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Processing of Odor Mixtures in the Zebrafish Olfactory Bulb

Rico Tabor, Emre Yaksi, Jan-Marek Weislogel, and Rainer W. Friedrich
Department of Biomedical Optics, Max Planck Institute for Medical Research, D-69120 Heidelberg, Germany

Components of odor mixtures often are not perceived individually, suggesting that neural representations of mixtures are not simple
combinations of the representations of the components. We studied odor responses to binary mixtures of amino acids and food extracts
at different processing stages in the olfactory bulb (OB) of zebrafish. Odor-evoked input to the OB was measured by imaging Ca** signals
in afferents to olfactory glomeruli. Activity patterns evoked by mixtures were predictable within narrow limits from the component
patterns, indicating that mixture interactions in the peripheral olfactory system are weak. OB output neurons, the mitral cells (MCs), were
recorded extra- and intracellularly and responded to odors with stimulus-dependent temporal firing rate modulations. Responses to
mixtures of amino acids often were dominated by one of the component responses. Responses to mixtures of food extracts, in contrast,
were more distinct from both component responses. These results show that mixture interactions can result from processing in the OB.
Moreover, our data indicate that mixture interactions in the OB become more pronounced with increasing overlap of input activity
patterns evoked by the components. Emerging from these results are rules of mixture interactions that may explain behavioral data and

provide a basis for understanding the processing of natural odor stimuli in the OB.
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Introduction

Olfaction is considered a “synthetic” sense because the ability to
segment the perception of odor mixtures into distinct compo-
nents is limited (Laing and Francis, 1989; Livermore and Laing,
1996). The perception of an odor mixture either is dominated by
an intense component or acquires a new quality (Moskowitz and
Barbe, 1977; Laing and Willcox, 1983; Laing et al., 1984, 1989;
Bell et al., 1987; Staubli et al., 1987; Derby et al., 1996; Valentincic
etal., 2000; Wiltrout et al., 2003). Thus, responses to odorants are
assumed to “interact” in the response to a mixture, giving rise to
a neural representation that discards information about individ-
ual components but acquires mixture-specific properties. Such
mixture interactions may be important for the processing of nat-
ural odor stimuli.

Chemicals are detected by olfactory sensory neurons (OSNs),
each of which expresses one of >1000 odorant receptors (ORs) in
rodents (Malnic et al., 1999; Mombaerts, 1999; Zhang and Firest-
ein, 2002). OSNs expressing the same odorant receptor converge
onto distinct olfactory glomeruli (Ressler et al., 1994; Vassar etal.,
1994; Mombaerts, 1999). Odor quality initially is represented in
the olfactory bulb (OB) by a combinatorial activity pattern across
glomeruli, each of which responds to multiple odors (Stewart et
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al., 1979; Lancet et al., 1982; Friedrich and Korsching, 1997;
Rubin and Katz, 1999; Fuss and Korsching, 2001; Wachowiak
and Cohen, 2001). The principal neurons of the OB, the mitral
cells (MCs), receive input from OSNs and interact via local inter-
neurons. Synaptic connections within the OB shape the tuning
profiles of MCs and temporally pattern their responses.

Interactions between components in a mixture may occur at
different stages of odor processing. In OSNs, mixture interac-
tions have been observed in vertebrates and invertebrates and
may be mediated by competitive inhibition or synergistic activa-
tion of odorant receptors or by cross-talking signal transduction
pathways (Ache et al., 1988; Laing et al., 1989; Ache and Zhain-
azarov, 1995; Kang and Caprio, 1997; Cromarty and Derby, 1998;
Spehr et al., 2002). Mixture interactions also have been observed
in the OB (Kang and Caprio, 1995; Giraudet et al., 2002; Wilson,
2003); however, the origin of the interactions has remained un-
known. A 2-deoxyglucose study suggested that mixture interac-
tions occur primarily in the periphery (Bell et al., 1987), although
evidence exists for central mixture interactions in the spiny lob-
ster (Derby et al., 1985). It is therefore unclear how neural circuits
in the brain contribute to the processing of odor mixtures. More-
over, understanding the processing of natural odor stimuli would
be facilitated by a set of rules describing the effect of mixture
interactions on odor-evoked activity patterns.

We examined binary mixture interactions in the OB of adult
zebrafish, which is similar to that of other vertebrates but con-
tains relatively few glomeruli and MCs (Baier and Korsching,
1994; Byrd and Brunjes, 1995; Edwards and Michel, 2002). Bi-
nary mixture interactions were studied in patterns of afferent
glomerular activity and in MC odor responses, representing OB
input and output activity, respectively. Significant interactions
were observed in MC responses, but not their input activity pat-
terns, indicating that the OB contributes to the processing of
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odor mixtures. Tentative rules for mixture interactions in the OB
were derived and provide a basis for understanding the effect of
mixture interactions on odor representations by multiple
neurons.

Materials and Methods

Animals and loading of OSNs with a Ca*" indicator. Adult zebrafish
(Danio rerio) were obtained from a local supplier or from a laboratory
colony and kept at 22-26°C. Loading of OSNs with calcium green-1
dextran (10 kDa; Molecular Probes, Eugene, OR) was performed as de-
scribed (Friedrich and Korsching, 1997). Briefly, ~1 ul of 6—8% calcium
green-1 dextran in 3 mm NaCl and 0.1% Triton X-100 was applied into
each naris under anesthesia with 0.01% MS-222. After 5 min the dye
solution was washed away, and the fish were allowed to recover. Triton
X-100 transiently permeabilized olfactory cilia, allowing uptake of the
dye. Cilia regenerated during the next 48 hr (Friedrich and Korsching,
1997). Fish were used for imaging experiments 3—6 d after dye loading.

Surgery and odor stimulation. An explant of the intact zebrafish brain
and nose was used in all experiments and prepared as described
(Friedrich and Laurent, 2001, 2004). Briefly, fish were cooled to 4°C and
decapitated in teleost artificial CSF (ACSF) (Mathieson and Maler,
1988). The eyes, jaws, and bones over the ventral forebrain were removed
to expose the ventral OBs. The preparation was placed ventral-side up
into a custom-made flow chamber, continuously superfused with ACSF,
and allowed to warm up to room temperature (~22°C). In some imaging
experiments that used an inverted microscope, brain structures caudal to
the optic chiasm were removed, and the preparation was placed ventral-
side down in a chamber with a coverslipped window in the floor as
described (Friedrich and Korsching, 1997). All animal procedures were
performed in accordance with the animal care guidelines issued by the
Federal Republic of Germany.

Odors were delivered through a constant carrier stream directed at the
ipsilateral inflow naris by a computer-controlled, pneumatically actuated
HPLC injection valve (Valco, Houston, TX, or Rheodyne, Rohnert Park,
CA). The time course of the odor stimulus was measured by imaging the
efflux of a fluorescein solution from the delivery tube. The stimulus rose
to maximum concentration within ~600 msec and persisted for ~2.4
sec. The stimulus time course was highly reproducible. Amino acids
(Sigma, St. Louis, MO, or Fluka, Neu-Ulm, Germany) were of the highest
purity available. Fresh stock solutions (1 or 10 mm) were prepared at least
every 10 d, refrigerated, and diluted to final concentrations of 10—40 um
immediately before the experiment. Food extracts were prepared from
commercially available flake food or from commercially available dried
tubifex, daphnia, or blood worms. Stock solutions were made at least
every 14 d by incubating 200 mg of fish food in 50 ml of ACSF for 1 hr and
filtering through filter paper. Stock solutions were kept refrigerated and
diluted 1:10 to 1:100 immediately before the experiment. The dilution
factor was chosen so that the peak Ca*" signals evoked by food extracts
and amino acid stimuli were similar. Seven different foods were used. In
all experiments the concentration of each component was the same when
applied alone or in the mixture. Odor applications were separated by at
least 105 sec to exclude sensory adaptation. Stimuli did not saturate
glomerular responses because higher concentrations evoked larger Ca?*
signals in most glomeruli (Friedrich and Korsching, 1997).

Ca*" imaging. Specimens were viewed either with an inverted micro-
scope (Zeiss Axiovert 100, Oberkochen, Germany) equipped with a 10X
air objective [numerical aperture (NA) 0.5; Zeiss] or with a custom-made
upright epifluorescence microscope that used a BX-RFA epifluorescence
condenser (Olympus, Tokyo, Japan) and a 20X objective (NA 0.95;
Olympus). Fluorescence was excited with a 150 W xenon arc lamp
equipped with a stabilized power supply (Opti Quip, Highland Mills,
NY) through an excitation filter (495/30HQ). Light was attenuated to
1.5% of the full intensity by neutral density filters to minimize photo-
bleaching. Emitted light was projected through a dichroic mirror
(Q520LP) and emission filter (HQ545/50) onto the chip of a CCD cam-
era (CoolSnapHQ, Photometrics, Tucson, AZ). Images were binned to a
final resolution of 130 X 174 pixels and digitized at 12 bits and 2-16 Hz.
Each pixel value in an image series was converted to a value representing
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the relative change in fluorescence (AF/F ) after stimulus application. The
baseline fluorescence (F) was calculated by averaging over the frames
before stimulus onset. No bleach correction was performed, because
bleaching was minimal and a correction would introduce additional
noise. Response maps were obtained by averaging AF/F frames over 2—4
sec after response onset and mild spatial filtering (Gaussian filter of o =
1.2 pixels; width, 5 pixels). The signal-to-noise ratio was substantially
higher in experiments performed with the upright microscope and the
20X, NA 0.95 objective. Quantitative analysis therefore was restricted to
these experiments (n = 35). However, results obtained with the inverted
microscope (n = 22 experiments) were qualitatively indistinguishable.

Electrophysiology. Axoclamp 2B amplifiers (Axon Instruments, Foster
City, CA) in bridge mode were used for all recordings. Intracellular
whole-cell patch-clamp recordings (n = 13 cells) were performed with
borosilicate pipettes (12-18 M{). The pipette solution contained (in
mM) 130 K-gluconate, 10 Na-gluconate, 10 Na-phosphocreatine, 4 NaCl,
4 Mg-ATP, 0.3 Na-GTP, 10 HEPES, pH 7.25. Mitral cells in the superfi-
cial layers were approached under visual control by using differential
interference contrast (DIC) optics and contrast-enhanced video display. Ex-
tracellular recordings were performed in the loose-patch or cell-attached
configuration. In cell-attached recordings (n = 7) the pipettes (12-18 M())
were filled with intracellular solution, and MCs were approached under
visual control. Loose-patch recordings (n = 32) were done as described
(Friedrich and Laurent, 2001, 2004) by using pipettes filled with ACSF (9-12
M()). Results obtained with the three different recording methods were
indistinguishable. In total, responses to 57 stimulus sets (components and
mixture) were recorded from 52 MCs. The maximum number of stimulus
sets tested on a single MC was three. Each odor stimulus was repeated, on
average, 6 * 3 times. Responses of the same neuron to the same stimulus
were averaged in peristimulus time histograms (PSTHs) with 100 msec bin
width. A stimulus presented early during the experiment usually was re-
peated at a later time to ensure the stability of responses (Friedrich and
Laurent, 2004), or stimuli were interleaved.

Prediction of the mixture response from Ca>" imaging data. Presynaptic
glomerular Ca*" signals were, with very few exceptions, positive-going
and increased monotonically with stimulus concentration until satura-
tion (Friedrich and Korsching, 1997). Because of these properties, the
algorithm explained in Figure 1 was used to predict mixture responses
from the component responses. Often, relatively large regions in the
activity map showed no detectable odor response. To minimize the in-
fluence of the noise in these regions on the quantitative analysis, pixel
values of AF/F <0.4% were set to zero and excluded from quantitative
analysis. This threshold corresponds to ~2 SDs of the average pixel noise
(0.21 = 0.07% AF/F; n = 35 experiments). The average pixel noise was
determined in subtractions of two response maps measured in the ab-
sence of odor stimulation.

When the response to one component is below response threshold or
saturating, the mixture response would be expected to be equal to the
response to the more potent component alone; i. e., the superposition
term (see Fig. 1) should be zero. This is achieved by using the geometric
mean in the calculation of the superposition term. The disadvantage is,
however, that the geometric mean can rectify noise; when no real re-
sponse increase occurs in a pixel between 1 and 2X concentration (be-
cause the stimulus is below threshold or saturating), noise can lead to
small negative difference values in the terms A, . ;. Respogo,x (see Fig.
1). The multiplication then yields a positive value, thereby biasing the
prediction to more positive values. This effect is relatively small and
occurs primarily in nonresponsive regions. Nevertheless, to avoid this,
negative difference values in A, | Respoqgorx (see Fig. 1) were set to
Zero.

Statistical comparisons. All statistical comparisons were performed by
using a nonparametric Wilcoxon rank sum test. All given error values are
SDs.

Results

Measurement of odor responses in sensory afferents to

the OB

Odor-evoked activity in sensory afferents to glomeruli was mea-
sured by Ca®" imaging after OSNs were loaded with calcium
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green-1 dextran (Friedrich and Korsching, 1997). Experiments
were performed in a ventrolateral region of the OB that contains
small, densely packed glomerular structures responding prefer-
entially to amino acids and nucleotides (Friedrich and Korsching,
1997,1998). Odor application to the nose evokes distinct patterns
of fluorescence signals in the OB, reflecting changes in Ca*™
concentration in OSN axonal terminals (Friedrich and Korsch-
ing, 1997; Fuss and Korsching, 2001; Wachowiak and Cohen,
2001; Wachowiak et al., 2004) (see Fig. 2A1-A4). Application of
the carrier solution alone did not evoke detectable signals (data
not shown). As shown previously (Friedrich and Korsching,
1997), the time courses of odor-evoked Ca** signals were similar
and stereotyped throughout the observed region. This is consis-
tent with odor responses of single zebrafish OSNs recorded elec-
trophysiologically: OSN responses follow a stereotyped phasic—
tonic time course, and the pattern of activity across multiple
OSNs does not change much during odor stimulation (Friedrich
and Laurent, 2001, 2004). Maps of Ca" signals, therefore, were
time averaged. Negative-going responses were very rare, Consis-
tent with the low abundance of inhibitory electrical responses in
zebrafish OSNs (Friedrich and Laurent, 2004). Responses of glo-
merular units have odor- and glomerulus-specific thresholds and
increase monotonically with concentration over several log units
until saturation (Friedrich and Korsching, 1997).

Analysis of mixture interactions in sensory afferents to

the OB

The monotonicity of concentration—response functions and the
very rare occurrence of negative-going responses are reminiscent
of concentration—response curves describing ligand—receptor in-
teractions. We therefore used a simple algorithm based on mod-
els of ligand-receptor activation to predict afferent patterns of
Ca** signals evoked by binary odor mixtures from the patterns
evoked by their components (Fig. 1). This algorithm assumes that
components (ligands) do not interact and activate a common
effector (receptor) associated with each glomerulus. The strength
of activation of a given glomerulus by a given ligand is described
by the corresponding concentration—response function. Local
information about concentration—response functions was ob-
tained by measuring responses to components at the concentra-
tion used in the mixture (1X) and at twice that concentration
(2X). The minimum signal expected in response to the mixture is
the signal elicited by the more potent component at the 1X con-
centration (Max, ; Fig. 1). Added to this signal is the signal in-
crement expected from the second component (Superposition
term; Fig. 1). This is approximated as the geometric mean of the
signal increase between 1X and 2X concentrations for each com-
ponent. The geometric mean was used because it yields correct
values when the concentration of one component is below re-
sponse threshold or saturating (i.e., when the concentration—re-
sponse function has a slope near zero; see Fig. 1 and Materials and
Methods). The calculation yields three values: a conservative
lower bound (Max, ), a conservative upper bound (Max,.; the
signal elicited by the more potent component at 2X concentra-
tion in each pixel), and the prediction (Fig. 1). The difference
between lower and upper bounds is usually small relative to the
absolute response magnitude, because a twofold concentration
change is small relative to the dynamic range and affects activity
patterns only slightly (see below). The prediction error arising
from uncertainties in the concentration-response function
therefore is also small. Nevertheless, the prediction by the geo-
metric mean is an approximation; precise knowledge of the con-
centration—response function would be required to construct an
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Figure 1.  Schematic llustration of the algorithm for prediction of afferent activity patterns
evoked by a binary odor mixture. The algorithm assumes that both components stimulate the
same effector site with different potency and potentially also with different concentration—
response functions. The algorithm requires that negative responses do not occur and that con-
centration—response functions are monotonic. Information about the full concentration—re-
sponse functions is not required, but information about the local slope of the functions is
sufficient. This information was obtained by applying each component of a binary mixture alone
at the concentration used in the mixture (1<) and at twice that concentration (2<). In each
pixel a lower bound for the expected response to the mixture is given by the larger of the AF/F
values evoked by the two components at 1X concentration, Max, . (Odor1, Odor2), whereas
an upper bound is given by the larger of the AF/F values evoked by the two components at 2X
concentration, Max, .. (Odor1, Odor2). The prediction is calculated by adding a “superposition
term” to the lower bound. The superposition term represents the expected signal increase over
the lower bound because of the second component. Itis calculated as the geometric mean of the
increasein Ca® ™ signal between 1< and 23X concentration for each odor (A, _;Respygory
and A, _;ResPogor - Using the geometric mean ensures that the algorithm performs cor-
rectly when the slope of the concentration—response function for one or both odors is near zero.
Nevertheless, the calculated prediction is an approximation, rather than a precise calculation, of
the expected signal in response to the mixture.

exact algorithm. Moreover, the calculation of the prediction ac-
cumulates noise in the data, arising, for example, from shot noise
and the low amount of bleaching. To minimize these effects, we
included only those pixels in which the response (AF/F) was
>0.4% in the analysis.

We first examined glomerular Ca®" signals in response to
single amino acids, which are natural odors for fish and other
aquatic animals. Concentrations used were 10—40 uM, which are
intermediate in the behaviorally relevant range (Carr, 1988). Fig-
ure 2 A1-A4 shows Ca** signal maps evoked by two amino acid
components at 1 and 2X concentrations in the ventrolateral OB,
thresholded at AF/F = 0.4%. From these responses the bounds
and the prediction were calculated pixel-wise and compared with
the actual mixture response.

The lower and upper bounds (Fig. 2A5,A6) were only slightly
different from each other. The prediction (Fig. 2A7) was very
similar to the measured mixture response (Fig. 2A8). Responsive
regions in the pattern evoked by the mixture corresponded to
those in the prediction, and similar distributions of response
magnitude were observed in the two maps. The sum of the com-
ponent patterns (Fig. 2A9) did not predict response patterns as
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well. This was expected, because it did not
take into account the nonlinearity of con-
centration—response functions.

Figure 2A10 depicts the difference be-
tween the mixture response and the pre-
diction. Negative and positive deviations
from zero were encoded by opposite col-
ors. Deviations were small relative to the
overall response magnitude (note differ-
ent calibration of color scales) and ap-
peared to be only slightly greater than de-
viations between maps evoked by repeated
applications of the mixture (Fig. 2AI1).
Similar results were obtained in n = 33
experiments.

The deviation between the mixture re-
sponse and the prediction was quantified
in 18 experiments performed under con-
ditions of low photon noise (see Materials
and Methods). The differences in pixel val-
ues between the prediction and the actual
mixture response are shown as histograms
in Figure 2C. Similar distributions were
measured in two consecutive series of ap-
plications (Fig. 2C, blue and cyan, respec-
tively), indicating that responses were sta-
ble. The widths of these distributions,
quantified by the SD of a Gaussian fit to
the histogram, were not significantly dif-
ferent from each other ( p > 0.65; Fig. 2 D).
These distributions were slightly but sig-
nificantly broader than the distribution of
difference values for repeated mixture re-
sponses (Fig. 2C, red, D). Activity maps
evoked by repeated responses to the mix-
ture were therefore more similar to each
other than to the prediction. These results
were confirmed by using the correlation
coefficient as a measure of similarity. The
mean correlation between the prediction
and the mixture response was 0.89 = 0.06
for the first series of stimuli and 0.88 *
0.09 for the second set of stimuli (not sig-
nificantly different; p > 0.8), whereas the
mean correlation between maps evoked by
repeated mixture applications was slightly
but significantly higher (0.93 = 0.06; p <
0.05).

The slightly higher similarity between
repeated mixture responses could indicate
a significant deviation of the prediction
from the mixture response. However, it is
likely that this deviation is at least partially
a consequence of the calculation of the

prediction, because the prediction is not exact and because the
procedure accumulates noise. Moreover, the correlation between
mixture responses and prediction was high, and the average dif-
ference between the SDs of the Gaussian fits was 0.05 = 0.03%
AF/F. This value is very small compared with the AF/F values in
the response maps. We therefore conclude that afferent glomer-
ular responses to binary mixtures of amino acids are predictable
within narrow limits by a model assuming no interactions be-
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Patterns of afferent glomerular activity evoked by binary odor mixtures and their components. A7-A4, Maps of

afferent glomerular Ca%™* signals in the ventrolateral OB, evoked by two amino acid components at 1 and 2 concentration.
Lateral is to the bottom; anterior is to the right. A5—A7, Lower bound, upper bound, and prediction (see Fig. 1) as calculated from
AT1-A4. A8, Measured response to the mixture. A9, Sum of component activity patterns at 1X concentration (A7 + A3). A10,
Difference between mixture response and prediction (A8 —A7). A11, Difference between response maps evoked by two repeated
applications of the mixture. The left color scale applies to difference images (A70,A77) and the right color scale to all otherimages.
B, Distribution of pixel values in difference images, averaged over n = 18 experiments with binary amino acid mixtures in which
the full set of stimuli was applied twice. Blue, Difference between response map evoked by the mixture and the prediction; cyan,
same for a second set of applications; red, difference between response maps evoked by the mixture in repeated applications. (,
Quantification of the width of distributions of pixel values in difference images. In each of n = 18 experiments the width of the
distribution of pixel values in difference images was measured as the SD of a Gaussian fit. Error bars show the average SD for each
type of difference map. The significance of differences in mean SD is shown by symbols in each bar. *p << 0.05; **p << 0.01; ns, not
significant. The top row of significance symbols is for comparison between each of the bars to the first (left) bar and the bottom
row for comparisons to the second bar. D, Same display as in A for a binary mixture of food extracts. £, F, Same plots as in B,  for

binary mixtures of food extracts (1 = 17). Scale bars, 100 pem.

We next measured afferent glomerular activity in response to
different food extracts, each containing many different com-
pounds. These complex stimuli evoked widespread glomerular
activity. As a consequence, patterns of Ca*™ signals evoked by
different food odor stimuli overlapped greatly (Fig. 2DI1-D4).
Nevertheless, responses to binary mixtures of food extracts were
in large part predictable from the component responses by the
algorithm that was used. As for amino acids, lower and upper

bounds were similar to each other and to the prediction (Fig.
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2D5-D7). The prediction, but not the sum of the activity maps of
the component, was a close approximation of the true response to
a binary mixture of food extracts (Fig. 2 D7-D11). Similar results
with mixtures of food extracts were obtained in n = 24
experiments.

Quantitative analysis of the deviation of the prediction from
the mixture response, as described above, was performed for 17
experiments performed under low-noise conditions (see Materi-
als and Methods). The pixel value differences between prediction
and mixture response were not significantly different for re-
peated series of stimuli ( p > 0.8; Fig. 2 E, blue and cyan, F). As for
amino acids, these distributions were slightly but significantly
broader than the distributions of differences between repeated
mixture responses (Fig. 2E, red, F). The average correlation be-
tween the prediction and the mixture response was 0.92 = 0.06
for the first series of stimuli and 0.91 = 0.07 for the second set of
stimuli ( p > 0.8). These values were not significantly different
from the mean correlation of responses to repeated mixture ap-
plications (0.95 = 0.03; p > 0.06). Hence, as with amino acid
stimuli, the correlation between mixture response and prediction
was high, and the average difference between the SDs of Gaussian
fits was very small (0.02 = 0.05% AF/F). Thus, responses to
binary mixtures of complex food odor stimuli are also predictable
within narrow limits by a model assuming no interactions.

Finally, we tested whether the small deviation between the pre-
diction and the response to the mixture depended on the overlap
between the component activity patterns. However, the deviation of
the mixture from the prediction, quantified by the difference in the
width of difference distributions, was not correlated with the corre-
lation between the component activity patterns (amino acids, r =
—0.17; p > 0.5; food extracts, r = —0.19; p > 0.45). Together, these
results indicate that mixture interactions between the tested simple
and complex stimuli in the peripheral olfactory system of zebrafish
are, at most, weak.

Mitral cell odor responses
We next examined odor responses of the output neurons of the
OB, the MCs. MCs were recorded extracellularly in the loose-
patch or cell-attached configuration or were recorded intracellu-
larly by the whole-cell patch-clamp technique. Unlike OSNs,
MCs frequently respond to odors with inhibition. Moreover, MC
firing rates often are modulated over tens or hundreds of milli-
seconds and can comprise successive excitatory and inhibitory
epochs. In addition, a subset of mitral cell responses showed sub-
threshold membrane potential oscillations of 20-30 Hz (Fig. 3)
(Friedrich and Laurent, 2001, 2004). Mitral cell response patterns
to the same odor do not change abruptly as a function of concen-
tration and are usually similar over concentration ranges of more
than one log unit (R. W. Friedrich, unpublished observations).
The complex response properties arise from synaptic interac-
tions in the OB, indicating that MC responses do not simply relay
their glomerular input but also reflect dynamic processing by
neural circuits in the OB. The temporal patterning and the occur-
rence of inhibitory responses preclude the prediction of mixture
responses by simple models of receptor-ligand interactions. We
therefore compared MC odor responses by using methods that
take into account their temporal response patterns.

Mixture interactions in mitral cell responses: simple odors

We first examined responses to amino acids and their binary
mixtures. Figure 4 A shows responses of one MC, recorded extra-
cellularly. In this example the response to component 1 was
clearly excitatory, whereas the response to component 2 was in-
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Figure3. Examplesof mitral cell odor responses to amino acids and food extracts. Shown are
whole-cell recordings of mitral cell responses to different amino acids (left column) and food
extracts (right column). Each response is from a different mitral cell. Both types of stimuli can
evoke simple (phasic—tonic; top) and more complex (multi-phasic) response time courses. Fast
subthreshold membrane potential oscillations are seen in a subset of odor responses. Odor
stimulus is indicated by the horizontal bar. Vertical bars, 20 mV.

hibitory. The response to the mixture was excitatory, with a mag-
nitude and time course almost identical to the response to com-
ponent 1. Hence, the response to the mixture was dominated by
the response to the excitatory component. Figure 4 B shows data
from another MC that also responded with clear-cut excitation to
one and with clear-cut inhibition to another component. In this
case the response to the mixture was dominated by the inhibitory
component. In each of 18 experiments testing mixtures of one
clearly excitatory and one clearly inhibitory component, one
component dominated over the other in the response to the mix-
ture. In 83% of the cases (15 of 18) the dominant component was
the excitatory one, whereas in the remaining 17% of the cases (3
of 18) the inhibitory component dominated.

In another 18 experiments that used amino acid stimuli,
components evoked more complex responses that often dif-
fered mainly in their temporal patterns. In the example shown
in Figure 4C, the responses to both components were excita-
tory but had different, odor-specific time courses. The re-
sponse to the mixture was dominated by one of the compo-
nent responses and was clearly distinct from the response to
the other component. A dominance of one component also
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was observed in most of the remaining A
experiments with components eliciting
temporally complex responses.

The same amino acid could elicit a
dominant response in one MC and a non-
dominant response in another MC, indi-
cating that dominance is not a general
property of the stimulus. It was never ob-
served that a MC responded to one or both
components, but not to their mixture. In
summary, MC responses to binary mix-
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MC responses to food odors were qualita-
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consist of more complex firing rate mod-
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Responses to binary mixtures of food
extracts, measured in 21 experiments, of-
ten differed from the responses to both in-
dividual components. Figure 5A shows an
example of a MC that responded with pha-
sic—tonic excitation to component 1 and
with inhibition to component 2. The re-
sponse to the mixture was initially excitatory, thus resembling the
response to component 1. However, the initial excitation evoked
by the mixture was smaller in magnitude and delayed compared
with the excitation evoked by component 1 alone. Subsequently,
the response to the mixture became inhibitory and, thus, similar
to the response to component 2. Another similar example is
shown in Figure 5B. The response to a mixture of complex odors
therefore is not described accurately by the response to one of the
components.

When responses to both components were of the same sign
(excitatory or inhibitory) in a given time bin, the sign of the
response to the mixture was never of the opposite sign. Hence,
the sign of the mixture response corresponded to that of at least
one of the component responses in each time bin. However, the
mixture response could differ considerably in magnitude from
each component response, and the sign of the mixture response
could resemble different component responses in different time
bins. Responses to binary mixtures of food odors therefore are
still related to their component responses, but they are not dom-

Figure4.

Responses of mitral cells to binary mixtures of amino acids. A—C, Responses of three different MCs to different sets of
amino acids and their binary mixtures. Action potentials measured in repeated trials are indicated by ticks in subsequent rows.
PSTHs show average firing rate in 100 msec time bins. Horizontal bar indicates stimulus presentation. Gray lines in right panels
superimpose PSTHs in response to components onto the PSTHs of responses to the mixture.

inated as strongly by one of the components as responses to bi-
nary amino acid mixtures.

Analysis of component dominance

The dominance of a component in the response to the mixture
was analyzed quantitatively. Each odor response was described by
the PSTH of firing rates during the 2.4 sec of odor presentation,
averaged over repeated applications, and binned in 100 msec
windows. The similarity between the response to the mixture and
the responses to the two components was measured by the Pear-
son correlation coefficient. In each experiment the higher corre-
lation reflects the similarity between the mixture response and
the more similar component response. This value therefore was
used to quantify component dominance. For binary mixtures of
amino acids most component dominance values were high,
whereas component dominance values for binary food odor mix-
tures were distributed more broadly (Fig. 6 A). The average com-
ponent dominance was 0.73 = 0.24 for binary mixtures of amino
acids and significantly lower for mixtures of food odors (0.46 =
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(-=0.10 = 0.46) than for food odors
(0.17 = 0.41). We therefore conclude that
component dominance is significantly
more pronounced in binary mixtures of
amino acids.

The correlation coefficient underlying
the component dominance measure com-
pares the shapes of PSTHs (i. e., response
time courses) independently of the overall
firing rate. We therefore also measured the
difference in firing rates, averaged over the
PSTH, between the responses to each bi-
nary mixture and the respective dominant
component. The firing rate differences for
mixtures of amino acids and food odors
were not significantly different from each
other (amino acids, 3.8 * 4.0 Hz; food
odors, 2.4 * 2.6 Hz; p > 0.1). Hence, for
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Figure 6.  Quantification of component dominance in mitral cell responses to binary mix-

tures. A, Distributions of component dominance values in experiments testing binary mixtures
of amino acids (top) and food extracts (bottom). B, Mean component dominance values for
binary mixtures of amino acids and food extracts. Error bars show SD; **p << 0.01.

0.40; p < 0.01; Fig. 6B). The average correlation between the
nondominant component response and the mixture response
was not significantly different for amino acid and food odor stim-
uli (=0.10 = 0.40 and —0.03 * 0.40, respectively; p > 0.5). A
higher component dominance may be expected if the responses
to the individual components are already more similar to each
other. However, in our data set the average correlation between
the responses to the two components was lower for amino acids

VRV TR T

Responses of mitral cells to binary mixtures of food extracts. A, B, Responses of two different MCs to different sets of
food extracts and their binary mixtures. Action potentialsinindividual trials and PSTHs (100 msec time bins) are shown. Horizontal
bar indicates stimulus presentation. Gray lines in right panels superimpose PSTHs in response to components onto the PSTHs of

mixtures of food odors the responses to
the mixture and those to the dominant
component are more different with re-
spect to the time course, but not with re-
spect to the total firing rate.

Finally, we explored whether the com-
ponent dominance in MC responses to bi-
nary mixtures of amino acids depends on
the similarity of afferent activity patterns
evoked by the components. The similarity
of input patterns was assessed by the cor-
relation between amino acid-evoked activ-
ity patterns across OSNs, which were de-
termined  previously in  zebrafish
(Friedrich and Laurent, 2001). As shown in Figure 7, component
dominance and the correlation between afferent activity patterns
evoked by the components were weakly, but significantly, corre-
lated (r = 0.42; p < 0.05). Hence, component dominance tends
to become less pronounced as the overlap of input activity pat-
terns evoked by the components increases.

Discussion

Mixture interactions in the peripheral olfactory system
Patterns of afferent glomerular Ca’* signals evoked by binary
odor mixtures were predictable within narrow limits from the
patterns of the components. The elements of the pattern evoked
by the mixture were also active in at least one component response
and vice versa. The small differences in response intensities between
prediction and mixture response may reflect mixture interactions,
the inaccuracy of the prediction, or both. We therefore conclude that
mixture interactions in the peripheral olfactory system of zebrafish
between the tested odors are weak or negligible. These results are
generally consistent with cross-adaptation of glomerular responses
in zebrafish (Fuss and Korsching, 2001) and results from intrinsic
signal imaging in mice (Belluscio and Katz, 2001).

The Ca®” indicator selectively reports the activity of sensory
inputs to glomeruli. OSNs converging onto the same glomerulus
in mice have very similar response properties (Wachowiak et al.,
2004), and OSNs respond to odors with simple, stereotyped tem-
poral firing rate patterns in zebrafish (Friedrich and Laurent,
2001, 2004). It therefore is assumed that individual OSN responses
are similar to the glomerular population responses detected by Ca**
imaging. Indeed, spiking responses of single zebrafish OSNs to mix-
tures of 16 amino acids were similar to the response to the most
potent stimulus alone (Friedrich and Laurent, 2001, 2004), showing
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Component dominance
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Figure 7.  Component dominance as a function of similarity between OSN activity patterns
evoked by amino acid components. The correlation between OSN activity patterns evoked by
each pair of amino acid components used in the mixture was taken from Friedrich and Laurent
(2001) and is plotted on the x-axis. The component dominance in mixtures of the same pairs of
amino acids is plotted on the y-axis. Line shows a linear regression.

that single OSN’s responding to at least one component also respond
to the mixture, as found for afferent glomerular Ca** signals.

It is possible that mixture interactions occur between odor-
ants not tested in this study. Indeed, interactions have been ob-
served between carboxylic acids and amino acids in zebrafish
(Fuss and Korsching, 2001) and in OSNs of other species (Ache et
al., 1988; Laing et al., 1989; Ache and Zhainazarov, 1995; Kang
and Caprio, 1997; Cromarty and Derby, 1998; Spehr et al., 2002).
The occurrence of mixture interactions therefore may depend on
the odor and species.

In zebrafish it is unknown currently whether each glomerulus
is innervated by idiotypic OSNs as in rodents. Activity patterns
evoked by mixtures were predicted with little error by an algo-
rithm modeling each afferent glomerular response as a process
mediated by a single receptor. This would not be expected if the
relation between receptors and glomeruli was different from that
in rodents: if populations of OSNs responding to different sets of
odors converged onto the same glomerulus, the response to the
mixture should be close to the sum of the component responses.
If each OSN expressed multiple odorant receptors with different
response profiles, the mixture response would become unpre-
dictable. Hence, our data suggest that the functional connectivity
between OSNs and glomeruli in the zebrafish OB is similar to that
in rodents.

The glomeruli responding to a mixture were the combination
of the glomeruli activated by each component. The density of
responding glomeruli therefore should increase with the number
of components in a mixture. Indeed, food extracts containing
many different compounds evoked widespread and highly over-
lapping activity patterns. As a consequence, information resides
more in the relative response intensity, rather than the identity, of
active glomeruli. This may be an important property of represen-
tations of natural odor stimuli.
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Mixture interactions in the olfactory bulb

Mixture interactions have been observed in the OB of vertebrates
(Bell et al., 1987; Kang and Caprio, 1995; Giraudet et al., 2002;
Wilson, 2003), but it is unclear whether they arise peripherally or
centrally. We found that not all MCs excited by at least one com-
ponent are also active in response to the mixture. Hence, MC
activity patterns evoked by mixtures are not a simple combina-
tion of the component patterns, indicating that components in-
teract. Because such interactions were not observed in afferent
glomerular activity patterns, they most likely arise in the OB.
Possible mechanisms include dendritic integration in MCs and
circuit interactions. Because mixture interactions often affect in-
hibitory and temporally patterned MC responses, circuit interac-
tions are likely candidates (Friedrich and Laurent, 2004).

The component dominance in binary mixtures of single com-
pounds also has been observed in temporally patterned responses
of rat MCs (Giraudet et al., 2002). Because it could not be pre-
dicted which of the components in a mixture will dominate, the
activity pattern across MCs evoked by a binary mixture cannot be
predicted accurately from the component patterns. Nevertheless,
the pattern evoked by the mixture is related to the component
patterns, because the response of each MC resembles the re-
sponse to one or the other component.

MC responses to binary mixtures of food extracts were dom-
inated less by one component than amino acid mixtures but ac-
quired some novel properties, indicating more complex mixture
interactions. Patterns evoked by binary food odor mixtures
therefore are related less closely to their component patterns.
Each food odor component itself contains many individual com-
pounds. However, at the level of input to the OB, the main dif-
ference between food extract and amino acid stimuli is the more
widespread and dense activation of glomeruli by food extracts.
Differences between mixture interactions among amino acids
and food extracts therefore have to be explained by these different
properties of glomerular input patterns.

Component dominance decreased with increasing similarity
of afferent activity patterns for amino acid stimuli. This trend is
consistent with the low component dominance in binary mix-
tures of food extracts and suggests that mixture interactions be-
come more complex with increasing overlap of afferent compo-
nent representations. Similar effects have been observed in a
simple circuit model of the OB (Linster and Cleland, 2004) and
were explained by lateral inhibitory interactions in the OB, which
are expected to become denser with increasing pattern overlap.
As a consequence, the output of each MC deviates more from its
sensory input because the relative strength of inhibitory inputs
increases. Hence, the dependence of component dominance on
the overlap of input activity patterns may reflect nonlinear inter-
actions mediated by inhibitory interneurons in the OB. However,
additional insights are required to understand the mechanisms
underlying mixture interactions in the OB.

Mixture interactions also have been described at the next level of
the olfactory pathway. These mixture interactions are experience-
dependent and appear to contribute to the establishment of complex
receptive fields of neurons in the anterior piriform cortex (Wilson,
2003). Mixture interactions in higher olfactory areas therefore also
may contribute to the processing and the synthetic perception of
odor mixtures (Wilson and Stevenson, 2003).

Mixture representations in the olfactory bulb and

odor perception

Our results suggest tentative rules describing some properties of
binary mixture interactions in the OB that are similar to conclu-
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sions derived from the model by Linster and Cleland (2004).
First, patterns of glomerular input activity evoked by a mixture
are given by the combination of the patterns of the components.
Second, MC responses to mixtures of dissimilar compounds are
dominated quantitatively by the response to one of the compo-
nents. Third, for mixtures of similar components, the sign, but
not necessarily the magnitude, of the response corresponds to
that of at least one of the components. Additional properties of
mixture interactions may exist. For example, it is possible that the
relative strength of components influences mixture interactions.

The properties of mixture interactions in the OB lead to pre-
dictions concerning odor representations by activity patterns
across multiple glomeruli or MCs. First, the predictability of a
mixture representation across glomeruli from the representa-
tions of the components is high. Much of the information about
the components is therefore, in theory, available at the level of
glomerular inputs. Second, the predictability of mixture repre-
sentations by MCs is generally lower than the predictability of
afferent mixture representations, indicating that processing in
the OB discards component information. This may contribute to
the synthetic nature of odor perception and constrain the analyt-
ical power of olfactory processing. Third, MC representations of
mixtures of simple dissimilar components combine parts of the
representation of each component, because the response of each
MC represents one or the other component. Hence, the mixture
representation neither is close to the average of the representa-
tions of the components nor is it a novel representation, but the
response of each MC is predictable with a certain probability.
This organization retains some information about the compo-
nents. Fourth, with increasing similarity of the components the
representation of the mixture is still related to those of the com-
ponents but becomes less predictable. Information about the
components therefore decreases, and the representation acquires
novel properties. This effect is pronounced for mixtures of food
extracts, suggesting that mixture interactions play an important
role in the processing of natural stimuli. One function of mixture
interactions also may be to limit the total MC activity when the
number of active glomeruli increases.

Our results give rise to experimentally approachable predic-
tions about the effect of mixture interactions on odor perception
that can be compared with existing psychophysical or behavioral
data from other vertebrates. The component information in the
representation of a mixture should decrease with the number of
components, because fewer responses of MCs should be domi-
nated by each component and because component dominance
should decrease in general. Indeed, human psychophysics dem-
onstrated that the segmentation of a mixture into its components
becomes impossible when the number of components exceeds
3—4 (Laing and Francis, 1989; Livermore and Laing, 1996). Fur-
thermore, component identification should become more diffi-
cultand the perception of a binary mixture should acquire a more
novel quality with increasing similarity of the components. In-
deed, rats cannot identify components reliably in binary mixtures
of similar, but not dissimilar, compounds. Rather, mixtures of
similar compounds are perceived as different from both compo-
nents (Wiltrout et al., 2003). Hence, mixture interactions in the
OB may play an important role in odor perception.
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