Elevated Thalamic Low-Voltage-Activated Currents Precede the Onset of Absence Epilepsy in the SNAP25-Deficient Mouse Mutant Coloboma

Yi Zhang, Alexander P. Vilaythong, Daniel Yoshor, and Jeffrey L. Noebels
Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, Houston, Texas 77030

Recessive mutations in genes encoding voltage-gated Ca\(^{2+}\) channel subunits alter high-voltage-activated (HVA) calcium currents, impair neurotransmitter release, and stimulate thalamic low-voltage-activated (LVA) currents that contribute to a cortical spike-wave epilepsy phenotype in mice. We now report thalamic LVA current elevations in a non-Ca\(^{2+}\) channel mutant. EEG analysis of Coloboma (Cm\(^+/\)), an autosomal dominant mutant mouse lacking one copy of the gene for a synaptosomal-associated protein (SNAP25) that interacts with HVA channels, reveals abnormal spike-wave discharges (SWDs) in the behaving animal. We compared the biophysical properties of both LVA and HVA currents in Cm\(^+/\) and wild-type thalamic neurons and observed a 54% increase in peak current density of LVA currents evoked at −50 mV from −110 mV in Cm\(^+/\) before the developmental onset of seizures relative to control. The midpoint voltage for steady-state inactivation of LVA currents in Cm\(^+/\) was shifted in a depolarized direction by 8 mV before epilepsy onset, and the mean time constant for decay of LVA Ca\(^{2+}\) currents was prolonged. No significant differences were found in recovery from inactivation of LVA currents or in HVA current densities and kinetics. Our data demonstrate that a non-Ca\(^{2+}\) channel subunit gene mutation leads to potentiated thalamic LVA currents that precede the appearance of SWDs and that altered somatodendritic HVA currents are not required for abnormal thalamocortical oscillations. We suggest that presynaptic release defects shared by these mutants lead to postsynaptic LVA excitability increases in thalamic pacemaker neurons that favor rebound bursting and absence epilepsy.

Key words: T-type calcium channels; thalamocortical relay cells; calcium channelopathy; stargazer; tottering; lethargic

Introduction

Ca\(^{2+}\) currents, especially the low-voltage-activated (LVA) currents within thalamic circuitry, play a critical role in the development of thalamocortical network oscillations underlying absence epilepsy (Huguenard, 1996; McCormick and Contreras, 2001; Crunelli and Leresche, 2002). Mutant alleles of high-voltage-activated (HVA) subunit genes Ca\(_{\alpha 1A}\) (tottering/tg; leaner/tg\(^{eh}\); rocker/tg\(^{eh}\)), Ca\(_{\beta 3}\) (lethargic/lh), Ca\(_{\gamma 2}\) (stargazer/stg), and Ca\(_{\alpha 2\delta}\) (ducksy/du) have been associated with cortical spike-wave discharges (SWDs) in mice resembling those in human idiopathic generalized absence epilepsy (Noebels, 1984; Noebels et al., 1990; Fletcher et al., 1996; Burgess et al., 1997; Letts et al., 1998; Barclay et al., 2001; Zwingman et al., 2001). Human Ca\(_{\alpha 1A}\) mutations associated with SWDs have also been described (Jouvenecau et al., 2001). Several of these mutations have been shown to alter membrane excitability and impair presynaptic neurotransmitter release by reducing P/Q-type Ca\(^{2+}\) currents (Dove et al., 1998; Wakamori et al., 1998; Qian and Noebels, 2000). Although it was initially unclear how decreased P/Q Ca\(^{2+}\) current could lead to membrane hyperexcitability and seizures, recent analysis of thalamic neurons in tg, lh, and stg mutants reveals not only altered HVA current densities and kinetics, but striking increases in LVA peak currents and channel availability (Zhang et al., 2002). The elevated thalamic LVA currents provide a common downstream excitability defect that favors seizure generation by promoting rebound bursting. The molecular link between the mutated channel subunit and the potentiated LVA current is unclear. There is no evidence that Ca\(_{\alpha 1A}\), Ca\(_{\beta 4}\), or Ca\(_{\gamma 2}\) subunits directly interact with the Ca\(_{\alpha 1G}\)I subunits that mediate thalamic LVA currents. Furthermore, no increases in Ca\(_{\alpha 1G}\)I mRNA expression or altered modulation of LVA currents were found. One possibility remaining to be explored is whether the LVA potentiation specifically depends on impaired calcium entry through the mutant P/Q-type channels or whether it can arise independently of the primary calcium channelopathy. A second is whether LVA increases might be induced by seizures themselves.

The neurological mouse mutant Coloboma (Cm\(^+/\); homozygous lethal) is an autosomal dominant mutation showing hyperactivity and learning deficits that maps to a small deleted region on chromosome 2 (Hess et al., 1992, 1994). The Coloboma locus spans the target membrane receptor (t-SNARE) gene encoding soluble N-ethyl-maleimide-sensitive factor attachment protein (SNAP25), a core complex protein that interacts with Ca\(^{2+}\) channel \(\alpha\) subunits and participates in Ca\(^{2+}\)-dependent neurotransmitter exocytosis (Rettig et al., 1996; Washbourne et al., 2002; Sorensen et
al., 2003). Haploinsufficiency of the SNAP25 gene in Cm/+ mice reduces 50% of the SNAP25 mRNA and protein content in brain and impairs evoked neurotransmitter release (Raber et al., 1997; Wilson, 2000). No genes for voltage-gated ion channels are contained within or flank this region, and the neurobehavioral phenotype is rescued by SNAP25 transgene expression (Hess et al., 1996). On the basis of the functional overlap of altered transmitter release shared with the Ca2+/channelopathy models, we examined Cm/+ mice for abnormal cortical synchronization and thalamic excitation changes. We discovered that Cm/+ mice show robust cortical SWDs and thalamic T-type current increases closely resembling those described in Ca2+ channel mutants. In addition, the T-type current increases clearly precede the developmental onset of cortical discharges.

Materials and Methods

Chronic electroencephalographic recordings

Cm/+ mice and their wild-type littermates (C3H/HESNJ) from the age of postnatal day (P) 10–30 were implanted for chronic EEG recordings as described previously (Qiao and Noebels, 1993). Mice were anesthetized with Avertin (1.25% tribromoethanol/amyl alcohol solution, i.p.) using a dose of 0.02 ml/gm. Teflon-coated silver wire electrodes (0.005 inch diameter) soldered to a microminiature connector were implanted bilaterally into the subdural space over frontal and parietal cortices. Digital EEG activity was recorded daily during random 2 hr samples (Stellate Systems; Harmonie software version 5.0b). A digital video camera was used to simultaneously monitor behavior during the EEG recording periods. All recordings were performed at least 24 hr after surgery on mice moving freely in the test cage. After the recordings, the EEG and digital video from mice were analyzed for the incidence and duration of spontaneous cortical spike activity. Abnormal synchronous discharges with a minimum amplitude of twice the background EEG voltage and a minimum duration of 1 sec were included for analysis, and spike bursts separated by <1 sec were counted as a single discharge. To developmentally compare the EEG results of Cm/+ with those from tg and stg mutants, similar recordings were conducted in littermates (C57BL/6J-Caounceritg/stg), stargazer (C57BL/6J-Caounceritg/stg), and their wild-type control (C57BL/6J, t+/+ mice over a similar age range.

Preparation of brain slices

Coronal brain slices (350 μm thick) were prepared from P13–16 heterozygous Caloboma (C3H/HESNJ, Cm/+) and homozygous wild-type (C3H/HESNJ, +/+) littermate mice. Slices were obtained at the level of the lateral dorsal nucleus (LDN) of the thalamus as described previously (Zhang et al., 2002). Tissue was sectioned by vibratome in a solution of (in mM): 115 NaCl, 3.0 KCl, 2.5 CaCl2, 0.5 4-aminopyridine, 5 CaCl2, 10 TEA-Cl, and 0.001 TTX, pH 7.4 (gassed with 95% O2 and 5% CO2). The intracellular pipette solution contained (in mM): 78 Cs-glucuronate, 20 HEPEA, 10 BAPTA-Cs4 (cell impenetrable), 0.5 CaCl2, 1.0 MgCl2, 4 Mg-ATP, 0.3 GTP-Tris, 6 phosphocreatine (D-Tris salt), 4.0 NaCl, and 20 TEA-Cl, pH 7.3 (titrated with CsOH).

Voltage protocols. To generate Ca2+ channel current–voltage (I–V) curves, currents were elicited by applying voltage step commands (200 msec) to varying potentials from a 3 sec prepulse potential at −60 or −110 mV. The I–V protocol for HVA Ca2+ currents consisted of voltage steps from −80 to +60 mV in 5 mV increments triggered from a 3 sec prepulse potential at −60 mV. To define LVA Ca2+ currents, difference currents obtained by digital subtraction of the currents elicited during depolarizing voltage steps from −60 and −110 mV were used. Standard voltage protocols for steady-state activation (SSA) of HVA Ca2+ currents, as well as the steady-state inactivation (SSI) and recovery from inactivation (RFI) of LVA currents, respectively, were applied and are explained in further detail in the Figure legends. In our study, we did not find any significant time-dependent ICa2+/ rundown within 40 min after membrane rupture, and all data included in this study were obtained within this time interval. Statistical data analysis was performed using the Student’s t test or one-way ANOVA with the post hoc test. Differences where p < 0.05 were accepted as statistically significant. The data shown represent means ± SE.

Results

Cortical spike-wave discharges in the Cm/+ mutant are associated with elevated LVA Ca2+ currents in thalamic neurons

Similar to mice with recessive mutations in calcium channel subunit genes, we observed frequent spontaneous bursts of 5–6 Hz bilateral cortical SWDs in all Cm/+ mice. These stereotyped discharges appeared in the awake animal and were always accompanied by simultaneous behavioral arrest. Representative bilateral EEG traces recorded in adult Cm/+ mice are shown in Figure 1A (top). Intraperitoneal injection of 5 mmol/kg ethosuximide (ETX) completely blocked SWDs within 2–4 min (Fig. 1A, middle). The mean number of SWDs in adult Cm/+ mice was reduced from 29.3 ± 4.2 per hour before injection to 0 per hour for 2–4 hr after injection (Fig. 1A, bottom), followed by full recovery of the SWDs and absence-type seizures. The sensitivity of intraperitoneal injection of ETX in Cm/+ mutants was reduced significantly compared with the effective doses used in mice absence models: tg, lh, and stg models (1–1.4 mmol/kg) (Heller et al., 1983; Aizawa et al., 1997). Spike wave discharges of this general pattern and behavioral phenotype are seen in human absence epilepsy and Ca2+ channel mouse mutants (Noebels and Sidman, 1979; Hoford et al., 1992; Qiao and Noebels, 1993), as well as in other genetic models of absence in rat (Marescaux et al., 1992; Coenen and Van Luijtenaar, 2003).

We then analyzed low-voltage-activated Ca2+ current amplitudes and kinetics in TC neurons to determine whether any alterations coexist with the expression of absence epilepsy in the Cm/+ mutant. In Figure 1B, the top panel shows representative traces of LVA Ca2+ currents in response to a test pulse to −50 mV arising from a 3 sec prepulse to −110 mV in TC neurons from wild-type and Cm/+ mice. At a membrane potential of −50 mV, all LVA Ca2+ currents have recovered from inactivation and are thus available for opening in both wild-type and mutant neurons (see Figs. 4B, 5B), whereas HVA Ca2+ currents in these cells have not yet started to activate (see Fig. 6B). The current traces of the LVA calcium channels show fast activation and inactivation, similar to that found in vitro by expression of Ca2,3.1(αT9), and Ca2,3.2(α112) T-type calcium channels (Lee et al., 1999; Delisle and Satin, 2000; Zhang et al., 2000) as well as native LVA currents.
Figure 1. Spike-wave discharges coexist with elevated low-voltage-activated Ca\(^{2+}\) peak current in thalamic neurons of Coloboma mutant mice. A, Representative bilateral EEG traces showing 5–6 Hz spike-wave discharges (top) and pharmacological sensitivity to 5 mmol/kg ethosuximide (ETX, i.p.) in Cm/+ mutants (n = 5; at P30) (middle). L and R designate left and right frontal cortex recording sites. The bottom panel shows the mean incidence of spike-wave discharges in Cm/+ mutant mice before and after ETX injection. B, Increased thalamic LVA Ca\(^{2+}\) peak current in Coloboma. Top panel, Representative LVA current traces from thalamocortical relay cells (TCs) of the LDN in control (C3H) and Cm/+ mice at age P15. The cell capacitance values of the two neurons were 100 and 101 pF in C3H and Cm/+ mice, respectively; holding potential = −70 mV. The membrane potential was prepulsed to −110 mV for 3 sec before stepping to −50 mV for 200 msec. Decay of the current was fitted by a single-exponential function (superimposed dotted line). A significant alteration in the macroscopic current decay was found in Cm/+ neurons. The time constants (τ) for decay of the representative currents are 24.6 msec in C3H and 29.8 msec in Cm/+ mice, respectively. Bottom panel, Elevated LVA Ca\(^{2+}\) current amplitude and peak current density from Cm/+ TCs. LVA currents were evoked at the same membrane potential as described in top panel. **p < 0.001 versus control at corresponding age.

from dissociated rat TC neurons (Destexhe et al., 1998) and TC neurons of tg, lh, and stg brain slices (Zhang et al., 2002). The peak current densities (normalized by cell capacitance) of LVA currents at a membrane potential of −50 mV were increased by 60% compared with the corresponding value in control neurons at this age (P14–16) (Fig. 1B, right bottom panel). The mean peak current amplitudes and peak current densities were −1142.3 ± 131.9 (pA) and 12.4 ± 1.1 (pA/pF) in control mice and −1916.2 ± 54.3** (pA) and 19.8 ± 0.4** (pA/pF) in Cm/+ (**p < 0.001 vs control).

Age of onset and mean incidence of spontaneous cortical SWDs in Cm/+ mutants

The onset of cortical SWDs in Cm/+ mice, like those in mice bearing Ca\(^{2+}\) channelopathies, displayed a highly reproducible developmental profile. Representative bilateral EEG traces of both Cm/+ mutants and C3H control mice recorded at various postnatal ages from P13 through adulthood are shown in Figure 2A and are compared with EEG traces at the same ages from tg and stg mutants as well as their control genotypes. In our study, no synchronous discharges were ever recorded from Cm/+ mutants at ages P11–13. SWDs emerged at P14–15 and were always present by P20 in Cm/+ mice. As shown in Figure 2A, most of the spike-wave discharges in the immature (P14–18) Cm/+ mouse brain display a pattern of prolonged and frequent 3–4 Hz synchronous discharges, intermixed with occasional shorter 5–6 Hz bursts. From P20 onward, a 5–6 Hz spike-wave pattern becomes the predominant pattern in Cm/+ mutants. In comparison, cortical SWDs were also first visible at P13 and P14, respectively, in stg and tg mutants. Similar to Cm/+ mice, SWDs exhibited a variable spike frequency pattern of 3–6 Hz during the period from P13 to P18 and then stabilized at 5–6 Hz from P20 onward in both tg and stg mice. No SWDs were ever observed in C3H (wild-type litters of Cm/+) and C57BL6 (+/+ control for tg and stg) mice within the age range of P11 to P25. Group data showing the mean incidence of cortical discharges in Cm/+ mutants and C3H +/+ control mice during development are demonstrated in Figure 2B. As shown, the onset of synchronous cortical discharges began with rare bursts (1–30 sec duration; some as long as 150–300 sec) in Cm/+ mutant mice at the age of P14 and P15 (two to five bursts per hour) and gradually increased to a stable rate exceeding 20 per hour. The mean incidence of spike-wave discharges in Cm/+ mice at P20 was ~15 bursts per hour and then reached 25–45 bursts per hour between P21 and P25. Behavioral video image data obtained simultaneously with EEG recordings showed that except for very brief duration discharges, the SWDs were seen when Cm/+ mutants were motionless in a state of quiet wakefulness, similar to the correlation with behavioral arrest in other absence seizure models. The patterns of onset and incidence of spike-wave discharges in Cm/+ mutants are essentially identical to those exhibited in Ca\(^{2+}\) channel mutants (Noebels and Sidman, 1979; Noebels, 1984; Noebels et al., 1990). No synchronous discharges were ever recorded in adolescent C3H control mice; however, rare isolated SWDs were noted in recordings from some +/+ C3H aged ≥5 weeks, suggesting that this genetic background may express additional permissive susceptibility genes for this trait.

The increased peak current density and prolonged current decay of thalamic LVA Ca\(^{2+}\) currents precede seizure onset

We examined thalamic LVA calcium currents in brain slices obtained at age P13, at least 24 hr and typically several days before the earliest evidence of cortical SWDs in Cm/+ mutants. The
data collected at P13 are compared with those obtained at P14–16 when seizures began to emerge. Figure 3A shows representative traces of LVA Ca\(^{2+}\) currents in response to a test pulse to \(-50\) mV from a 3 sec prepulse to \(-110\) mV in TC neurons from wild-type and Cm+/+ mice. The current traces of the LVA calcium channels at both P13 (before the onset of SWDs) and P15 (after the emergence of SWDs) display fast activation and inactivation kinetics as well as activation at low voltages, which together define the characteristic properties of T-type Ca\(^{2+}\) channels (Destexhe et al., 1998; Lee et al., 1999; Zhang et al., 2000, 2002). The peak current densities of LVA currents at a membrane potential of \(-50\) mV increased by 54% in Cm/+ at P13 and 60% in Cm/+ at P14–16 compared with corresponding values in control +/+ neurons at same age (Fig. 3B). The mean peak current amplitude and peak current density were \(-1418.0 \pm 132.9\) (pA) and \(12.7 \pm 0.5\) (pA/pF) in control and \(-2015.8 \pm 117.9^*\) (pA) and \(19.5 \pm 1.2^{**}\) (pA/pF) in Cm/+ at age P13, \(-1142.3 \pm 131.9\) (pA) and \(12.4 \pm 1.1\) (pA/pF) in control, and \(-1916.2 \pm 54.3^{**}\) (pA) and \(19.8 \pm 0.4^{**}\) (pA/pF) in Cm/+ aged P14–16 (\(**p < 0.01; ^* p < 0.05\) vs control). The amplitude and peak current density of control and Cm/+ at P13 were not significantly different from corresponding data at P14–16, respectively. Because synchronous discharges in Cm/+ mutants are never seen until P14–16 (Fig. 2B), this result demonstrates that thalamic LVA Ca\(^{2+}\) currents are elevated before the onset of discharges and therefore are not induced by the seizure itself.

The duration of macroscopic inactivation of LVA Ca\(^{2+}\) currents in both control and mutant mice is closer to the time scale observed in Ca\(_{3.1}\) but not Ca\(_{3.2}\) T-type calcium channels expressed in mammalian cells (Lee et al., 1999; Zhang et al., 2000). The decay of macroscopic LVA currents evoked at \(-50\) mV was fitted by a single-exponential function (Fig. 3A); however, unlike what we observed in tg, lh, and stg neurons, we found significant prolongation of the time constant for decay of macroscopic LVA currents in Cm/+ (28.1 \(\pm 0.69^{**}\) msec; P13–16) compared with that in wild-type neurons at the same age range (23.6 \(\pm 0.86\) msec; \(**p < 0.001\)). We here combined data derived from mice at P13 and at ages ranging from P14 to P16 in both the control group and the Cm/+ group, because the recovery at P13 is not significantly different from that at P14–16 in either control or mutant mice.

Depolarizing shifts in voltage dependence of steady-state inactivation and unaltered kinetics for recovery from inactivation of LVA currents in Cm/+ mice

We next examined the voltage-dependent inactivation and recovery from inactivation of LVA Ca\(^{2+}\) currents in both wild-type and Cm/+ neurons. The current traces of SSI of LVA are shown in Figure 4A. For the SSI protocol, we used a 4 sec prepulse to various membrane potentials before delivering a second test stimulus to \(-50\) mV. The 4 sec prepulse was long enough to bring channels to a steady-state condition, because all LVA Ca\(^{2+}\) channels in TC neurons recover from inactivation within 3 sec (Fig. 5B). As demonstrated in Figure 4A, LVA currents elicited at \(-50\) mV from different premembrane potentials in both control and Cm/+ mutant show fast inactivation and decay completely within 200 msec. We found a significant depolarizing shift of the steady-state inactivation curves of LVA currents in the mutant both before the onset of seizure (P13) and after seizure generation (P14–16) in contrast to wild-type neurons (Fig. 4B). The mean half-maximal voltages (\(V_{1/2}\)) for SSI curves were \(-84.0 \pm 0.7\) mV in control (P13–16), \(-76.0 \pm 2.1^{*}\) mV in Cm/+ at P13, \(-75.5 \pm 0.86\) mV.
Increased low-voltage-activated \(\text{Ca}^{2+} \) peak current in \textit{Coloboma}. \textit{A}, Representative LVA current traces from thalamocortical relay cells (TCs) in control (C3H) and \(\text{Cm}^{+} \) mice at ages P13 and P15. The cell capacitance values of these neurons were 104 and 105 pF in C3H and \(\text{Cm}^{+} \) at P13 and 100 and 101 pF in C3H and \(\text{Cm}^{+} \) at P14, respectively. The holding potential and voltage protocol used were the same as described in Figure 1.\textit{B}, Decay of the current was fitted by a single-exponential function (superimposed dotted line). A significant alteration in macroscopic current decay was found in \(\text{Cm}^{+} \). The time constants \(\tau \) for decay of representative current traces at P13 and P13 are 22.53 and 24.6 msec in C3H and 29.4 and 29.8 msec in \(\text{Cm}^{+} \), respectively.\textit{B}, Elevated LVA \(\text{Ca}^{2+} \) current amplitude and peak current density from \(\text{Cm}^{+} \) TC neurons. LVA currents were evoked at the same membrane potential as described in \textit{A}. * \(p < 0.01; \) ** \(p < 0.001; \) vs control at corresponding age.

Depolarized shift of the voltage dependence of low-voltage-activated calcium channel availability (steady-state inactivation) in \textit{Coloboma} mutants. \textit{A}, Representative current traces for SSI of LVA \(\text{Ca}^{2+} \) currents. A standard double-pulse protocol for steady-state inactivation was given from the holding potential of \(-70 \) mV. A 4 sec prepulse at potentials ranging from \(-120 \) to \(-40 \) mV preceded each depolarization, followed by a subsequent voltage step to \(-50 \) mV for 200 msec. The interpulse interval was 10 sec.\textit{B}, Normalized current–voltage curves for SSI of LVA \(\text{Ca}^{2+} \) currents. Current amplitude from the inactivation protocol, normalized to maximum, was plotted as a function of prepulse membrane potentials and best fitted with a Boltzmann function:

\[I/I_{\text{max}} = \frac{1}{1 + \exp(\frac{V - V_{1/2}}{k})^{-1}} \]

Figure 3

Figure 4

Zhang et al. • Thalamic \(\text{Ca}^{2+} \) Currents in a SNAP25-Deficient Mutant Mouse J. Neurosci., June 2, 2004 • 24(22):5239 –5248

\(3.1^\circ \) mV in \(\text{Cm}^{+} \) at P14–16, respectively (* \(p < 0.01; \) ** \(p < 0.05 \) vs control). The 8–8.5 mV depolarizing shifts of the voltage dependence for SSI of LVA currents in TC neurons of \(\text{Cm}^{+} \) mice suggest that at physiological membrane potentials varying from \(-70 \) to \(-75 \) mV, a higher fraction of all LVA calcium channels is available for opening in the mutant relative to control mice. As seen for the LVA peak current density in \(\text{Cm}^{+} \) (Fig. 4), the \(V_{1/2} \) for SSI in mutant mice also shifted significantly in a depolarizing direction at P13, a time preceding the onset of SWDs (Fig. 2 B). This depolarized shift of \(V_{1/2} \) for SSI of LVA currents remained after seizure onset (Fig. 4 B). Accordingly, in parallel with an increased current density (Fig. 3), the depolarizing shift of \(V_{1/2} \) for SSI of LVA currents in \(\text{Cm}^{+} \) also preceded the emergence of SWDs. The depolarizing shift of the SSI curve for LVA currents in \(\text{Cm}^{+} \) is consistent with our previous data showing 7.5–13.5 mV depolarizing shifts of SSI for thalamic LVA currents in \(\text{tg}, \text{lt}, \text{stg} \), and \(\text{tg} \) mutants (Zhang et al., 2002). This shift in the voltage dependence of SSI of LVA currents to a more depolarized level in \(\text{Cm}^{+} \) will increase membrane excitability and therefore provide an additional biophysical mechanism that may contribute to neuronal burst synchronization in \(\text{Cm}^{+} \) mutants.

Figure 5A displays raw current traces of the RFI of thalamic LVA \(\text{Ca}^{2+} \) currents in control and \(\text{Cm}^{+} \) mice. As shown, RFI in both control and mutant cells was complete within 3 sec (Fig. 5 B). The recovery from inactivation curve was best fitted with a two-exponential function, and the fast and slow time constants derived from curve fitting did not significantly differ in \(\text{Cm}^{+} \) when compared with control mice, either before or after the onset of SWDs. The values of the fast time constant (\(\tau_f \)) were 260 and 240 msec for control and \(\text{Cm}^{+} \) at P13 and 250 and 210 msec for control and \(\text{Cm}^{+} \) at P14–16, respectively. The values of slow
High-voltage-activated Ca\(^{2+}\) peak currents and voltage dependence of steady-state activation are unaffected in \(Cm^{+}\) mutants

Finally, we investigated whether thalamic HVA Ca\(^{2+}\) currents are altered by SNAP25 deficiency as seen in Ca\(^{2+}\) channel mutants. HVA Ca\(^{2+}\) currents are mediated by pore-forming \(\alpha\) subunits, with current amplitude and gating regulated by cytoplasmic \(\beta\) subunits and transmembrane \(\alpha_{\delta}\) and \(\gamma\) subunits (Ahlijanian et al., 1990; Chien et al., 1995; Witcher et al., 1995; Burnett et al., 1996; Walker and De Waard, 1998; Meir et al., 2000; Kang et al., 2001). Our previous study demonstrated increased HVA Ca\(^{2+}\) currents as well as altered channel kinetics in the \(tg\), \(stg\), and \(lh\) absence seizure models (Zhang et al., 2002), and there is evidence that SNAP25 directly interacts with HVA Ca\(^{2+}\) channels (Rettig et al., 1996; Sheng et al., 1998).

Figure 6A shows representative HVA Ca\(^{2+}\) current traces from wild-type and \(Cm^{+}\)/+ mutant neurons. The \(I-V\) relationships of Ca\(^{2+}\) currents for control and \(Cm^{+}/+\) mutant are shown in Figure 6B. Both control and mutant HVA Ca\(^{2+}\) currents start to activate at around \(-40\) mV and reach a peak between \(-10\) and \(-15\) mV (Fig. 6B). Pooled peak currents and peak current densities are shown in Figure 6C. The mean peak current density was \(10.3 \pm 1.2\) and \(11.1 \pm 1.4\) (pA/pF) in control and \(Cm^{+}/+\) mutant neurons at P13 and 10.9 \(\pm\) 1.2 and 10.9 \(\pm\) 0.9 (pA/pF) in control and \(Cm^{+}/+\) at P14–16, respectively. The mean peak amplitude was \(-1198.4 \pm 219.5\) and \(-1228.6 \pm 135.6\) (pA) in control and \(Cm^{+}/+\) mice at P13 and \(-1149.9 \pm 217.8\) and \(-1122.4 \pm 129.6\) (pA) in control and \(Cm^{+}/+\) mice at P14–16, respectively. These results show that there is no significant alteration in either peak current density or current amplitude in \(Cm^{+}/+\) mutants in comparison with those of wild-type mice both before the onset of SWDs and after seizure generation.

Similar to the unaltered peak current in \(Cm^{+}/+\), the voltage dependence of SSA for HVA Ca\(^{2+}\) currents in mutant TC neurons also did not shift significantly relative to that of control. The SSA curves of HVA currents in both control and mutant are demonstrated in Figure 6D. The mean values of \(V_{1/2}\) and slope for SSA of HVA channels were \(-20.1 \pm 1.3\) mV and \(4.3 \pm 0.3\) in control and \(-20.4 \pm 1.1\) mV and \(3.8 \pm 0.2\) in \(Cm^{+}/+\) at P13, and \(-19.1 \pm 1.2\) mV and \(3.7 \pm 0.2\) in control and \(-18.6 \pm 1.3\) mV and \(4.0 \pm 0.3\) in \(Cm^{+}/+\) at P14–16. The unchanged peak current density and voltage dependence of SSA differ from what we observed in \(tg\), \(lh\), and \(stg\) mutants (Zhang et al., 2002), which demonstrated increased peak current densities in \(tg\) and \(stg\) as well as a depolarizing shift of SSA curve in \(lh\) mice. Thus, the insignificant changes in HVA peak current and voltage dependence of SSA in \(Cm^{+}/+\) mice suggest that the \(Cm^{+}/+\) mutation does not directly or indirectly affect HVA Ca\(^{2+}\) channel gating.

Discussion

Our results demonstrate that an increased peak current density and a depolarizing shift in the SSA of thalamic LVA Ca\(^{2+}\) currents coexist with frequent cortical spike-wave discharges in the dominant mouse mutant *Coloboma*. The LVA Ca\(^{2+}\) currents precipitate the developmental onset of the discharges, showing that they are not seizure induced, and thus provide a mechanism for the generation of the absence epilepsy phenotype in \(Cm^{+}/+\). The changes in HVA peak current density and voltage dependence of SSA found in Ca\(^{2+}\) channelopathy mutants were not present in \(Cm^{+}/+\), supporting the key pathogenic role of thalamic LVA Ca\(^{2+}\) channels in mediating neuronal hyperexcitability and epileptogenesis.

Thalamic Ca\(^{2+}\) currents in \(Cm^{+}/+\) compared with calcium channel mutations

LVA currents

Thalamic LVA currents are mediated by \(\alpha 1G\)-I genes expressed in nonoverlapping thalamic regions (Talley et al., 1999). In a previous study of \(tg\), \(lh\), and \(stg\) mice, we found elevated LVA current in LDN, where the \(\alpha 1G\) gene is expressed (Zhang et al., 2002). The magnitude of the increase (~50%) in peak LVA currents in \(Cm^{+}/+\) is equivalent, signifying that mutations of either Ca\(^{2+}\) channel subunits or non-Ca\(^{2+}\) channel genes can lead to increased thalamic LVA currents in absence models. This finding, taken together with the report that mice lacking the \(\alpha 1A\) subunit for \(P/Q\)-type Ca\(^{2+}\) current also show elevated thalamic LVA cur-
to induce the elevated LVA Ca$^{2+}$ currents in thalamic neurons that are associated with SWDs.

HVA currents
In contrast, we did not observe any significant effects of reduced SNAP25 on either the peak current density or voltage-dependent SSA of HVA currents in the Cm/+ mutant. This result differs from tg, lh, and stg mice, in which HVA peak current densities increased by 22% in tg and 45% in stg, and the SSA curve shifted in a depolarizing direction by 5 mV in lh mice (Zhang et al., 2002). In these mutants, the altered HVA currents arise from primary genetic defects of the P/Q-type channel or lost interactions with its associated subunits (De Waard and Campbell, 1995; Letts et al., 1998; Burgess et al., 1999; Kang et al., 2001) and may also reflect the up-regulation of other non-P/Q HVA channel types (Campbell and Hess, 1999). The lack of HVA current change in Cm/+ was unexpected but may be explained by neuronal compartmentation. SNAP25 directly interacts with P/Q-type channels (Rettig et al., 1996) and is reduced in Cm/+ mice; however, the membrane currents reported in these studies are recorded at the cell soma, and it is likely that any alteration of HVA currents in Cm/+ neurons could be detected only at presynaptic terminals where the interaction between SNAP25 and HVA channel proteins occurs (Sheng et al., 1998; Atlas, 2001).

Potentiation of thalamic LVA Ca$^{2+}$ current precedes the onset of SWDs in Cm/+ mutants
Because potentiation of LVA currents could be activity driven, we examined thalamic LVA currents in Cm/+ and control mice before and after the onset of seizures. At P13, a full day before even the first SWD ever appears, we found a 54% increase in peak current density of LVA Ca$^{2+}$ currents, as well as an 8 mV depolarizing shift of the inactivation curve, demonstrating that potentiation of thalamic LVA currents precedes the emergence of synchronous discharges and therefore was not seizure induced. In fact, even after several days of seizures occurring with an incidence of two to five bursts per hour, we still observed a comparable (60%) elevation in peak current density of LVA currents together with an 8.5 mV depolarizing shift of the voltage dependence of steady-state inactivation that was changed little from pre-seizure levels. Thus, the onset of SWDs did not add an appreciable supplemental enhancement in either LVA peak current or the shift of inactivation curve in Cm/+.

These data correspond well with other evidence that the spike-wave seizure pattern, unlike that induced by convulsants (Nahm
and Noebels, 1998), does not significantly induce gene expression patterns.

The increased thalamic LVA currents and channel availability near resting membrane potentials in the Cm+/− mutant favor augmented burst firing and membrane hyperexcitability, because T-type Ca2+ channels begin to activate at relatively hyperpolarized membrane potentials (Huguenard and Prince, 1992; Zhang et al., 2000) attributable in part to rhythmic input from GABAergic nucleus reticularis thalami neurons. Because SNAP25 deficiency reduces transmitter release in Cm+/− synaptosomal preparations (Raber et al., 1997), other complex changes may contribute to the altered synchronization pattern. Although we have not established a unique causal relationship between the potentiated LVA currents and seizure initiation in Cm+/−, the evidence for involvement of thalamic T-type channels in spike-wave generation, as well as the exclusion of activity-dependent causes for LVA current increases in Cm+/+, suggests an important primary contribution. Interestingly, a comparable depolarizing shift of SSI with prolongation of LVA current decay has just been described in human mutations identified in human childhood absence epilepsy patients (Khosrovani et al., 2004).

Mechanisms for enhanced LVA current

Several possibilities may account for elevated LVA currents in Cm+/− mutants. First, T-type channel synthesis might increase because of impaired synaptic transmission caused by deficient SNAP25 expression or phosphorylation (Boschert et al., 1996; Genoud et al., 1999). Presynaptic release defects may lead to developmental differences in the transcriptional regulation of a heterogeneous population of T-type channel isoforms (Bertolesi et al., 2003; Yunker et al., 2003), which in turn have been shown to influence patterns of neuritogenesis during neuronal differentiation (Chemin et al., 2002). Although a minor increase in expression of Ca3.1α1G and Ca3.2α1H has been reported in adult GAERS (genetic absence epilepsy rats from Strasbourg) rats, a genetically undefined absence model (Talley et al., 2000), no alteration in the thalamic expression pattern of any of the three Ca3.1–3 genes that closely resemble the Cm+/+ model or evidence for abnormal modulation have been detected (Zhang et al., 2002). Second, the currents may be modulated. Modulation pathways potentially responsible for increased LVA currents in Cm+/− include the modification of T-type channels by protein kinase C (Park et al., 2003), CamKII (Welsby et al., 2003), opioid receptors (Schroeder et al., 1991), pH (Delisle and Satin, 2000; Shan et al., 2001), and anandamide (Chemin et al., 2001). It is worth noting that the Coloboma locus also contains the genes for phospholipase C (PLC) β1 and β4; hence Cm+/− mice are also haploinsufficient for these enzyme isoforms. Mice with homozygous deletion of PLC β1 show lethal tonic–clonic seizures in the second postnatal week, and β4 mice show ataxia without seizures; however, heterozygous mice display no neurological abnormalities (Kim et al., 1997). Whether these heterozygotes show SWDs and altered LVA currents that might be related to PLC-β signal transduction abnormalities remains to be determined.

Overlapping mechanisms for absence epilepsy phenotype in Coloboma and calcium channel mutants

The spike-wave phenotype exhibited in developing Cm+/− mice parallels the early onset (P14–16), increasing incidence (reaching >40 per hour in adulthood), and ETX sensitivity of the SWDs found in tg, lh, and stg (Noebels and Sidman, 1979; Noebels et al., 1990; Hosford et al., 1992). Interestingly, in tg and stg mutants, we also observed a 50–60% increase in peak current densities and an 11–12 mV depolarized shift of inactivation over an age range (P8–11) before SWDs appear (data not shown). Significantly, there is additional functional overlap between epileptogenic calcium channelopathies and the SNAP25-deficient Cm+/− mutants, because SNAP25 interacts with HVA channels involved in excytosis, and both show transmitter release defects. We did find a difference in pharmacological sensitivity: namely, a 3.6- to 5-fold reduction in ETX sensitivity in Cm+/− mice compared with Ca2+ channel mutants. In Cm+/−, only a bolus dose of 5 mmol/kg (i.p.) completely blocked the occurrence of SWDs within 2–4 min, and lower doses were ineffective, whereas in Ca2+ channel mutants, 1–1.4 mmol/kg is an effective dose (Heller et al., 1983; Aizawa et al., 1997). The blockade of SWDs by ETX could be attributable to the action of the drug on either thalamic T-type Ca2+ channels (Coulter et al., 1989) or slow inactivated Na+ currents and Ca2+-activated K+ currents (Leresche et al., 1998). Future experiments will address which currents may be less sensitive to ETX in Cm+/− neurons.

In conclusion, our results provide the first demonstration that potentiated thalamic LVA currents precede abnormal neuronal synchronization and, together with the direct effect of the α1G gene on the threshold for thalamocortical SWD generation (Kim et al., 2001), provide the strongest supportive evidence so far for a major role of thalamic LVA currents in murine models of absence epilepsy. The evidence also points to developmental defects in synaptic transmission as a common cellular mechanism for the dysregulation of T-type currents that lead to this epileptic phenotype.

References

Gurnett CA, De Waard M, Campbell KP (1996) Dual function of the neuronal α1A Ca 2+ channel expressed in Xenopus oocytes. J Physiol (Lond) 485:619–634.

