (i.e., cooperation) for fine but not coarse
variations in orientation. Confirmation of the statistical reliabil-
ity of these particular findings is necessary. Unless the actual
probability distributions are known for the neural activity of the
pairs of cells, the KL distance estimates will tend to be upwardly
biased with some uncertainty. We have used the bootstrap
method (Efron and Tibshirani, 1993; Johnson et al., 2001) on
both KL distance and synergy calculations separately to estimate
this bias and to produce confidence intervals for these estimates.
For fine differences in orientation, we find a large overlap of the
90% confidence intervals between the KL distance calculated
from the sum of the individual cell distances (di,gependent) and the
KL distance calculated with the ensemble alphabet (d.smpic)
(Fig. 5A). However, the debiased estimate for d.,.pie itself falls
outside the 90% confidence interval for the di,gependent (Fig- 54),
suggesting that there is a difference between the estimates with
90% confidence. We find a similar relationship for all 27 pairs of
cells, suggesting that there is cooperation with 90% confidence
for fine differences in orientation. We also find in all cases that
there is a significant difference between D = 0 and D = 1 KL
distance estimates for small orientation differences with 90%
confidence.

Because the KL distance and type analysis makes almost no
assumptions about the neural code, possibilities for interactions
have no constraints. Therefore, a relatively large amount of data
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Figure 5.  An examination of the confidence in the KL distance and synergy estimations. 4,
An example of the bootstrap debiased estimates and 90% confidence intervals of the KL dis-
tance using an ensemble alphabet (considering joint activity) and the sum of the independent
KL distances. B, An example of the bootstrap estimate and 90% confidence interval for the
percentage difference between the KL distances shown in A (i.e., synergy).

(i.e., the number of stimulus repetitions) is required to reduce the
confidence intervals of these results. We have recorded as many
as 560 stimulus repetitions, which is at the limit of what can be
reasonably expected with our preparation. Therefore, practical
recording challenges limit to 90% our confidence in finding the
differences between distances. Confidence intervals of 90% were
also suggested for applications of type analysis (Johnson et al.,
2001). However, we can report lower bounds on synergy with
greater confidence, as described in detail below.

Because the idea of cooperative behavior can have substantial
implications for information processing in area 17, merely dem-
onstrating a difference between an independent KL distance and
an ensemble KL distance does not provide a very strong case for
the significance of the cooperation for discrimination, especially
when the independent and ensemble KL distance calculations
will have different kinds of inherent systematic biases. To ease
this problem, we bootstrap on the basis of the synergy calculation
rather than on the individual KL distances calculated separately
to produce a confidence interval for the synergy itself.

The example for a single pair of cells of the bootstrapped
estimate for synergy is shown in Figure 5B (solid line). There is
still some uncertainty in the estimate when examining the 90%
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confidence interval (dotted lines), but the lower bound falls above
50% synergy, suggesting that there is indeed a significant amount
of cooperation. When we examine this 90% confidence lower
bound across all 27 pairs of cells, we find that the average amount
of synergy is at least 40.7 = 28.1% with 95% confidence. We find
that the average amount of synergy is at least 32.6 * 26.6% with
99% confidence, but this lower bound falls below 0 for four pairs
of cells.

Functional dependency

We last examined the dependency (KL distance between ob-
served type and forced-independent type; see Materials and
Methods) between neurons to explore the putative substrate of
the cooperative activity. The dependency was determined for
pairs of neurons; the results were compared with the SD normal-
ized cross-correlation measure (Aertsen et al., 1989; Snider et al.,
1998). We tested dependency on 42 pairs of neurons while vary-
ing orientation (30 pairs), spatial frequency (10 pairs), and con-
trast (9 pairs). Two pairs of neurons were tested for all three
stimulus parameters, two pairs for contrast and orientation, and
one pair for contrast and spatial frequency. The number of stim-
ulus repetitions ranged from 30 to 300, with a mean of 151.

We initially classified the strength of the synchronization be-
tween the pairs of neurons using cross-correlation (see Materials
and Methods). Eleven of the 42 pairs of neurons were classified as
strongly synchronized (15 of the 49 experiments: 10 for orienta-
tion, 1 for spatial frequency, and 4 for contrast). Twenty-two
pairs of neurons (25 of the 49 experiments: 19 for orientation, 4
for spatial frequency, and 2 for contrast) showed some moderate
correlation in the cross-correlogram; the last 9 pairs of neurons
(1 for orientation, 5 for spatial frequency, and 3 for contrast)
showed no noticeable synchronization. All 13 pairs of neurons
that were at least moderately synchronized and recorded from a
single electrode had a peak in the cross-correlogram centered at
2-5 msec. Five of the 20 pairs of neurons with at least moderate
synchronization recorded from the microelectrode array had a
shifted peak in the cross-correlogram (2-5 msec), and the peaks
for the remaining 15 pairs were centered around 0 msec.

The dependency was calculated for all pairs using a temporal
resolution of 1-10 msec. The resolution that resulted in the larg-
est dependency corresponded with either the lag time or the
width of the peak that was found in the cross-correlogram. The
average optimal bin width of dependency of both moderately and
strongly synchronized pairs of neurons was 3.4 £ 1.3 msec. The
average peak in the shifted cross-correlograms was at 2.7 = 0.9
msec, with an average width of 3.5 * 0.9 msec; the average width
was 4.8 = 1.4 msec for the cross-correlogram peaks centered
around 0 msec. The dependency was divided by the stimulus
duration to produce a dependency rate (bits per second) to de-
termine ranges of dependency for strongly synchronized, mod-
erately synchronized, or uncorrelated pairs (determined from the
cross-correlogram results). In a few cases, we found that the range
of dependency rates for strongly and moderately synchronized
neurons could overlap. The reason for the overlap is that the
distance measure is an entropy-based measure and the absolute
value of the dependency will be influenced by the strength (firing
rate) of the response. Strongly synchronized neurons had depen-
dency rates from 0.3 to 4.0 bits/sec, moderately synchronized
neurons had dependency rates from 0.1 to 0.9 bit/sec, and weakly
synchronized neurons had average rates of <0.1 bit/sec. We de-
fined a cutoff of 0.1 bit/sec to classify a pair of neurons as at least
moderately synchronized. This was determined by examining the
90% confidence intervals and observing a lower limit below 0 (no
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Figure 6.  The temporal dynamics of dependency tuning for orientation. The fines represent
the dependency across time at the peak orientation (288°) and two orientations away from the
peak (278 and 273°). The inset zooms in at 25—-50 msec to show that the dependency rates (i.e.,
the slope) are initially equal at all orientations. The differences in dependency between the
orientations arise only after the reduction in the dependency rate. The dotted lines represent the
90% confidence intervals.

significant dependencies) for responses of weakly synchronized
pairs of neurons and the shuffled responses (transneural depen-
dencies removed) of moderately and strongly synchronized pairs
of neurons.

The reason we represent the dependency as a rate is to present
avalue thatis independent of the stimulus duration. A closer look
at the temporal dynamics of the dependency reveals that it varies
in time. Figure 6 shows the dependency of the optimal orienta-
tion and progressively nonoptimal orientations as functions of
time. The slope of the response indicates variation from the pre-
dicted independent probabilities. Horizontal regions in the func-
tion indicate that the neurons are firing independently from one
another. A comparison of the dependency for the peak response
(288°) and 10° (or 15°) from the peak (278 or 273°) shows that
from 25 to 40 msec (Fig. 6, inset), the response of the dependency
is equal in each case with a very steep slope (>8.0 bits/sec). Im-
mediately after the initial 40 msec, the slope drops to <0.5 bit/sec
for 278° and <0.2 bit/sec for 273°, suggesting that a slightly de-
layed process, possibly inhibition, reduces the synchronous
firing.

The finer selectivity of the dependency with respect to orien-
tation occurs only after the delayed reduction. Figure 7 is an
example of the dependency tuning (solid line) we find for a pair of
moderately synchronized neurons as a function of orientation,
with the rate tuning for the two neurons superimposed in the
background (dotted lines). The dependency tuning is much nar-
rower than the average rate tuning and can potentially support
much finer discrimination between orientations around the
peak. In the case of orientation, we find, in all 29 cases of highly or
moderately synchronized neurons, a very sharp peak of depen-
dency that is on average 35.5 = 16.9% narrower than tuning for
firing rate (half-height bandwidth). We also found similar results
for spatial frequency tuning for five pairs of at least moderately
synchronized neurons in which the dependency was on average
29.2% (range, 10.0—45.5%) narrower than tuning for the
firing rate.

Both the refined tuning of dependency relative to average fir-
ing rate tuning and the temporal dynamics suggest that the syn-
ergy we find is a result of orientation-dependent changes in syn-
chronization. By comparing the slope of the dependency in
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Figure7. A comparison between the dependency tuning and average firing rate tuning for

orientation. Dependency is accumulated over 2 sec to show the dependency tuning for orien-
tation (solid line, with the dashed line representing the 90% confidence interval). The average
firing rate tuning for the two neurons is superimposed in the background (fine dotted lines).

Figure 6 with the temporal dynamics of synergy in Figure 5B, we
see that the fast rise in the synergy is likely a result of the slightly
delayed orientation-selective reduction in dependency.

Discussion

Snider et al. (1998) found selective changes in correlated firing for
fine changes in orientation that were independent of the firing
rate. We hypothesized that these changes in synaptic efficiency
would yield information that was available only from the joint
firing patterns of cell pairs in cases of fine differences in orienta-
tion near the preferred orientation. We have quantitatively de-
scribed this advantage, as well as others useful for discriminating
responses that would not be expected, with a rate code: (1) Dis-
crimination depends on the bin width. (2) Discharge history con-
tributes to discrimination. (3) Cooperation enhances fine dis-
crimination. (4) Dependency tuning is narrower than rate
tuning.

ISI characteristics and synchronization

Adrian and Zotterman demonstrated in 1926 that the average
spike rate depended on the intensity of sensory stimulation; since
then, rate coding has been the most common measurement in
neurophysiological studies. At the same time, it is not necessarily
the most straightforward strategy that the brain might use for
encoding (Hopfield, 1995). The spike train contains multiple dis-
tributions of activity at various temporal resolutions indepen-
dently encoding different aspects of the sensory input (Cattaneo
etal., 1981a,b; DeBusk et al., 1997; Victor, 2000). Synaptic prop-
erties such as facilitation and depression can take advantage of
these ISI characteristics and could multiplex information on a
single neuron level (Victor, 2000).

Synaptic properties and ISI characteristics work together to
modulate synaptic coupling and synchronization between neu-
rons. The low probability of neurotransmitter release along with
the high threshold in the postsynaptic neuron (Creutzfeldt and
Ito, 1968) makes it highly unlikely that a single spike will result in
a postsynaptic spike. How do two neurons then synchronize
within 3-4 msec? They manipulate transmitter release and
threshold using four different properties of cortical networks: (1)
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bursting, (2) divergence and convergence, (3) oscillations, and
(4) chaos.

Bursting

Shadlen and Newsome (1994) argued that neuronal organization
on time scales of <10 msec is impractical because of synaptic
unreliability. If there is an increase in synaptic reliability (attrib-
utable to changes in transmitter release probabilities or synaptic
redundancy), there is a decrease in information transfer for rate
coding but an increase in information transfer for temporal cod-
ing (Zador, 1998). Bursting is one way to enhance synaptic reli-
ability (Lisman, 1997; Snider et al., 1998). Cattaneo et al.
(1981a,b) suggest that rate-tuning characteristics are actually a
result of burst modulation. The efficiency of short spike intervals
and bursts relative to connectivity (Usrey et al., 1998) and infor-
mation (Reinagel et al., 1999; Reich et al., 2000) has been dem-
onstrated throughout the visual pathway. Reich et al. (2000) also
found that bursts were disproportionately influential to the re-
ceptive field properties of neurons. In addition, bursts have more
reliability from trial to trial (Guido and Sherman, 1998; Victor et
al., 1998).

Divergence and convergence

Snider et al. (1998) found that the strength of synaptic coupling
continued to vary when even the burst length remained constant;
they proposed that coincident inputs might be another factor
influenced by orientation. The anatomy of the cortex and the
increased sensitivity of neurons to coincidence detection over
asynchronous integration support a model of selective synchro-
nous transmission (Abeles, 1991). Usrey and Reid (1999) have
shown evidence of how synchronous activity is transmitted
through the hierarchy of the visual system. Synchrony resulting
from divergence could explain the long-distance (0.4—2 mm)
correlated activity we found that would not likely be a result of
bursting mechanisms.

Oscillations

Gray et al. (1989) demonstrated that long-distance synchroniza-
tion occurred primarily between neurons that oscillated in the
gamma range. Oscillation is an intrinsic property of pyramidal
cells (Gray and McCormick, 1996); on the whole, theoretical
studies (Ernst et al., 1995, 1998; van Vreeswijk, 1996; Karbowski
and Kopell, 2000) have suggested that oscillation might serve as
another mechanism for long-distance synchronization and
forming synchronized assemblies.

Chaos

Theoretical models have found that disorder and chaotic behav-
ior can lead to synchronization (Hansel, 1996; van Vreeswijk and
Sompolinsky, 1996; Karbowski and Kopell, 2000). Although iso-
lated spikes have a low probability of resulting in a postsynaptic
spike (Creutzfeldt and Ito, 1968), there are thousands of connec-
tions, so they will still be passed on across cortical layers, but with
a large amount of variability (Shadlen and Newsome, 1998). Iso-
lated spikes have very broad tuning (Cattaneo et al., 1981a,b),
suggesting that they are equally represented across a large popu-
lation of neurons. Because these spikes activate a large portion of
connections with a high amount of variability, they result in cha-
otic activation of both excitatory and inhibitory connections
(Shadlen and Newsome, 1998). The chaos keeps the postsynaptic
potential close to threshold but below saturation by carefully
balancing the excitation and inhibition (Bell et al., 1995). This
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produces a highly temporal-sensitive state by reducing the inte-
gration time constant (Koch et al., 1996).

Synchronization and cooperation

To have cooperation, the response in multiple neurons must con-
tain information in the form of constructive correlation that is
not already represented in the individual responses of the neu-
rons. This can occur when correlation between neurons modu-
lates while the firing rates remain constant. In the auditory cor-
tex, Frostig et al. (1983) found that in some cases, correlation
changes were independent of presynaptic rate changes. This was
again demonstrated in the frontal cortex (Vaadia et al., 1995), in
which the dynamics of correlation varied between two behaviors,
whereas the firing rate remained constant. We find that the de-
pendency between two neurons continues to modulate, whereas
the firing remains nearly constant (near the peak), yielding as
much as a 125% increase in distance between responses to en-
hance orientation discrimination.

The question remains about how response mechanisms are
modulated relative to the stimulus properties. The temporal dy-
namics of dependency offer some insight into this process. The
first aspect of functional dependency that we observed was that a
fast delayed reduction plays a major role. We found that the
narrow tuning of dependency relative to orientation occurred
only after 15 msec, which is similar to the temporal dynamics of
rate tuning (Volgushev et al., 1995; Ringach et al., 1997), suggest-
ing that the reduction is a result of feedback. The feedback might
also play a role in reducing the burst length, which is influenced
by GABAergic mechanisms (DeBusk et al., 1997), thereby ex-
plaining why the reduction for dependency is more dramatic and
selective than for average firing rate.

Orientation discrimination

Orientation discrimination in untrained human observers is as
fine as 10-20" of arc (Westheimer, 1981). This is substantially
finer than what would be expected when considering physiolog-
ical properties of the most highly tuned neurons in primates
(half-width at half-height of 4°); the performance is even better
than expected, considering the resolution of retinal sampling in
humans (hyperacuities) (Westheimer, 1981).

Psychologists have proposed population encoding to account for
these performance levels. Biological substrates remain speculative,
with vector summation as the most popular solution (Pouget et al.,
2000). The fast synaptic modulations of synchronization can pro-
vide sizable contributions to orientation discriminations. In the
present study, we provide clues into some of the temporal character-
istics of this framework. With only two cells, we cannot reasonably
predict the advantage of a cooperative code beyond the percentages
we report (i.e., the cooperation), but our results do suggest that
cooperation can provide the same level of discrimination as inde-
pendent coding with fewer cells or in less time (or even both). This
efficiency can in turn be used to provide the finer discriminations
that are found in perceptual tests.

In addition to interval information being easily modulated by
cortical mechanisms, the representation of visual information as
synchronous activity is advantageous (von der Malsburg, 1981;
Abeles, 1991; Singer and Gray, 1995) over an integrated rate code
(Shadlen and Newsome, 1998) for several reasons. The rate in-
formation is ambiguous in terms of the feature encoded and is
less flexible in participating in multiple and new representations
(Singer and Gray, 1995). Although the rate is simply pooled
across a population, synchronous patterns can participate at dif-
ferent times in the representation of different patterns across
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different subpopulations. We do not argue that spatial integra-
tion is not crucial in transmitting visual information, but suggest
that the finer salient information is found in the synchronous
activity. With only two neurons, the synchronization becomes
much more selective for orientation. The synchronous pattern
directly affects which neurons participate in the next assembly
(Abeles, 1991), making it a reasonable code for fast hyperacuity
representations.
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