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The brain has the ability to represent the passage of time between two behaviorally relevant events. Recordings from different areas in the
cortex of monkeys suggest the existence of neurons representing time by increasing (climbing) activity, which is triggered by a first event
and peaks at the expected time of a second event, e.g., a visual stimulus or a reward. When the typical interval between the two events is
changed, the slope of the climbing activity adapts to the new timing. We present a model in which the climbing activity results from slow
firing rate adaptation in inhibitory neurons. Hebbian synaptic modifications allow for learning the new time interval by changing the
degree of firing rate adaptation. This event-based representation of time is consistent with Weber’s law in interval timing, according to
which the error in estimating a time interval is proportional to the interval length.
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Introduction
In many areas of the brain neural activity triggered by sensory
input can persist for several seconds after the stimulus is re-
moved. Such persistent activity is thought to underlie working
memory and has been found in prefrontal cortex (Fuster, 1973;
Funahashi et al., 1989; Quintana and Fuster, 1992; Miller et al.,
1996; Rainer et al., 1999), inferotemporal cortex (Fuster, 1982;
Yakovlev et al., 1998), parietal cortex (Quintana and Fuster, 1992;
Constantinidis and Steinmetz, 1996; Chafee and Goldman-
Rakic, 1998), and perirhinal cortex (Erickson and Desimone,
1999). Persistent activity can be more than just a static snapshot
of sensory input from the past; often the delay activity is observed
to increase or decrease monotonically over time (Kojima and
Goldman-Rakic, 1982; Sakai and Miyashita, 1991; Quintana and
Fuster, 1992; Miller et al., 1996; Chafee and Goldman-Rakic,
1998). Climbing activity, i.e., delay activity that steadily increases
between two subsequent stimuli, has been linked with the antic-
ipation of various events, like a motor response (Constantinidis
and Steinmetz, 1996), the end of the delay interval (Romo et al.,
1999; Reutimann et al., 2001), or the identity of the sample or
match stimulus in delayed matching-to-sample (DMS) tasks
[retrospective vs prospective coding (Rainer et al., 1999; Mon-
gillo et al., 2003)]. Increasing delay activity also can be associated
with reward expectation, for instance in prefrontal cortex (Wa-

tanabe, 1996), striatum (Kawagoe et al., 1998; Hassani et al.,
2001), and thalamus (for review, see Schultz, 2000; Komura et al.,
2001).

Recent experiments have addressed the question of how a
change in the duration of the delay period is reflected in the
time-varying delay activity (Kojima and Goldman-Rakic, 1982;
Komura et al., 2001; Brody et al., 2003b). In these experiments the
build-up of activity is stretched in time, rather than shifted. The
stretching causes the slope of the activity profile to decrease with
the length of the delay period. This is in agreement with the
scaling property of interval timing found in psychophysical stud-
ies on humans (Rakitin et al., 1998) and recently confirmed by in
vivo experiments with monkeys (Leon and Shadlen, 2003). When
the duration of a time interval is estimated, the error distribution
scales linearly with the length of the interval. Although psycho-
physics furnished many important results about the phenome-
nology of interval timing, the cellular mechanisms by which time
is represented and handled in the brain are only beginning to be
discovered (Buonomano and Karmakar, 2002; Durstewitz, 2003;
Gallistel, 2003).

We present a model of how climbing activity can form an
adaptable, neuronal representation of the time passing between
two events. The model suggests a cellular implementation of a
cortical clock that is very general and applicable to the different
experimental data cited above where increasing or decreasing
delay activity is observed. However, to confine ourselves to a
specific example, we put the model in the context of delay activ-
ities measured in inferotemporal (IT) cortex of macaque mon-
keys performing a delayed matching-to-sample task (Yakovlev et
al., 1998). Although this experiment originally was designed for a
different study, for two cells the length of the inter-stimulus in-
terval (ISI) has been changed during the course of the experi-
ment. Both of these cells show an ISI-dependent delay activity
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that increases from the sample to the test stimulus, and that may
reflect the expectation time of the test stimulus (see also Reuti-
mann et al., 2001). Our goal is not to present data that give a
definitive answer to the question of how time is represented in IT
during the DMS task but to study quantitatively the conditions
for generating and modifying such a possible representation. Be-
cause the behavior of the two recorded cells is particularly evident
and consistent with other observations (Kojima and Goldman-
Rakic, 1982; Komura et al., 2001; Brody et al., 2003b), it may
represent a general paradigm for the neural encoding of time.

The typical ISIs are of the order of seconds, both in our exper-
imental data and in the literature. This fact presents a serious
modeling problem; it is not clear how neurons and synapses op-
erating on a millisecond time scale can encode information about
time intervals on the order of seconds. Moreover, how can such
an internal representation of time be adapted to reflect changes in
the stimulus interval duration? To answer these questions, we
consider a model of interacting populations that are subject to
neuronal adaptation and synaptic plasticity. In this model the
delay activity that decreases across the ISI results from slow firing
rate adaptation, as observed in intracellular recordings in vitro; if
a neuron is injected with strong currents, it will respond with
spike trains of decreasing frequency and eventually will stop fir-
ing (Rauch et al., 2003). Climbing activity is attributable to the
firing rate adaptation in inhibitory interneurons. Hebbian syn-
aptic plasticity may tune the climbing activity to the recent ISIs
and may underlie the learning of time intervals.

Materials and Methods
Neuron and network simulations. We consider different populations of
leaky integrate-and-fire neurons (see Fig. 2): sustained delay activity
(sDA) neurons, excitatory (Ex) neurons showing climbing activity, in-
hibitory (Inh) neurons showing decreasing activity, and spontaneously
firing background (BG) neurons projecting onto the Ex and Inh popu-
lations (not depicted in Fig. 2). In the limit of many presynaptic neurons
and small asynchronous synaptic potentials, the total synaptic current
driving a postsynaptic neuron becomes Gaussian-distributed, with mean
� and variance � 2. The leaky integrate-and-fire neuron converts this
current into a firing rate (in units of spikes/sec � Hz) according to Amit
and Brunel (1997a,b) and Rauch et al. (2003):

v � F ��, �� � � �rp � �m�
vreset��

�

V���

� �� � e�2�1 � erf�z��dz��1

,

(1)

where for notational convenience the currents and voltages are expressed
in the same units (mV). The formula gives the neuronal firing rate in the
steady state as a function of the spike emission threshold V�, the reset
potential Vreset, the refractory period �rp, and the membrane time con-
stant �m.

The mean and variance of the input current from population x onto a
single neuron of population y (with x standing for Ex, Inh, sDA, and BG
and y standing for Ex and Inh) are given by:

�y,x � c Nx vx Jy,x �m , �y,x
2 � �y,xJy,x . (2)

Here Nx is the number of neurons in population x, c (the “connectivity”)
is the probability that a neuron of population x is connected to a neuron
of population y, vx is the firing rate of a neuron in x, and Jy,x is the synaptic
strength of a connection from x to y. The time constant �m in the expres-
sion for the mean current �y,x imposes the correct units (because the
above formula for the firing rate considers the individual postsynaptic
currents as delta functions, the only (positive) time constant entering in

the model is �m). The total input current onto population y is obtained by
summing over all presynaptic populations,

�y � �
x

�y,x and �y
2 � �

x

�y, x
2 .

The expected mean firing rate of the population y � Ex is given by vy �
F(�y, �y). For the inhibitory population y � Inh, the firing rate is vy �
F(�y � �a, �y), where �a is an adaptation current as defined below. The
evolution of the population firing rate of Ex and Inh follows:

d�

dt
�

F��,�� 	 v

�net
, (3)

with �net being the network time constant and � the total input current.
The neurons in the sDA and BG population are assumed to fire with
some fixed (Poisson) rates at rest and in response to the visual stimulus.
Parameter values for the full network simulations underlying Figures 3,
5, and 6 (with the indicated changes) are given in Table 1.

Firing rate adaptation. The behavior of a neuron, as observed in the in
vitro experiments (see Fig. 3a,b), suggests that it is able to respond with a
sustained activity up to some critical input current (adaptation thresh-
old), above which the neuron gradually loses its firing ability, to the point
at which it completely fails to emit action potentials. The gradual decline
depends on how much the input exceeds the critical value. The neuron
recovers quickly when the input current falls below the adaptation
threshold.

To account for these observations, we model an input-dependent ad-
aptation current �a, which reduces the synaptic input current, �y, to give
a mean � � �y � �a of the total current. The dynamics of �a depends on
the synaptic input current. If �y is below some adaptation threshold, �y

� �0

a

, the adaptation current decays with a time constant �rec toward
zero. If the synaptic input current is above this threshold, �y 
 �0

a

, the
adaptation current builds up proportional to the excess �y � �a, with an
adaptation time constant �adapt. This adaptation time constant is mono-

Table 1. Stimulation parameters

Parameter Value Description and unit

vsDA
rest 2 Spontaneous activity of sDA neurons (spikes/sec)

vsDA
da 30 Delay activity (constant during ISI) (spikes/sec)

vsDA
vr 70 Visual response of sDA neurons (spikes/sec)

vBG
rest 11 Activity of background neurons (spikes/sec)

vBG
vr 14 Visual response of background neurons (spikes/sec)

c 0.1 Connectivity (probability of synaptic contact)
NsDA 1000 Number of sustained delay activity neurons
NEx 1000 Number of excitatory (“expectation”) neurons
NInh 1000 Number of inhibitory neurons
NBG 10000 Number of background neurons
JEx,BG 0.082 Synaptic strength BG3 Ex (mV)
JEx,sDA 0.05 Synaptic strength sDA3 Ex (mV)
JEx,Ex 0.01 Synaptic strength Ex3 Ex (mV)
JEx,Inh �0.1 Synaptic strength Inh3 Ex (mV)
JInh,BG 0.08 Synaptic strength BG3 Inh (mV)
JInh,sDA 0.6 Synaptic strength sDA3 Inh (mV)
JInh,Inh �0.2 Synaptic strength Inh3 Inh (mV)
�rec 200 Recovery-from-adaptation time constant (msec)
�net 10 Network time constant (msec)
�0

a 22 Adaptation threshold (mV)
Qa 100 Adaptation constant (sec mV)
r 0.001 Learning rate (mV)
�pre 10 Presynaptic learning threshold (spikes/sec)
�post 12 Postsynaptic LTP/LTD threshold (spikes/sec)
�m 20 Membrane time constant, all neurons (msec)
V� 20 Spike emission threshold, all neurons (mV)
Vreset

Ex 15 Reset potential Ex neurons (mV)
Vreset

Inh 0 Reset potential Inh neurons (mV)
�rp

Ex 5 Refractory period Ex neurons (msec)
�rp

Inh 20 Refractory period Inh neurons (msec)
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tonically decreasing with �y, �adapt � �rec � Qa/[�y � �0
a], where Qa is

some adaptation constant. The stronger the synaptic input current, the
faster the adaptation current builds up, until it eventually cancels the
input current (i.e., until �a � �y). In summary, we have:

d�a

dt
� �

	 �a

�rec
�y��a

�rec�
Qa

�y��0
a

�y��0
a

�y
�0
a . (4)

For simplicity we assume that only inhibitory cells undergo slow ad-
aptation ( y � Inh). This is justified if inhibitory cells receive relatively
strong inputs and therefore show stronger firing rate adaptation. Slow
firing rate adaptation also can be more prominent in inhibitory than in
excitatory cells in response to the same input current. When cortical
neurons are stimulated in vitro for several seconds, late adaptation acting
on a time scale of 1– 4 sec is found both in inhibitory and excitatory
neurons. Preliminary data from our lab show that this late adaptation in
fact is more pronounced for inhibitory neurons, although they can sus-
tain higher firing rates. Whereas in adolescent rats 34 of 44 recorded layer
5 pyramidal cells exhibited a firing rate decay of 0.5–1 Hz/sec with an
initial rate of 	30 spikes/sec (Rauch et al., 2003), five of five inhibitory
cells exhibited an adaptation of 1– 4 Hz/sec starting from an initial rate of
60 spikes/sec (personal communication by G. La Camera, A. Rauch, and
D. Thurbon). Other works show that inhibitory low-threshold spiking
neurons slowly adapt their firing rate, for instance by 39% of the initial
rate within 600 msec (Gibson et al., 1999) or by 38% in 1 sec for 37% of
the sampled inhibitory neurons (Gupta et al., 2000). The parameter val-
ues chosen for the firing rate adaptation of the model cell (Table 1)
produce a behavior that is consistent with these data. The phenomenon
of slow frequency adaptation might be attributable to slow sodium chan-
nel inactivation (Fleidervish et al., 1996; Powers et al., 1999), to calcium-
activated potassium channels, or to a change in the electrogenic sodium–
potassium pump (Sanchez-Vives et al., 2000).

Synaptic plasticity. Modifications of the synaptic strength from the
sDA to the Inh population occur only if the presynaptic firing rate ex-
ceeds a threshold �pre. The change of the synaptic strength is proportional
to the excess vpre � �pre, with a proportionality constant r (“learning
rate”). The sign of the change depends on whether the postsynaptic firing
rate exceeds a threshold �post or not. If vpost 
 �post, the synapse undergoes
long-term potentiation (LTP); if vpost � �post, it undergoes long-term
depression (LTD). Hence,

dJ

dt
� r �  vpre 	 �pre � sign �vpost 	 �post� , (5)

where 235 x 251 � 0 for x � 0 and 235 x 251 � x else. Parameter values are
given in Table 1. Note that the postsynaptic activity contributes only the
sign to the synaptic modification (although this is not reflected directly in
the sketch of Fig. 4d). More realistic rules that further differentiate the
strength of the postsynaptic current will similarly ensure the convergence
toward a balanced LTP/LTD state. For instance, a synaptic modification
that is a sigmoidal function of  vpre � �pre � (vpost � �post) will stabilize
itself even if �pre would be above the presynaptic frequency of the sus-
tained delay activity, and learning would take place only during the time
of the stimulus presentation. The tuning mechanism would still work
because the degree of adaptation at the end of the delay interval is re-
flected in the strength of the Inh response to the second stimulus (com-
pare Fig. 4d). The saturation of LTP at high values of  vpre � �pre � (vpost

� �post) helps to limit the positive feedback loop that might, during the
presentation of the first stimulus, counteract the stabilizing negative
feedback caused by adaptation during the second stimulus.

Experimental procedure and data analysis. When the monkey signaled
to be ready to perform a trial of the DMS task, a sample stimulus was
presented on a computer monitor (0.5 sec); after a fixed delay interval
(usually 5 or 8 sec) a test stimulus (0.5 sec) appeared (see Fig. 1a). The test
stimulus matched the sample stimulus in one-half of the trials. After a
variable post-test stimulus interval of 0.5–1.5 sec, the monkey had to shift
a lever to the left (match) or to the right (non-match) and was rewarded

with fruit juice if performing correctly (
90%). For further details, see
Yakovlev et al. (1998).

To obtain the activity plots in Figure 1c, we calculated mean firing rates
across bins of 250 msec and averaged over the indicated number of trials
(n; see legend of Fig. 1). For neurons showing stimulus-selective delay
activity we averaged over trials with the same pair of sample and test
stimuli (see Fig. 1c1). For neurons showing unselective delay activity,
different sample stimuli were pooled together (see Fig. 1c2,c3). Bars in
Figure 1d represent mean firing rates within 0.5 sec bins, again averaged
over five consecutive trials. To extract the slope of the activity increase,
we fit the first 5 sec of the delay activity linearly (compare Fig. 5a, right).
The slopes of these linear fits were averaged over five consecutive trials
and plotted as a function of the trial number (see Fig. 1e).

Testing Weber’s law. To test the scalar variability of interval timing (see
Fig. 6), we performed reduced and full network simulations. In the re-
duced simulations (see Fig. 6b) the noise in the Ex population firing rate
was modeled by a stochastic process with a correlation length of 2 msec,
a linearly increasing mean, and a variance proportional to the mean firing
rate vEx(t) (with a proportionality constant equal to one over the number
of Ex neurons). The slope was tuned such that the first passage times for
crossing the 40 spikes/sec threshold were centered on the onset of the test
stimulus (i.e., 5 and 8 sec after the sample stimulus, respectively). The
readout threshold was distributed normally at 	40 spikes/sec. In the full
network simulations we considered 250 neurons in the Inh, Ex, and sDA
population and 2500 neurons in the BG population (sample traces of the
Ex population firing rate are shown in Fig. 6a). The parameter values
were the same as in the corresponding meanfield simulations of these
networks. The synaptic strengths to the Inh neurons were adjusted to
obtain peak activities at 5 and 8 sec, respectively.

Results
Expectation effect in delayed matching-to-sample tasks
When an animal has learned to perform a temporal prediction
task repeatedly, it likely has formed some internal representation
of the time passing toward the predicted event. Cells in IT may be
able to represent such a passage of time between two events, as
suggested by the behavior of two paradigmatic neurons in IT
recorded in an experiment studying selective delay activity (Yak-
ovlev et al., 1998). Many IT neurons during this experiment
showed a gradually increasing (climbing) activity within the
inter-stimulus interval of a delayed matching-to-sample task that
started after the sample stimulus and peaked at the time of the test
stimulus (Fig. 1a,c2). In general, neurons with three different
behaviors during the ISI were observed (Fig. 1c): (1) stimulus-
selective neurons with nearly constant, sustained delay activity,
(2) neurons with climbing (increasing) activity, and (3) neurons
with decreasing activity during the delay interval. The increasing/
decreasing activity neurons tended to be unselective, i.e., they
were each responding with the same temporal profile and with a
similar cell-specific strength to all 30 of the different visual stimu-
li.a For two cells showing increasing activity, the length of the
delay interval was changed from 5 to 8 sec and back again after
several trials (Fig. 1d1– d5). These cells showed a steadily climb-
ing activity, starting with low activity at the beginning of the delay
interval and peaking at the time when the test stimulus was pre-
sented. In the first few trials after the interval had been changed to
8 sec, the activity still increased during 5 sec but then stayed
constant afterward. This biphasic dynamics disappeared several
trials later when the activity increase became slower but lasted
now for 8 sec, the length of the delay interval. When the monkey

aThe mean delay activity was not significantly selective according to a statistical test based on a one-way ANOVA.
The probabilities that for the two cells of Figure 1e the mean delay frequencies were the same for all of the stimuli
and that the measured values were different from stimulus to stimulus simply because of statistical fluctuations
were p � 0.63 and p � 0.23, respectively. Usually these probabilities were �10 �4 for clearly selective cells
(Yakovlev et al., 1998).
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again was confronted with a 5 sec interval, the familiar situation
with a 5-sec-long climbing activity again could be observed after
a transient of a few trials. Plotting the slope of the activity profile
against the trial number shows that the slope adaptation maxi-
mally requires some tens of trials (see Fig. 5e). These properties of

the adapting climbing activity may be connected to the monkey’s
expectation of an important event (the test stimulus) to occur at
some time in the near future.

Slow firing rate adaptation determines the dynamics of
delay activity
The three classes of neurons with sustained, increasing, and de-
creasing activity were interconnected mutually in a model of IT
(Fig. 2). We assume that stimulus-selective sustained delay activ-
ity (sDA) populations have formed, showing constant delay ac-
tivity throughout the ISI. Each of these sDA populations is selec-
tive to a specific, familiar visual stimulus. The existence of such
populations has been postulated previously, and cells have been
found in IT that behave in this classical “working memory”-like
way (Fuster, 1982; Miyashita and Chang, 1988). Stimulus-
selective sDA populations are assumed to drive the inhibitory
(Inh) and the excitatory (Ex) populations, which show decreasing
and increasing activity during the delay interval, respectively. Be-
cause these two populations receive input from all of the stimulus-
selective populations, they are themselves unselective to the stimu-
lus. The decay of the activity of the Inh neurons is caused by a slow
firing rate adaptation operating on a time scale of seconds. If a stim-
ulus is presented, the corresponding sDA population will be highly
activated. Without adaptation, mutually connected populations
quickly would reach persistent delay activity. Because adaptation
gradually reduces the Inh firing rate, the activity of the excitatory cells
Ex gradually increases because of disinhibition.

We implemented slow firing rate adaptation in the inhibitory
neurons, which depends on the strength of the input current.
This type of neural adaptation was observed in different classes of
neocortical cells of the rat in vitro (Rauch et al., 2003), and it can
be even more pronounced in inhibitory neurons (see Materials
and Methods). Because our model requires only that the slow
firing rate adaptation is stronger in the inhibitory neurons, we
neglect the firing adaptation in the Ex neurons. When a pro-
longed noisy current of a few seconds is injected into such cells,
the mean firing rate tends to decrease linearly with time (Fig. 3a).
Strong current injection above a critical value leads a faster de-
cline in firing rate, starting at a higher initial rate (Fig. 3b) (see
also Fleidervish et al., 1996). Below some threshold current no
adaptation is observed. The phenomenology of this firing rate
adaptation also is captured by the model: the stronger the total
synaptic current in the Inh neurons, the steeper the firing rate
adaptation (Fig. 3c). Because firing rate adaptation is a function
of the total synaptic current, the postsynaptic firing rate can drop
to zero with constant drive, both in the data and the model. Note
that this would not be possible if adaptation would originate in
the postsynaptic firing rate; a drop in the firing rate then would
reduce the adaptation also, and the firing rate would saturate at a
positive value. Current-based adaptation is also the reason that
the firing rate curves can cross, such that a stronger neuronal
drive eventually will lead to a smaller firing rate (Fig. 3c). Al-
though in the data these crossings are distributed on a somewhat
longer time scale (Fig. 3a, the crossing between the dotted and
dashed curve is at 25 sec), we tuned the model adaptation such
that they can arise within the first 10 sec. The precise crossing
times within this interval, however, are not essential [because in
the network simulations the total drive of the Inh neurons varies
only little (see Fig. 5a, filled triangles), the effective crossings
always lie near each other, as indicated by the open triangles in
Fig. 5a]. A full simulation of the interacting populations sDA,

Figure 1. Expectation effect in IT: climbing activity always peaks at the expected time of the
test stimulus. a, In the DMS task, a sample stimulus is followed by a test stimulus after 5 or 8 sec,
with the test stimulus being either a match (bottom) or a non-match (top). b, A coronal MRI
image of the right hemisphere of the brain of one of the studied monkeys (from Yakovlev et al.,
1998). The tip of the electrode was in the rhinal sulcus (rs) in the area between the two arrows.
c, Example behaviors of three classes of IT cells (average of n trials). c1, Stimulus-selective
sustained delay activity (n � 2). c2, Unselective, increasing activity (n � 150). c3, Unselective,
decreasing activity (n � 24). Horizontal bars indicate the time of the sample and test stimulus
presentations. d, Effect of changing the delay interval from 5 to 8 sec and back for the cell shown
in c2. The slope of activity increase is adjusted to the delay interval (empty bars, stimulus
presentation; dark bars, delay interval). d1, Last trials with a 5 sec interval: increasing activity
throughout the interval. d2, First trials with a 8 sec interval: increasing activity for the first 5 sec
and constant activity thereafter. The cell still “expects” the test stimulus to appear after 5 sec.
d3, Last trials with a 8 sec interval: increasing activity throughout the interval. d4, The shallow
slope remains after changing the interval back to 5 sec. d5, Last trials with the 5 sec interval:
again increasing activity, peaking at the test stimulus onset. e, Slope of activity increase ob-
tained from a linear fit of the firing rate across the corresponding delay interval, plotted for two
cells (top and bottom panels). Dashed lines represent average slopes over trials with the same
ISI length (5, 8, or 4 sec). Trials shown in d1– d5 are marked by horizontal bars in the top panel.
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Inh, and Ex, with an additional background population, qualita-
tively reproduces the increasing and decreasing activity found in the
experiments (Fig. 3d, as compared with the data shown in Fig.
1c2,c3). A weak firing rate adaptation in the Inh neurons is enough to

cause a pronounced firing rate increase in
the Ex neurons during the delay period.

Changing the degree of adaptation via
Hebbian learning
Because the synaptic drive to the Inh pop-
ulation determines the degree of firing rate
adaptation, it can be modified by synaptic
plasticity. We implemented a simple Heb-
bian rule that modifies the synaptic
strength of the excitatory input from sus-
tained delay activity cells onto inhibitory
cells (Fig. 4a). According to this rule syn-
apses are upregulated if the pre- and
postsynaptic firing rate are both high and
are downregulated if only the presynaptic
firing rate is high but the postsynaptic is
low (Fig. 4b). Hence, whether a synapse
undergoes LTP or LTD depends on
whether the postsynaptic activity is above
or below some activity threshold (�post).
No synaptic modification occurs if the
presynaptic firing rate is below a critical
level (�pre). In the simplest form of the
Hebbian plasticity in which the postsynap-

tic firing rate determines only the sign of the synaptic modifica-
tion, this critical firing rate, �pre, should be below the firing rate of
the presynaptic delay activity such that there is also some learning
during the delay interval (Fig. 4c), although for more realistic
rules this restriction is not necessary (compare with Materials and
Methods).

A change in the length of the delay interval is manifested di-
rectly in a change of the LTP/LTD ratio (Fig. 4d). By a self-
regulating process the firing rate adaptation is adjusted such that
the Inh neurons activity eventually ceases at the end of the new
delay interval. If the delay interval is stretched, the postsynaptic
activity will stay for longer below the �post threshold, and LTD
dominates LTP (Fig. 4d, top left). As a consequence, the total
synaptic current decreases; this causes less firing rate adaptation
and therefore a shallower decay of the Inh activity. After a few
trials, when the delay activity just vanishes at the end of the new
interval, LTP again balances LTD (top right panel). The same
self-regulatory process correctly adjusts the firing rate if the delay
interval is shortened (bottom panels). In this case the LTD regi-
men shrinks, which causes LTP to dominate. The increased syn-
aptic current causes the firing rate adaptation to become stron-
ger. As a result, LTD again increases, and a new LTP/LTD balance
is obtained. This balance is reached approximately when the ac-
tivity of the Inh neuron vanishes at the end of the new interval
and hence when the Ex neurons peak at the onset of the test
stimulus.

Simulations of the interacting populations validate this self-
tuning property. The 120 consecutive trials of the DMS experi-
ment were run, and the inter-stimulus interval was changed from
5 to 8 sec and back. The activity increase in the Ex population is
the observable that can be compared directly with the experi-
ments. As in the data, after the interval is stretched, the activity
first saturates at the end of the old interval until it again culmi-
nates just before the second stimulus sets in (Fig. 5a1–a5, right, as
compared with Fig. 1d). When the interval is shortened again, the
increasing delay activity is cut initially at an intermediate level
until it again saturates toward the onset of the test stimulus.
When the slope of the Ex population activity is extracted at each

Figure 2. A model network of IT generating climbing activity. Populations of stimulus-selective neurons, displaying sustained
delay activity (sDA populations), project onto unselective populations of inhibitory (Inh) and excitatory (Ex) neurons, displaying
decreasing and increasing activity, respectively. With the presentation of a sample stimulus (first horizontal bar in left activity
plots), the corresponding selective sDA population (marked with a thick circle) responds strongly, and it remains active during the
subsequent delay interval. The other sDA populations remain spontaneously active (top and bottom left activity plots) and
contribute to the background activity. Because of the firing rate adaptation, the activity of the Inh neurons decreases (top right
activity plot), which in turn causes climbing activity in the Ex neurons via disinhibition (bottom right activity plot). The strong
responses at the end of the delay period are caused by the test stimulus presentation (second horizontal bar in left activity plots).

Figure 3. Firing rate adaptation produces decreasing activity. a, Experimental evidence for
slow adaptation in neocortical cells of rat somatosensory cortex. Shown are mean firing rates
(using a sliding window of 2 sec) of one cell in response to noisy currents of at least 10 sec
duration, with a mean of 1.0, 0.8, and 0.6 nA, and each with an SD of 0.32 nA (from top to
bottom). The firing rate adaptation is approximately linear in time and is steeper for strong
input currents. b, Firing rate adaptation (in Hz/sec, slope of the activity time course) versus
mean input current measured in the experiment: the stronger the input, the more adaptation
(pooled data of 5 cells, linear fit). c, Response of the Inh population in the model to a 30
spikes/sec firing rate of the selected sDA population, turned on at 0 sec, with different synaptic
strengths. Crossings of the firing rate curves can arise because, at any value of the mean firing
rate, adaptation is based on the total synaptic input current: the stronger the input current, the
more adaptation. The model adaptation is tuned such that the different crossings arise some-
where within the first 10 sec, although this feature is not always shared by the experimental
data. The dashed/dotted line indicates a possible LTP/LTD modification threshold �post (which
should be below the crossings; see Results). d, Full network simulation of a single trial, including
visual stimuli. Firing rate adaptation in the Inh neurons causes disinhibition of the Ex neurons
and results in decreasing and increasing activities, as seen in the data (Fig. 1c3, c2, respectively).
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trial during the interval stretching and squeezing protocol, a sim-
ilar time course is observed as in the experiment (Fig. 5b as com-
pared with Fig. 1e). In agreement with the data, the slope always
adapts after a few presentations to the imposed ISI. The change in
the slope is reflected in the corresponding change of the synaptic
strength from the sustained delay activity population to the in-
hibitory population (Fig. 5c). The synaptic plasticity in these con-
nections faithfully traces the changes in the inter-stimulus inter-
vals with a delay of a few trials.

The self-regulation of the firing rate arises by a negative feed-
back that keeps the final activity at the end of the delay interval
constant. To understand this self-regulation, we first note that the
Hebbian plasticity by itself would lead to a positive feedback; an
increased synaptic strength leads to a stronger postsynaptic re-
sponse, and this further potentiates the synapses. Firing rate ad-
aptation, however, can convert this positive feedback loop into a
negative feedback loop because a stronger drive eventually leads
to a smaller postsynaptic response. Such an inversion is possible

because the current-dependent adaptation leads to crossings in
the firing rate curves: the stronger the input current, the earlier
the postsynaptic firing rate drops to zero (Fig. 3a,c) and the earlier
the LTD regimen is reached (below the dashed/dotted line in Fig.
3c, indicating a possible LTP/LTD threshold �post). Hence, a
stronger drive shortens the initial LTP interval and lengthens the
subsequent LTD interval, leading to an overall dominance of
LTD and therefore to a dominance of the negative feedback loop.

Because of the negative feedback loop, the system always finds
a steady state in which LTP and LTD are balanced across the
whole duration of the stimulus presentations and the delay inter-
val. Because adaptation leads to a linear decay of the firing rate in
time, this balance is reached approximately if one-half of the time
the postsynaptic activity is above and one-half of the time it is
below the LTP/LTD modification threshold �post, independently
of the interval length. The firing rate at the end of the delay
interval remains approximately the same, because this is true for
the firing rate at the beginning of the delay interval. In fact, al-
though different synaptic strengths lead to different initial re-

Figure 4. Hebbian plasticity adjusts the firing rate adaptation to fit the ISI length. a, The full
model considers Hebbian synaptic plasticity from the stimulus-selective sDA population(s) to
the inhibitory population Inh. b, Synaptic plasticity rule. If the presynaptic activity vpre exceeds
a threshold �pre, the synaptic strength is upregulated or downregulated (LTP/LTD), depending
on whether the postsynaptic activity vpost is above or below �post. c, During the stimulation and
the delay period, the activity of the presynaptic cells exceeds �pre, and synaptic modifications
are triggered. d, Top panels, If the delay interval is too long, such as after a change in the
protocol, or if the input to the Inh population is too strong, then the postsynaptic frequency
stays for longer in the LTD regimen than in the LTP regimen, resulting in a net depression of the
synaptic strengths. Weaker synapses imply less firing rate adaptation, and this leads to a shift
toward the balanced case, in which case LTD and LTP cancel each other. Bottom panels, If, on the
other hand, the input is too weak or the interval too short, then a net LTP will strengthen the
synapses, causing more firing rate adaptation in the next trials. A balanced situation is reached
again in which the rate of adaptation is adjusted to the interval duration.

Figure 5. The slope of the climbing activity adapts to the interval length. The simulations
qualitatively reproduce the experimental data shown in Figure 1. a, Activity of the Inh popula-
tion (left) and Ex population (right) during five of the 100 trials. The network is initialized with
a synaptic strength onto the Inh population (JInh,DA) such that the climbing activity extends over
5 sec (a1). After the ISI is stretched to 8 sec, the activity still reaches a steady state after 5 sec (a2)
but then adapts to span the full interval linearly (a3). The network recalibrates after switching
back to 5 sec (a4, a5). The different initial responses of the Inh neurons (filled triangles) are
approximately equalized at the beginning of the delay interval (open triangles). Dashed lines
(right) represent the linear fits of the climbing activity during the 0.5– 4.5 sec interval. b,
Evolution of the slope extracted from the fit in a while the delay interval is switched from 5 to 8
to 5 sec. Vertical bars indicate the trials shown in a. c, Evolution of the synaptic strength JInh,DA

that underlies the change of the slope.
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sponses (Fig. 5a, filled arrows), the response at the beginning of
the delay activity is approximately equalized (Fig. 5a, open ar-
rows). The apparent equalization is caused by the adaptation
during the stimulus presentation, followed by the downscaling of
the activity caused by the reduction of the input when the stim-
ulus is turned off. Note that, compared with Figure 3c, the initial
response in Figure 5a varies much less and that after the first 0.5
sec of the stimulus presentation the synaptic drive is reduced by
more than one-half.

Timing variability is proportional to the interval length
The activity in the Ex population is well suited to represent the time
between the sample and test stimulus. A simple threshold mecha-
nism is enough to read out the expected time of the test event from
the Ex activity. The readout can be realized by cells downstream of
the Ex population that start firing as soon as this population crosses
a certain activity threshold, say 40 spikes/sec (Fig. 6a).

Because the slope of the delay activity faithfully reflects the ISI
length, the threshold crossings of the Ex firing rates will give
accurate estimates of the changing delay intervals. Although the
mean of the readout time will be centered at a new ISI after a few
trials, however, some readout variability will remain. This read-
out variability has two sources: (1) the variability in the instanta-
neous spike rate of the Ex population because of the finite num-
ber of Ex neurons and (2) the stochasticity of the readout
threshold itself (Fig. 6a). Reduced simulations considering these
two noise sources show that the readout variability is always pro-
portional to the ISI length (see Materials and Methods). In fact,
the scaled histograms of the readout times for different interval
lengths perfectly overlap (Fig. 6b). This scalar variability of the
readout times also is confirmed when the stochastic simulations
of the Ex population were replaced by full network simulations
with integrate-and-fire neurons (sample traces in Fig. 6a).

To understand the linear scaling property, we first consider
the variability of the readout threshold only. If the Ex population
firing rate were deterministic, this variability would be mapped
directly onto the variability of the readout time via linear activity
ramp, as shown in Figure 6a. By this linear mapping the readout
variability becomes indirectly proportional to the slope of the
activity ramp and directly proportional to the ISI length. The

same argument also applies to the variabil-
ity of the Ex population firing rate. The
stochasticity of the firing rate affects the
variability of the readout time in the same
way as if the variability of the readout thresh-
old would be increased by a fixed amount.
Note that the firing rate variability of the Ex
population is always the same when the
mean firing rate reaches the mean readout
threshold (40 spikes/sec). Because this fixed
firing rate variability is mapped linearly onto
the readout time, the readout time variability
remains proportional to the ISI length.

Discussion
We have presented a general model of in-
teracting neuronal populations that gener-
ate an event-based representation of time
by slowly increasing activity. The model
reproduces the expectation effect observed
in IT cells during a DMS task. These cells
show climbing activity during the delay in-
terval that peaks at the time when the test
stimulus is expected to occur. In agree-

ment with the data, the slope of the climbing activity adapts
within a few trials to a new ISI length.

Increasing and decreasing activities as cellular timers
It has been postulated that time-varying delay activity is a good
candidate for a cortical representation of time (Hopfield and
Brody, 2000; Brody et al., 2003b). Our model could be applied
easily to such stimulus-dependent increasing or decreasing delay
activity as it is observed in these and other works (Kojima and
Goldman-Rakic, 1982; Miller et al., 1996; Romo et al., 1999;
Komura et al., 2001) (for review, see Brody et al., 2003a). The
model, in principle, is also compatible with a recent study that
directly addresses the neuronal representation of time during
active interval estimation (Leon and Shadlen, 2003). When an
animal has learned to perform some task in time, it likely has
formed an internal representation of the time passing toward the
behaviorally relevant event, independently of whether timing is
essential to perform well (as in an interval estimation task) or
whether it is just useful additional information to improve the
performance (as in a delayed matching-to-sample task).

Firing rate adaptation causing climbing activity
The characteristic of our model is that climbing activity in the
excitatory neurons is caused by firing rate adaptation in inhibi-
tory neurons. To serve as a basis for a self-regulation of the activ-
ity slope, however, adaptation needs to show an additional fea-
ture: the stronger the input current, the earlier the firing rate
must drop below a critical level. Such an inversion is present in
some of the cited data, and it is captured by the model of a
current-dependent firing rate adaptation (compare Fig. 3 and
Materials and Methods). It remains unclear, however, whether
this behavior is shared by the specific type of interneurons in-
volved in the generation of the delay activity. An additional re-
quirement of the model is that the activity curves for sustained
input currents approximately cross within the first 10 sec (Fig.
3c), although it is not important where the precise crossings are
within this time span. Slowly increasing inhibition of the Inh
neurons may represent a possible alternative.

Figure 6. Weber law of interval timing: the variability of the expectation time is proportional to the length of the ISI. a,
Downstream neurons can read out the expected time of the test stimulus from the Ex population activity by a simple threshold
mechanism (thick horizontal line). Such readout neurons have to cope with the variability of the Ex population firing rate (noisy
traces) and the variability of their own activation threshold (dotted horizontal lines, assumed to be Gaussian, distributed around
the mean readout threshold, as indicated by the density function on the right). The firing rate variability around the mean
threshold is the same for an ISI of 5 and 8 sec (two vertical error bars) but maps differently onto the variability of the corresponding
readout time of the two ISIs (left and right brackets, respectively). b, Histograms of the threshold crossing times of 500 trials based
on the reduced simulations, with an ISI of 5 sec (circles) and 8 sec (squares). The width of the histograms represents the variability
of the readout times (same brackets as in a). In agreement with Weber’s law, the variability is proportional to the ISI length, as
confirmed by the superposition of the centered and normalized histograms (inset, stretching factors 1/5 and 1/8, respectively).
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Modification of the slope via synaptic plasticity
The inter-stimulus interval is represented faithfully by the climb-
ing activity if the steady-state firing rates are reached at the time
when the second stimulus appears. Because the slope of the ac-
tivity decrease depends on the total postsynaptic current, it can be
controlled by Hebbian plasticity. Our simplified learning rule is
based on mean firing rates, but it is consistent with recent find-
ings on spike-timing-dependent plasticity (Sjöström et al., 2001).
LTP is triggered if both the pre- and postsynaptic firing rates are
high, whereas LTD is triggered if only the presynaptic, but not the
postsynaptic, firing rate is high. Such a rule can be implemented
easily in terms of spike-driven synaptic dynamics (Fusi et al.,
2000; Senn, 2002). The interesting point is that it is possible to
adjust the timing in the range of seconds by a rule that is purely
local in time and that cannot sense the time span between the two
visual stimuli.

The suggested mechanism for the slope adaptation is simple
and robust. The synaptic strength onto the inhibitory neurons is
modified such that the activity across the delay interval always
becomes balanced around the LTP/LTD threshold (�post; Fig. 4d).
In this balanced state the initial and final firing rates of the climb-
ing activity are independent of the length of the inter-stimulus
interval. Although the exact value of �post is not crucial, an addi-
tional slow synaptic process, as realized in the Bienenstock–Coo-
per–Munro rule (Bienenstock et al., 1982) or in a nonlinear form
of spike-timing-dependent plasticity (Senn et al., 2001), is re-
quired to bring �post into the regimen of the adapted firing rates of
the inhibitory neurons (Fig. 3c).

Adapting the slope of the delay activity via Hebbian plasticity,
however, may limit the speed by which this slope can change. In
the present data set the slope, and therefore the hypothetical syn-
aptic strength from the sDA to the Inh neurons, adapts to the new
time interval within a few trials. This relatively slow adaptation
might be ascribed to the fact that the switch between the two
intervals was performed only twice during the whole experiment.
If it were repeated several times, the monkey could learn the two
delay intervals and, in principle, realize after a single trial that the
time interval has changed. There are preliminary data in a slightly
different experimental context (Brody et al., 2003a) suggesting
that this might happen. In this case, different and mutually inhib-
iting Inh populations might be learned, one coding for a short
and one coding for a long time interval. After the segregation into
these two Inh subpopulations, a small bias triggered by a change
of the ISI may shift the activity quickly from one to the other
subpopulation. It would be interesting to study the conditions for
such a symmetry breaking in the sDA-to-Inh connections and in
the Inh population.

Adaptive climbing activity and the Weber law of
interval timing
Psychological studies refer to the scalar variability, or the Weber
law, of interval timing (Staddon et al., 1999): individuals, when
estimating a time interval (without counting), tend to make er-
rors that are distributed around the exact interval duration with a
width proportional to the interval length. If the error distribution
is scaled proportionally to the interval length to be estimated,
these scaled distributions overlap almost perfectly (Gibbon,
1977; Rakitin et al., 1998), evidence for a relative, scaled repre-
sentation of time intervals (for a theoretical analysis of the scaling
law, see Gibbon, 1992). This scaling property of interval timing
might be a corollary of the event-based representation of time via
climbing activity; the relative times between the triggering event
(sample stimulus) and the test event (test stimulus) are mapped

linearly onto the firing rates of the Ex neurons. As a consequence,
the variability of the readout times scales with the length of the
interval (Fig. 6), as observed in the psychophysical experiments.

Synaptic facilitation fails to reproduce the experimental data
There might be alternative models explaining climbing activity;
in a previous version we considered synaptic facilitation in the
feed-forward and recurrent connections onto the Ex population
as a source of the slowly increasing activity (Reutimann et al.,
2001). One consequence of that model is that the visual response
of the Ex neurons to the second (test) stimulus should be stronger
in the match than in the non-match case. This is because the
feed-forward connections from the stimulus-selective popula-
tion would facilitate during the sustained delay activity and thus
fire vigorously if the same visual stimulus were presented again.
However, additional inspection of the total 500 trials showed that
the magnitude of the second response is independent of a match
or non-match. This makes it unlikely that climbing activity is
caused by synaptic facilitation. In turn, if the reason for the in-
creased/decreased activity is in the postsynaptic neuron, as it is
the case for firing rate adaptation, no difference between match
and non-match is seen. The indifference arises because the
postsynaptic neuron itself is not stimulus-selective, although the
different projections onto that neuron are (Fig. 4a).

Experimental prediction: stimulus-dependent expectation
One prediction is that the slope of the decreasing activity in in-
hibitory neurons should adapt similarly to a change in the ISI
length as the slope of the increasing activity in the excitatory
neurons does. Another prediction of our model is that each sam-
ple stimulus can be associated with its own expectation time for
the test stimulus. Because the learning rule affects only the syn-
apses that are selectively active during the delay period (Fig. 4a),
the adjustment of the slope to a specific delay interval becomes
itself stimulus-selective. Our model predicts that changing the
delay interval for one sample stimulus will not affect the expec-
tation time that follows a different sample stimulus. For example,
one may present for 20 trials sample stimulus A, followed by a
delay interval of 5 sec, and stimulus B, followed by a delay interval
of 8 sec. After these trials the very same cell would show climbing
activity that would peak after 5 sec in response to stimulus A and
after 8 sec in response to stimulus B. This example would show
that different event-based representations of time may coexist in
a single cell.

References
Amit D, Brunel N (1997a) Dynamics of a recurrent network of spiking neu-

rons before and following learning. Network 8:373– 404.
Amit D, Brunel N (1997b) Model of global spontaneous activity and local

structured activity during delay periods in the cerebral cortex. Cereb Cor-
tex 7:237–252.

Bienenstock E, Cooper L, Munro P (1982) Theory for the development of
neuron selectivity: orientation specificity and binocular interaction in
visual cortex. J Neurosci 2:32– 48.

Brody C, Romo R, Kepecs A (2003a) Basic mechanisms for graded persis-
tent activity: discrete attractors, continuous attractors, and dynamic rep-
resentations. Curr Opin Neurobiol 13:204 –211.

Brody C, Hernandez A, Zainos A, Lemus L, Romo R (2003b) Timing and
neural encoding of somatosensory parametric working memory in ma-
caque prefrontal cortex. Cereb Cortex 13:1196 –1207.

Buonomano D, Karmakar U (2002) How do we tell time? Neuroscientist
8:42–51.

Chafee M, Goldman-Rakic P (1998) Matching patterns of activity in pri-
mate prefrontal area 8a and parietal area 7ip neurons during a spatial
working memory task. J Neurophysiol 79:2919 –2940.

Constantinidis C, Steinmetz M (1996) Neural activity in posterior parietal

3302 • J. Neurosci., March 31, 2004 • 24(13):3295–3303 Reutimann et al. • Learning Event-Based Representations of Time



area 7a during the delay periods of a spatial memory task. J Neurophysiol
76:1352–1355.

Durstewitz D (2003) Self-organizing neural integrator predicts interval time
through climbing activity. J Neurosci 23:5342–5353.

Erickson C, Desimone R (1999) Responses of macaque perirhinal neurons
during and after visual stimulus association learning. J Neurosci
19:10404 –10416.

Fleidervish I, Friedmann A, Gutnick M (1996) Slow inactivation of Na �

current and slow cumulative spike adaptation in mouse and guinea-pig
neocortical neurones in slices. J Physiol (Lond) 493:83–97.

Funahashi S, Bruce C, Goldman-Rakic P (1989) Mnemonic coding of visual
space in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol
61:331–349.

Fusi S, Annunziato M, Badoni D, Salamon A, Amit DJ (2000) Spike-driven
synaptic plasticity: theory, simulation, VLSI implementation. Neural
Comput 12:2227–2258.

Fuster J (1973) Unit activity in prefrontal cortex during delayed-response
performance: neural correlates of transient memory. J Neurophysiol
36:61–78.

Fuster J (1982) Neuronal firing in the inferotemporal cortex of the monkey
in a visual memory task. J Neurosci 2:361–375.

Gallistel C (2003) Time has come. Neuron 38:149 –150.
Gibbon J (1977) Scalar expectancy theory and Weber’s law in animal tim-

ing. Psychol Rev 84:279 –325.
Gibbon J (1992) Ubiquity of scalar timing with a Poisson clock. J Math

Psychol 35:283–293.
Gibson J, Beierlein M, Connors B (1999) Two networks of electrically cou-

pled inhibitory neurons in neocortex. Nature 402:75–79.
Gupta A, Wang Y, Markram H (2000) Organizing principles for a diversity

of GABAergic interneurons and synapses in the neocortex. Science
287:273–278.

Hassani O, Cromwell H, Schultz W (2001) Influence of expectation of dif-
ferent rewards on behavior-related neuronal activity in the striatum.
J Neurophysiol 85:2477–2489.

Hopfield J, Brody C (2000) What is a moment? Cortical sensory integration
over brief intervals. Proc Natl Acad Sci USA 97:13919 –13924.

Kawagoe R, Takikawa Y, Hikosaka O (1998) Expectation of reward modu-
lates cognitive signals in the basal ganglia. Nat Neurosci 1:411– 416.

Kojima S, Goldman-Rakic P (1982) Delay-related activity of prefrontal neu-
rons in rhesus monkeys performing delayed response. Brain Res
248:43– 49.

Komura Y, Tamura R, Uwano T, Nishijo H, Kaga K, Ono T (2001) Retro-
spective and prospective coding for predicted reward in the sensory thal-
amus. Nature 412:546 –549.

Leon M, Shadlen M (2003) Representation of time by neurons in the poste-
rior parietal cortex of the macaque. Neuron 38:317–327.

Miller E, Erickson C, Desimone R (1996) Neural mechanisms of visual

working memory in prefrontal cortex of the macaque. J Neurosci
16:5154 –5167.

Miyashita Y, Chang H (1988) Neuronal correlate of pictorial short-term
memory in the primate temporal cortex. Nature 331:68 –70.

Mongillo G, Amit DJ, Brunel N (2003) Retrospective and prospective per-
sistent activity induced by Hebbian learning in a recurrent cortical net-
work. Eur J Neurosci 18:2011–2024.

Powers R, Sawczuk A, Musick J, Binder M (1999) Multiple mechanisms of
spike-frequency adaptation in motoneurones. J Physiol (Lond)
93:101–114.

Quintana J, Fuster J (1992) Mnemonic and predictive functions of cortical
neurons in a memory task. NeuroReport 3:721–724.

Rainer G, Rao SC, Miller E (1999) Prospective coding for objects in primate
prefrontal cortex. J Neurosci 19:5493–5505.

Rakitin C, Gibbon J, Penney T, Malapani C (1998) Scalar expectancy theory
and peak-interval timing in humans. J Exp Psychol Anim Behav Process
24:15–33.
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