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In hippocampal slice models of epilepsy, two behaviors are seen: short bursts of electrical activity lasting 100 msec and seizure-like
electrical activity lasting seconds. The bursts originate from the CA3 region, where there is a high degree of recurrent excitatory connec-
tions. Seizures originate from the CA1, where there are fewer recurrent connections. In attempting to explain this behavior, we simulated
model networks of excitatory neurons using several types of model neurons. The model neurons were connected in a ring containing
predominantly local connections and some long-distance random connections, resulting in a small-world network connectivity pattern.
By changing parameters such as the synaptic strengths, number of synapses per neuron, proportion of local versus long-distance
connections, we induced “normal,” “seizing,” and “bursting” behaviors. Based on these simulations, we made a simple mathematical
description of these networks under well-defined assumptions. This mathematical description explains how specific changes in the
topology or synaptic strength in the model cause transitions from normal to seizing and then to bursting. These behaviors appear to be
general properties of excitatory networks.
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Introduction
Epilepsy is characterized by two electrographic behaviors: inter-
ictal bursts of activity that last �100 msec and “seizures” that last
from seconds to minutes (Steriade, 2003). In slice models of ep-
ilepsy, bursts and seizures can be elicited in different regions of
the hippocampus bathed in 4-aminopyridine (4-AP). Bursts
originate in region CA3 of hippocampus (Chesnut and Swann,
1988), whereas seizures originate in region CA1 (Netoff and
Schiff, 2002). 4-AP increases excitability and effective synaptic
strength (Perreault and Avoli, 1989); however, epileptiform be-
havior can be induced in slices through a variety of methods
(Traub and Miles, 1991), suggesting that the cause of these be-
haviors is a general property of the network.

Traditionally, epilepsy is viewed as a disease of “hypersyn-
chronous” neuronal activity (Penfield and Jasper, 1954; Steriade,
2003). Evidence from hippocampal slices shows that bursts in
CA3 are caused by neuronal activity that is synchronous on a fine
time scale (�10 msec); however, neuronal activity during slice
seizures in CA1 is not synchronous (Netoff and Schiff, 2002; Van
Drongelen et al., 2003). The most notable difference between the
hippocampal regions is that CA3 has more recurrent synaptic
connections than CA1. Staley et al. (1998) hypothesized that
bursts originate in region CA3 because the network activates

quickly, via recurrent excitation, depleting the primary glutamate
stores of the neurons and thus shutting down the network.

Our goal in this study was to use computational models to
explore how epileptiform behaviors relate to the connectivity of
the underlying networks. Our operating hypothesis for CA3
bursts is similar to that of Staley et al. (1998), except that our
models rely on generally defined neuronal “refractoriness” to
terminate burst activity. Refractoriness may arise via a number of
mechanisms, including synaptic depletion, inhibition, or
voltage-dependent properties in postsynaptic cells. In the CA1,
which has less recurrent excitation, the activity spreads slower.
Thus, an excitable pool of CA1 neurons is always available, lead-
ing to sustainable seizure-like activity. To test these hypotheses,
we simulated networks intended to mimic regions CA3 and CA1.
We used “small-world” network topologies, in which the major-
ity of connections between cells are “local,” but a few cells have
“long-distance” connections (Watts and Strogatz, 1998; Watts,
1999). Small-world networks were used because they are simple,
flexible, and reminiscent of the connectivity patterns of networks
in the brain. As connectivity in the networks was changed, we
observed activity resembling epileptiform behaviors seen in slice
models. Networks with large numbers of long-distance connec-
tions were more prone to generating self-terminating bursts. Ad-
ditionally, our results suggest that the greater level of intercon-
nectivity in CA3 may be responsible for its tendency to burst
rather than seize. Results were independent of the specific neu-
ronal model (Poisson, integrate-and-fire, Hodgkin-Huxley) used
in the simulations. We derived a reduced mathematical descrip-
tion of the networks that helped us to describe the conditions
under which networks transition from “normal” to “seizing” to
“bursting.” Although this model provides only a heuristic de-
scription of the slice behavior, it demonstrates how epileptiform
behaviors may depend on specific physical parameters.
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Materials and Methods
Structure of the network and connectivity. We generated simple network
models of excitatory neurons in hippocampus. To keep the number of
free parameters manageable, to more easily constrain activity to spread in
a controlled manner, and to eliminate the effects of boundary conditions,
we restricted our analyses to one-dimensional “rings” of neurons. Be-
cause organization of the synaptic connections within cortical regions is
neither a lattice of nearest-neighbor connections nor completely ran-
domly connected (Mountcastle, 1997; Gonzalez-Burgos et al., 2000; Mc-
Cormick and Contreras, 2001), we used a simple method to construct
networks that lie between these two extremes. We began with a model in
which each neuron is connected to a specific number k of its nearest
neighbors and then randomly disconnected a proportion � of the synap-
tic connections and reconnected these synapses to a randomly chosen
postsynaptic cell. This method of network construction leads to small-
world networks (Watts and Strogatz, 1998; Watts, 1999), in which most
connections made by a given presynaptic neuron are local, but an impor-
tant few can spread activity over long distances. An illustration of net-
works with varying amount of long-distance connections is given in
Figure 1. In the network in Figure 1a, each “node” represents a neuron.
The ring of neurons is connected in a perfect “lattice” (� � 0), with each
cell connected to its four nearest neighbors. Figure 1, b and c, represents
networks increasing values of �. These are small-world networks because
they include a preponderance of local, regular connections but a small
number of long-distance connections, which greatly reduce the number
of synaptic steps required to connect any pair of neurons in the network.

The anatomy of our small-world networks is characterized by three
free parameters: network size ( N), the number of synaptic connections
per neuron (k), and the proportion of randomly made long-distance
connections (�). For most simulations, we used N � 3000, approxi-
mately corresponding to the smallest population size within which epi-
leptiform activity is seen in the hippocampus (Fox et al., 2001). In some
simulations, we used N � 24,000 to examine the generality of our results.
We examined many values of k but focused our attention on networks
with 1% total connectivity (k � 30 for N � 3000) to represent region CA1
and networks with 3% total connectivity (k � 90 for N � 3000) to
represent region CA3. Both k values are overestimated as follows: excita-
tory to excitatory coupling in region CA3 is closer to 2% (MacVicar and
Dudek, 1980) and for region CA1, it is �1%. Because the numbers of
local versus long-distance connections are unknown in hippocampus, we
treated � (the proportion of random connections in the network) as an
explicit free parameter that we varied from 0 to 1. � is a particularly
important parameter for these models, because it controls the rate at
which local “waves” of activity give rise to new waves at distant locations
in the network.

Model neurons and synapses. We ran simulations using three different
types of model neurons: noisy and leaky integrate-and-fire neurons, sto-
chastic Hodgkin–Huxley cells (Chow and White, 1996), and a Poisson
spike-train cell model that is equivalent to the other models in terms of

first-order interspike interval statistics. The integrate-and-fire model is a
regular leaky integrate-and-fire model with a stochastic component,
given by

dV

dt
� V leak � V � Isyn � �,

where V indicates the membrane potential, Vleak is the resting potential of
the neuron, Isyn is the synaptic input (described in a subsequent para-
graph), and � is the stochastic component (white noise of sufficient vari-
ance to generate spontaneous activity at a target rate). The neuron fires
when V reaches a threshold, resulting from noise or when a synaptic
current is injected into postsynaptic neurons. The neuron is then reset to
zero, and all synaptic inputs are blocked for an absolute “refractory”
period of time �R (see below for additional information on
refractoriness).

The stochastic Hodgkin–Huxley model is a conductance-based model,
which is described in detail by Chow and White (1996). Parameters were
as in the original 1952 study, except that sodium channels were modeled
as discrete, stochastic elements. The Langevin method was used to de-
scribe the effects of channel noise (Chow and White, 1996). In this
model, membrane noise causes the membrane potential to fluctuate and
occasionally causes the neuron to fire spontaneously. The number of
sodium channels was “tuned” to 3375 to match a target average sponta-
neous firing rate (see below).

Synaptic currents for the integrate-and-fire and stochastic Hodgkin–
Huxley models were calculated using a double exponential function
Isyn � A(e �t / � s � e �t / � f) (Vsyn � V ), where A is the synaptic amplitude,
t is the time since synaptic input occurred, �s and �f are the slow and fast
decay rates, respectively, and Vsyn is the reversal potential of the synapse
(Bower and Beeman, 1995).

To construct the Poisson model, we used Matlab (MathWorks, Natick,
MA) to select spike times from a Poisson process. Synaptic inputs for this
model were simulated in the following way: in response to the arrival of a
presynaptic spike, the postsynaptic cell has a probability of immediately
firing, where the probability for a single synaptic input was set to 2.5%.
We set the probability of firing after two or more simultaneous synaptic
inputs to 1. If the cell does not immediately fire in response to an input,
then it uses the spike time previously drawn from the Poisson
distribution.

All models were adjusted to have an absolute refractory period, �R

(after spiking), 10 times longer than the synaptic delay, �d. This allows the
active population to travel 10 steps before the neurons recover. For the
Poisson model, the synaptic delay was set at 3.7 msec and a refractory
time of 36 msec, whereas in the integrate-and-fire model, the synaptic
delay was 2.8 msec and the refractory time was 28 msec. The Hodgkin–
Huxley model had a synaptic delay dependent on the distance between
the neurons with a 1 msec delay between the local cells and up to 5 msec
for long-distance connections. An absolute refractory time was 36 msec
and was set to behave qualitatively similarly to the other models. The one
exception is the network simulation with 24,000 neurons where the re-
fractory time was 28 msec and the synaptic delay was 2 msec, which was
necessary to allow enough time for the entire network to be activated
before the first cells recovered. The refractory period can be generated by
many mechanisms, either presynaptic or postsynaptic, and we leave this
undetermined. The important factor is that the refractory time is on the
order of the time it takes activity to spread throughout the network in the
bursting regimen; otherwise, the activity will re-enter and a clean transi-
tion to bursting will not occur. We also matched all models so that they
had an approximately exponential interspike interval distribution and
firing probability of 0.0315 spikes/sec. In most simulations, synaptic ef-
ficacies were set in all models such that single inputs caused postsynaptic
action potentials 2.5% of the time, and two simultaneous inputs led to
postsynaptic firing with probability of firing approximately equal to one
(assumed to be exactly one in our later theoretical analysis). For the
24,000 cell simulations (see Fig. 3), we compensated for the eightfold
increase in network size with a 20-fold decrease in synaptic weight. As
successfully predicted by our reduced theoretical model, this change kept
the same overall rate of wave generation, leading to results (see Fig. 3).

Figure 1. Small-world network. a, Networks of neurons are generated in which all cells are
only coupled to their nearest neighbors (4 in this case). b, To generate small-world networks,
small numbers of connections are broken and rewired to make long-distance connections at
random locations. Long-distance connections reduce the number of synapses between any pair
of neurons in the network. c, As more long-distance connections are added, the network loses
the property that most connections are local, and the network looks much more random. We
find a range of normal and epileptiform behaviors in the small-world network regimen, where
few connections are necessary to connect any pair of the neurons, but local connections still
predominate.
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Results
Basic properties of propagating activity
In all three types of networks (Poisson, integrate-and-fire, and
stochastic Hodgkin–Huxley), we observed qualitatively simi-
lar behaviors. Networks are quiescent at first, but eventually a
spontaneous action potential in one neuron initiates activity
in two neurons with common local postsynaptic targets. Be-
cause convergence of two simultaneous inputs fires postsyn-
aptic cells in these networks with probability near one, this
event generates two waves that travel in opposite directions
around the ring. With few long-distance connections, a small
number of waves sweeps across the network. This results in a
small, stable amount of activity. With more long-distance

connections, existing waves frequently give rise to new waves
in distant locations, and network activity transitions to sus-
tained high activity, which we liken to seizures. Figure 2c illus-
trates still frames from a movie of an ongoing seizure (see Fig.
2, a and b, for an explanation of the display method). With a
large enough number of long-distance connections (Fig. 2d),
we observed bursts in which the majority of the network fired
synchronously and then became refractory. Movies of seizures
and bursts can be seen at http://www.bu.edu/ndl/people/net-
off/SWN/JNeurosciSupplement.html. As we show, transition
points between normal, bursting, and seizing vary according
to the number of long-distance connections, network size,
synaptic strength, and number of synapses per neuron.

Figure 2. Bursting and seizing behaviors as the number of long-distance connections are changed. a, The ring contains N neurons, each of which are connected to k, mostly local neighbors (left).
To visualize the activity of this large network, we color coded each point according to the state of the neuron and pulled every kth point in the ring toward the center to make a spoke. Therefore, a
neuron in the center of a spoke is connected to all the neurons in the spoke, assuming that all synaptic connections are local. A neuron at the end of the spoke is connected to half of the neurons on
the spoke and half of the neurons on the opposite end of the next spoke. This results in a plot of the ring that resembles a slinky. b, An illustrative temporal snapshot of network activity, with N �
3000, k � 30 synapses per neuron (i.e., 1% network connectivity), and �� 0.1. Light gray dots represent excitable neurons, black dots are firing neurons, and dark gray dots are refractory neurons.
The wave front size stabilizes to approximately half the size of the local neighborhood k and is followed by a refractory tail. This tail is determined by how many steps the wave front can travel before
the neurons begin to recover. c, Successive frames from a movie of seizing activity, with N � 3000, k � 30, and � � 0.1 (i.e., that 10% of synapses have been rewired). The frame rate is 250 Hz,
corresponding to approximately two synaptic time delays; therefore, the active waves appear twice as large (in space) as their actual size. Spontaneous background activity generates a cascade of
activity, which stabilizes into two traveling waves (frames 5–25). These traveling waves generate other waves in the network through the long-distance connections (e.g., frames 26, 31, 34).
Eventually, waves start to meet and annihilate each other (e.g., frames 4, 33, 43). This network attains equilibrium when the new waves are generated at the same rate that the waves annihilate
each other. d, Still frames from a movie of bursting activity (N � 3000; k � 90; �� 0.1). In this network, the number of long-distance connections causes waves to generate new waves faster than
the waves annihilate each other. This results in all of the neurons firing in the network, all of the neurons becoming refractory, and the activity in the network shutting off. Movies of network activity
can be seen at: http://www.bu.edu/ndl/people/netoff/SWN/JNeurosciSupplement.html.
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Dependence on model parameters
Figure 3 illustrates how network activity
depends on the proportion of long-
distance connections (�), which controls
the spread from local activity to distant
portions of the network. Each neuron is
coupled, predominantly locally, to 1%
(Fig. 3, left panels) (approximately corre-
sponding to connectivity in region CA1)
or 3% (right panels) (approximately cor-
responding to region CA3) of the rest of
the network. The top six panels (Fig. 3a–f)
show traces of population activity versus
time for specific cases. Normal activity is
characterized by a low sustained popula-
tion firing rate. Seizing activity is charac-
terized by significantly higher, sustained
firing rates with some evidence of coher-
ence. Bursting activity is characterized by
network activity that rises and falls rapidly
and coherently.

The middle set of panels in Figure 3 show
time-averaged population firing rates as a
function of �, the proportion of long-
distance connections. a–f in Figure 3 corre-
spond to the examples from the top six
traces. For the CA1 model, the slope of the
population firing rate versus � becomes
steep at approximately � � 0.01. We define
this point as the transition from normal fir-
ing to seizing in the network. Population os-
cillations, with a period close to the neuronal
refractory period, are seen in parts of the
seizing region (Fig. 2b,e). For the CA3
model, the transition to seizing occurs at ��
4 � 10�4. As more long-distance connec-
tions are added to the network, coherent
bursting begins. Interestingly, the onset of
bursting, which occurs at � � 0.01 for the
CA3 model and � � 0.2 for the CA1 model,
leads to a marked decrease in population
activity. The period of the bursting is erratic,
because after a burst, there is no residual
activity in the network, implying that the
next burst is triggered only at the rate of the
random spontaneous background activity.
These results suggest that the observed
phenomena are independent of the individ-
ual neuron models used in the network
(Poisson, integrate-and-fire, stochastic
Hodgkin–Huxley).

The integrate-and-fire network was also scaled up eightfold,
to 24,000 neurons, while decreasing synaptic strength 20-fold to
balance the excitation in the network. (The formula for deter-
mining this decrease in synaptic strength came from our reduced
model, which is discussed below.) This manipulation results in
very similar transitions from normal to seizing to bursting behav-
ior (Fig. 3, filled diamonds), indicating that these results do not
depend on network size. Very similar results (data not shown)
were also seen in 24,000 member Poisson-process networks with
downsized synapses, further indicating that these results depend
critically on connectivity but not on other details.

The bottom two panels in Figure 3 show the normalized clus-

tering coefficient (CC) and mean path length (�PL�) plotted
versus �. The clustering coefficient is a measure of how likely it is
that two interconnected neurons both make connections to the
same neighbor. In particular, it is the average probability that the
number of observed overlap in neighbors would occur by chance
if the network had been connected randomly. Mean path length is
the average number of “degrees of separation” between two ran-
domly chosen neurons. It is calculated by averaging the measured
distance between all pairs in the network. Both measures decrease
with increasing proportion of long-distance connections �, but
an intermediate value of � corresponds to the so-called small-
world regimen where the clustering coefficient is high and the

Figure 3. Transition from normal3 seizing3 bursting behavior as a function of the number of long-distance connections
(�). The left column shows the results from the CA1 model with N � 3000 and k � 30, whereas the right column shows the results
from a CA3 model with N � 3000 and k � 90. At the top are three examples of data (taken from a Poisson-simulated network) for
normal, seizing, and bursting, showing the count of neurons that fired in a 10 msec time bin. Middle panels illustrate the total
population activity for Poisson (Poiss), noisy leaky integrate-and-fire (IF), and stochastic Hodgkin–Huxley (HH) simulations with
the examples from above indicated by a–f. Vertical bars indicate boundaries between normal, seizing, and bursting as identified
by eye from the time traces of population activity from the Poisson model. Simulations of IF network with 24,000 neurons and
reduced synaptic strength are displayed as well (IF-24k). These networks show qualitative behaviors similar to the 3000 neurons.
The bottom panels illustrate the normalized clustering coefficients and mean path length between neurons in the network as the
proportion of long-distance connections in the network (�) is increased. The left side of these graphs indicates a network topology
in which the ring of neurons has only local connections; the right side indicates a nearly randomly connected network.
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mean path length is low. The regimen of seizing activity in the
CA1 model corresponds with this small-world regimen. The be-
ginning of the bursting regimen corresponds with the drop in
clustering coefficient, which signals the transition of the network
from a small world to a random graph. As indicated by compar-
ing the right and left columns in Figure 3, having a larger number
of connections leads to bursting at lower values of �.

Scaling relationships and the reduced model of
propagating activity
Propagating activity in simulated networks has a number of ste-
reotypical characteristics that allow us to represent it accurately
using a reduced model. First, because the time needed for supra-
threshold inputs to activate the model neurons is small compared
with the synaptic delay time, the synaptic delay sets the amount of
time required for wave fronts to propagate from one group of
active neurons to another. Consequently, the network evolves in
approximately discrete time steps, corresponding to the synaptic
delay. Second, assuming a nearly regular lattice (i.e., that the
number of long-distance connections is small relative to N), the
wave front size, �, is just less than half the neighborhood size: � �
k/2 � 1. The division by 2 comes from the fact that the wave
spreads in both directions (unless one set of cells is refractory);
subtracting 1 from the total removes the neuron that only re-
ceives a single synaptic input from the active neurons. Third,
following each wave is a wake of refractory neurons, approxi-
mately the size �R � � � �R/�d, where �R denotes the refractory
time of each neuron, and �d denotes the synaptic delay. This
equation defines the number of time steps that a neuron remains
refractory, which we have denoted R. Finally, knowing the num-
ber of waves, their size, and their wake size, it is straightforward to
calculate the characteristics of propagation and the probability of
emergence of a new wave per time step, as well as the probability
per unit time that two waves will collide and thus annihilate.
Thus, we should be able to construct a discrete time, birth-and-
death process describing activity in the ring network.

Let wi denote the number of active waves at time step i. We
define the number of new waves that will begin spontaneously in
one time step to be Si � seip2. Here, s is the probability that any
given neuron will fire in that time, which we set at s � 0.0315 �
�d, where 0.0315 is the spontaneous spike rate per second. ei is the
number of excitable neurons present in the network at time i. p2

is the probability that two or more neurons fire in response to the
firing of the same presynaptic neuron. The dependent variable p2

can be calculated from the binomial theorem using synaptic
strength p1 (which we define as the probability that firing of a
single presynaptic cell induces an action potential in a given
postsynaptic cell) and the number of synapses per neuron k: p2 �
1 � (1 � p1)k � kp1(1 � p1)k �1. In our reduced model, if two
such neurons in a neighborhood fire, we will assume that a trav-
eling wave will be initiated with probability of exactly one (the
relative frequency of such an event was observed to be �1 in the
simulations), with wave front size exactly equal to �. This as-
sumption holds true for our 3000 cell simulations but not for the
24,000 cell simulations. Interestingly, behavior of the network is
not sensitive to violations of this assumption (Fig. 3).

Once a wave has been initiated, it can start new waves of
activity in other regions of the network through long-distance
connections. The rate at which new waves are generated depends
on the current number of waves, wi, which determines the num-
ber of active neurons, �wi. These active neurons have �wik� long-
distance connections on average. The probability that synapses at
the end of these connections start a wave at a postsynaptic neuron

is p1p2ei/N, where ei is the number of excitable cells (see below).
The approximate symmetry in the connectivity of the ring (be-
cause � is assumed to be much less than 1) means that a new wave
will propagate in two directions as two separate wave fronts. This
is reflected in the formula for the new wave rate by multiplying by
a factor of two. This approximation is valid, provided that the
network is far from being saturated with activity (i.e., when the
network size N is much larger than the number of active and
refractory neurons) and the resulting wave fronts develop into
full waves with refractory wakes, an assumption that is true as
long as the waves emerge in a region of nonrefractory cells. The
number of excitable cells, ei, is the total number of neurons minus
the number that are active or refractory:

ei � N � �wi � ��
t�1

R

wi�t.

The last term in this equation for ei accounts for the recent history
of activity, by summing that past activity up to the refractory
time. This sum gives the total number of refractory neurons at
time i. Initially, we will further simplify this equation by assuming
that the number of refractory cells is simply proportional to the
number of active waves: ei � N � �wi(1 � R). This approxima-
tion is also valid only when the network activity is far from satu-
ration. According to this model, the number of new waves born at
time step i is approximated by ni � (2�wik�)( p1p2ei/N) � Si.
This function, a quadratic function of wi, is plotted in the top
panels of Figure 4 (dashed lines) for three different values of �, the
proportion of long-distance connections.

The average number of wave collisions per time step depends
on how many waves are present in the network. The more waves
in the network, the more likely collisions will occur. The expected
number of dying waves in a time step can be approximated by the
time it takes the currently active waves, evenly distributed around
the ring, to collide. We estimate the death rate to be di � 2�wi/ei.
In this equation, the term 2� reflects the fact that two wave fronts
propagate through an excitable region toward each other at a rate
of 2� neurons per time step; the term wi reflects the fact that
evenly distributed waves grow, on average, closer as their number
grows; and the term ei reflects the fact that the average distance
between two waves is proportional to the number of remaining
excitable cells. As for ei, the approximation in di is most valid
when the network activity is far from saturation. The death rate di

is plotted (solid lines) in the top panels in Figure 4. Its value
increases without bound as the number of active and refractory
neurons approaches N, when the denominator approaches zero
(at the point where the network reaches saturation). The net
growth in the number of waves at time i is ni � di, and thus the
wave birth– death process can be written as a one-dimensional
map, wi�1 � f(wi) � wi � ni � di, in which we have defined the
function f(wi) for notational convenience. This one-dimensional
map is only valid under the assumption that the number of re-
fractory cells is directly proportional to the current number of
active wave (see above) (Table 1).

Activity in the network reaches an equilibrium state when new
waves are generated at the same rate that they annihilate each
other, i.e., when there is a steady state number of waves w* that
solves the equation f(w*) � w*. A stable equilibrium corresponds
to the slope of the function f(wi) at the equilibrium between 1 and
�1; otherwise, it is unstable and the new wave rate is faster than
the dying wave rate. The strength of attraction of this equilibrium
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affects the spread of the distribution in the
number of neurons firing at any given
time in a stochastic network.

The equilibrium level of activity and its
stability depend on the parameters in the
new wave rate ni and dying wave rate di. As
we vary parameters such as the proportion
of long-distance connections (�), we can
investigate how changes in the equilib-
rium cause the network to switch from
normal to seizing to bursting. In the bot-
tom panels in Figure 4, we plot the num-
ber of waves on the next time step wi�1

versus the number of waves on this time
step wi (solid line) as well as the line of
identity ( y � x; dotted line). In these
plots, equilibrium points f(w*) are indi-
cated by intersections of the solid and dot-
ted lines. Stability of equilibrium points is
given by the slope of f(w*). At low long-
distance connectivity (� � 0.001), both ni

and di are small, resulting in a weakly at-
tracting equilibrium (with a slope just less
than one). As indicated by the fact that
wi�1 � wi, waves are rarely born or die,
implying that the network is dominated by
the low rate of spontaneous wave genera-
tion. As more long-distance connections
are introduced (� � 0.01), the rate of
emergence of new waves increases. This
trend increases the number of waves that
we expect to see at the equilibrium and
also makes the equilibrium more strongly
attracting (the slope at the equilibrium
point is near zero). As even more long-
distance connections are introduced (� � 0.05), the slope of f at
the equilibrium point is less than �1, implying that the equilib-
rium is unstable. [This is known as a “flip bifurcation,” or some-
times as a “pitchfork bifurcation” for maps (Baker and Gollub,
1996).] At this point in the full network model, new waves are
generated rapidly, giving rise to a burst (i.e., a large, synchronous
increase in the amount of activity). The burst (when wi � 6)
would lead to a system that is dominated by wave death on sub-
sequent time steps. Then, almost the entire network will become
refractory, implying that the system will be quiescent until
enough cells have returned to the excitable state and the network
can burst again. This detail of bursting behavior is not captured
by our reduced model, which was derived under the assumption
that the number of active and refractory cells at any given time is
small compared with the network size N. Instead, as � is increased
above a critical point at �0.05, the reduced system continues to
oscillate between increasingly higher and lower states (around
the unstable equilibrium) until the state fluctuates chaotically
with a very large amplitude. This describes a well-understood
“period-doubling route to chaos” for discrete-time maps such as
that described by f (which resembles the classic “logistic” map)
(Baker and Gollub, 1996). The amplitudes are large enough that
the activity of a full network model would reach saturation at this
point and therefore enter our “bursting” regimen. Because the
large-amplitude chaotic behavior is reached for � values very
close to that which first caused the equilibrium to become unsta-
ble, the onset of instability is a reasonable indicator for the onset
of bursting in the full network model. Results from this reduced

model and those from simulations are compared in Figure 5
(discussed below).

For both CA1 and CA3 network simulations, the transition
from normal activity to seizures corresponds to an increase in the
percentage of active cells and the onset of a sustained oscillation
in the population activity. Because analysis of the one-
dimensional map does not provide us with an explicit condition
for this transition, we used the full refractory dynamics in the
definition of ei, making the map (1 � R)-dimensional, where R is
the length of the refractory period. In a similar way to the one-
dimensional map, the (1 � R)-dimensional map can be analyzed
to predict qualitative changes in the dynamics. For few long-
distance connections, both maps exhibit the same equilibria and
stability properties. As more long-distance connections are
added, the (1 � R)-dimensional map exhibits oscillations not
present in the one-dimensional map, after a “Hopf bifurcation
for maps” occurs as � is increased (Agarwal et al., 2000). These
small-amplitude oscillations resemble those in the full network
simulations during seizures (data not shown) and also have a
period approximately equal to the refractory time of the neurons.
The transition to oscillation occurs at a value of � that can be
computed analytically and compared with results from compu-
tational simulations (see below). Numerical implementations of
the two maps both transition to bursting for similar values of
model parameters. However, the (1 � R)-dimensional map does
not provide an explicit analytic condition for the burst onset. This
is because the transition occurs in the full map when the oscilla-
tions grow so large that the activity saturates. The saturation of

Figure 4. The birth– death process (1-dimensional map) model of wave generation and annihilation. The top panels show how
many new waves are generated (ni; dashed lines) and annihilated (di; solid lines) per time step as functions of the number of
currently active waves, with k � 90. The y-intercept of the dashed lines indicates the spontaneous background rate of wave
generation. An equilibrium point exists where the new wave rate is equal to the dying wave rate (indicated by the arrows). The
bottom panels map the number of waves on one time step to the average number expected on the next time step (solid lines).
Equilibria occur when the number of waves on the next time step is equal to that on the current time step [i.e., at the intersection
of the solid line of f(wi) and the dotted line of identity (also indicated by arrows)]. For � � 0.0001, the equilibrium point at wi �
1.82 is only weakly attracting (the slope of the solid line is approximately �1), and the number of waves changes only slightly at
each time step. For � � 0.01, the system has a strongly attracting equilibrium (where the slope of the solid line is approximately
zero), corresponding to ongoing seizures characterized by an average of 3.87 existing simultaneous waves. For � � 0.05, the
equilibrium is unstable, and the dynamics has entered a chaotic regimen. The onset of chaos indicates that the entire network will
repeatedly fire brief synchronous bursts.
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activity breaks the assumption of the der-
ivation of the map and is not a precisely
definable transition. Thus, it cannot be
captured by an analytical expression in-
volving a local change in stability. In con-
trast, the one-dimensional map represents
an “averaged” view of the full dynamics
(through its simplified treatment of the re-
fractory wake), for which transition to
bursting occurs while the low-activity as-
sumption still holds.

Figure 5a shows the boundaries of the
different behavior regimens predicted by
both of the analytical models as the num-
ber of synapses per neuron (k) and pro-
portion of long-distance connections (�)
is varied. The seizing-bursting border
(solid black lines) was calculated from the
simplified one-dimensional map. The
normal-seizing border (dotted black
lines) was derived from the (1 � R)-
dimensional map. The two horizontal
gray lines in each panel correspond to the
CA1 and CA3 models from Figure 3. a–f in
Figure 5a correspond to the examples
from Figure 3, again as the proportion of
long-distance connections � is changed
over several orders of magnitude. Vertical
tick marks in Figure 5a correspond to the
borders between the normal, bursting,
and seizing regimens for the simulated
CA1 and CA3 models from Figure 3. Pre-
dicted transitions from simplified maps
occur near the transition points observed
in simulations for a wide range of param-
eter values.

In the brain and in slice models, epi-
lepsy is probably not caused by an increase
in long-distance connections but rather a
change in the synaptic strength resulting
from drugs or changes in the ionic con-
centrations of the fluid bathing the slice.
Using our reduced map models, we can
explore the effects of changing the synap-
tic efficacy p1 (Fig. 5b), which we define as
the probability that a single postsynaptic
input gives rise to a postsynaptic spike on
the next time step. We look for the regi-
men transitions as p1 is varied, keeping � at
0.01 (the same value used for panels a and
e in Fig. 3). The transitions predicted by
the models are plotted in Figure 5b. The
total network activity measured from the
network simulations is plotted in the in-
sets and shows a drop in activity coincid-
ing with the burst transition for CA3 as
predicted (indicated by the line in the inset
and the dash in the full panel). The CA1
network did not transition to bursts and
had a smooth transition to seizures with
an onset that is harder to define but ap-
proximately coincides with the predicted
values. Thus, the reduced model predicts

Figure 5. Change in network behavior as a function of number of synaptic connections per neuron and proportion of long-
distance connections using the reduced model (for network size of 3000 neurons). The left panel shows curves delineating the
normal, seizing, and bursting regimens as the number of synapses per neuron, and the proportion of long-distance connections are
changed. The solid black curve is calculated from analysis of the one-dimensional map and the dotted black curve from the (1 �
R)-dimensional map. Tick marks indicate the boundaries of normal, seizing, and bursting behavior in network simulations from
Figure 3. Horizontal lines indicate specific parameter choices for the CA3 and the CA1 models. Points labeled a–f correspond to the
conditions simulated in Figure 3a–f. These plots imply that the CA3 network will transition from normal to bursting at a much
smaller proportion of long-distance connections or smaller synaptic strength than the CA1. The right panel illustrates the bound-
aries between the behavioral regimens as the number of synapses per neuron and the synaptic strength are varied (with the
proportion of long-distance connections fixed at ��0.01). The curves were calculated in a similar way to that in the left panel. The
tick mark in the line for the CA3 indicates the boundary between bursting and seizing observed in the integrate-and-fire model,
where the population firing rate as a function of synaptic strength are plotted in the inset. The results of the simulations correlate
well with the analyses of the reduced map models. No clear transition from seizing to bursting was seen in the full CA1 model, as
predicted by the one-dimensional map model.

Table 1. Principal definitions, symbols, and default parameter values used in equations

Symbol Identification Definition/values used

N Number of neurons in network 3000 (24,000 in some network simulations)
k Number of synapses per neuron 30 (for CA1), 90 (for CA3)
s Spontaneous firing rate of a single neuron per time step of

size �d

0.0315 � �d

�R Absolute refractory time of neuron 28 msec (IF), 36 msec (Poiss, HH)
�d Synaptic time delay 2.8 msec (IF), 3.7 msec (Poiss), 1–5 msec (HH)
� Proportion of long-distance connections generated by

breaking a synapse and rewiring it to a randomly cho-
sen postsynaptic cell

Varied from 1.0 � 10�5 to 0.4

p1 Synaptic strength (i.e., probability that postsynaptic neu-
ron will fire given that a particular presynaptic neuron
fired)

0.025

p2 Probability that two postsynaptic neurons fire given the
presynaptic neuron fired (dependent on k and p1)

p2 � 1 � (1 � p1)k � kp1(1 � p1)k�1

� Approximate number of neurons in wave front k/2 � 1
R Number of time steps that a neuron remains refractory R � �R/�d � 10
wi Number of waves present in network at time i wi�1 � f(wi)
ei Number of excitable neurons in the network at time i

ei � N � �wi � �
R

	
t�1

wi�t or ei � N �

�wi(1 � R) (for one-dimensional map)
ni Number of new waves generated at time i resulting from

long-distance connections
ni � (2�wi k�)(p1p2ei /N) � Si

di Number of waves that die in time step i resulting from
wave collision

di � 2�wi /ei

Si Spontaneous wave generation resulting from spontane-
ous cellular activity

Si � seip2

w* Number of waves in network where new wave rate and
dying wave rate are equal (equilibrium point)

f(w*) � w*

f (wi ) Function describing number of waves on next time step
given number of waves on time step i

f(wi) � wi � ni � di
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that as synaptic strengths are enhanced, CA3 is more likely to
transition to bursting, but CA1 is more likely to transition to a
seizing regimen, agreeing with experimental results.

Discussion
Here, we have introduced a simple small-world network represen-
tation of excitatory neurons in the hippocampal slice. The network
was implemented using three different neuron models: noisy and
leaky integrate-and-fire, stochastic Hodgkin–Huxley, and a Poisson
spike-train model. We used these models to explain why seizures
may not be hypersynchronous, but bursts are. In these simulations,
seizure activity in the CA1-like networks is not fully synchronous,
allowing the activity to be sustained. The same model supports that
bursts in CA3 are caused by synchronous rapid recruitment of neu-
ronal activity. Simulation results were independent of particular cel-
lular models used, indicating that the proportion of long-distance
connections is more important than the details of individual neu-
rons in determining the epileptiform properties of the network. We
derived a reduced mathematical model of the average activity in the
network as a birth–death process (map) in discrete time. This model
avoids a purely mean-field approximation (which would ignore the
small-world properties of the network) and instead retains parame-
ters directly related to the physiology and the connectivity of the
network. The one-dimensional map predicted the transition from
seizing to bursting found in the network simulations as the number
of synapses per neuron, proportion of long-distance connections,
and synaptic strength were varied. These transitions were described
as a loss of stability of an equilibrium in the map. A more detailed
description of the refractory dynamics gave rise to a higher-
dimensional map. This map could be analyzed to predict the transi-
tion from normal activity to seizing. These reduced models highlight
the roles of physical parameters that could underlie the different
epileptiform behaviors observed in CA1 versus CA3.

Relation to previous modeling studies
A number of recent modeling studies have examined problems
similar to those studied here. For example, Tsodyks et al. (2000)
studied coherent activity in randomly connected networks with
depressing synapses. They observed coherent activity, somewhat
similar to the bursting seen here. In their work and in related
work (Tabak et al., 2000; Wiedemann and Luthi, 2003), networks
of neurons with depressing synapses initiate bursts from excita-
tory neurons that had not fired for some time and thus gave rise
to large postsynaptic effects. Synaptic depression shut down
bursts in these studies. In contrast to these models, our model has
explicit small-world connectivity that plays an important role in
the behavior of the network. We focused on how changes in the
number of long-distance connections, synaptic strength, and
overall connectivity led to dramatic changes in network activity.

Nishikawa et al. (2003) studied synchronization in small-
world networks that ranged from our Watts–Strogatz style to
networks in which a few hyperconnected “hub” neurons served
to reduced the mean path length. They found that hubbed net-
works were less likely to synchronize than Watts–Strogatz net-
works, although the hubbed networks have smaller mean path
lengths. Superficially, this result seems to contrast with our result
that the greatest synchronization was seen with small path
lengths. But this apparent discrepancy is an artifact of the way the
networks were constructed in these two studies. Our results are
compatible with the general argument of Nishikawa and col-
leagues, in that network synchronization decreases with increas-
ing heterogeneity in the number of connections per neuron. Our
bursting networks with large � have both small mean path and

low heterogeneity, because in a randomly connected network,
each cell receives approximately the same number of connec-
tions. Our seizing networks with small � are more heterogeneous
and thus are expected to be less synchronized.

Two additional computational efforts have shown that small-
world networks similar to ours can synchronize. Networks of
oscillatory elements synchronize when the network contains
enough long-distance connections of sufficient synaptic strength
(Hong et al., 2002). Roxin and colleagues (2004) have showed
that adding long-distance connections makes small-world net-
works of integrate-and-fire neurons transition from sustained
activity to synchronous bursts of finite duration. Oscillation of
population activity has been studied by Curtu and Ermentrout
(2001) and Wilson and Cowan (1973) using differential equa-
tions similar in form to our discrete-time maps. Our work utilizes
these types of models to study epilepsy. First, we relate our mod-
els to epilepsy in a specific brain region (hippocampus) and at-
tempt to explain why regions CA1 and CA3 exhibit different
epileptiform behaviors in slice models. Second, we show that the
relationship between the number of long-distance connections
and seizing or bursting is remarkably independent of the neuro-
nal model used. Third, our derivation of the reduced map models
retains important physiological parameters of which the effect on
epileptiform behavior can be studied directly.

Relation to experimental results
This model helps to explain how a stable network may become
unstable and prone to epileptiform behaviors. Many drugs and
disturbances to the cell equilibria can cause this. For example,
4-AP induces epileptiform behaviors in slice models by blocking
voltage-gated K� channels and thus indirectly enhancing EPSP
amplitudes (Chesnut and Swann, 1988). It is shown in Figure 5
that enhancing synaptic strength can transition a stable network
into bursting or seizing. Epilepsy can also be induced following
cell death. Although decreasing the number of cells alone cannot
induce epilepsy in our networks, a concomitant increase in syn-
aptic strength to compensate for the reduced synaptic activity
might. Although our simulations only included excitatory cells,
normal network activity depends on a balance of excitation and
inhibition for stability. The parameter p1 could be interpreted as
representing the ratio of excitation to inhibition. In hippocampal
slices, epileptiform activity can be induced by pharmacologically
blocking inhibitory synaptic activity (Amitai et al., 1993). These
disinhibited slice models of epilepsy show three stages during the
ictal event (Borck and Jefferys, 1999). After the first stage of de-
polarization, the second consists of high-frequency oscillations
similar to our seizures. The third stage consists of postictal bursts
that are similar to our bursts. Our model suggests that the seiz-
ing– bursting transition in disinhibited slices may correspond to
increasing synaptic strength, connectivity, or cellular excitability
during the ictal event.

We predict from our model that networks with fewer recur-
rent connections are more likely to seize than networks with
more recurrent connections. Our model is consistent with the
theory that epileptiform behaviors are generated by positive feed-
back in excitatory network activity (Schwartzkroin, 1994), result-
ing in runaway excitation. This may help to explain why some
regions of the brain produce seizures, whereas others produce
epileptiform bursts. The range of synaptic strengths for which the
network will produce seizing behavior is smaller for networks
with more recurrent excitatory synapses. These networks are
more likely to transition from normal directly to bursting with-
out observing seizures. Our model suggests that epileptiform
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bursts in CA1 may occur only when it receives strong synchro-
nous synaptic input from the burst-prone CA3 region. If bursting
input to a seizure-producing region is stopped, the region may be
released to produce its own seizing behavior, as observed exper-
imentally by Barbarosie and Avoli (1997) and Bragdon et al.
(1992).

Organotypic cultures of neocortex generate waves of activity
that are reminiscent of our normal and bursting activity (Beggs
and Plenz, 2003). Normal activity in the organotypic cultures is
scale-free, in that the probability distribution of sizes of waves
and the distribution of wave lifetimes both obey a power law,
whereas picrotoxin-induced bursts were not. Beggs and Plenz
(2003) replicated their scale-free behavior in a multilayer, feed-
forward model. In our simulations, distributions of activity do
not resemble power laws for normal, seizing, or bursting activity.
We believe that our simulated activity is not scale-free primarily
because waves of activity, once initiated, almost always propagate
over long distances and thus have long lives. This behavior stands
in contrast to that observed and modeled by Beggs and Plenz
(2003), in which the most common events are small in spatial
scale and short in duration.

The time scales that we observe for the bursting and seizing do
not necessarily correspond to actual time scales observed exper-
imentally in vitro. Furthermore, the seizures in the model do not
end as seizures do in the in vitro models, because the small-world
network model and our mathematical description of the model
are highly reduced compared with the hippocampal slice. We
expect that fuller models, including inhibition and more spatial
realism, may address these discrepancies. The purpose of this
model is to develop an understanding of how changes in the
physiology change the behavior from normal to bursts to sei-
zures. Therefore, we simulated the networks with only excitatory
activity and overestimated the number of recurrent excitatory
connections in the CA1 and CA3. This model could be expanded
to include inhibitory neurons and more realistic connection
schemes, such as a two-dimensional lattice of neurons. The pur-
pose of this model was not to calculate the exact transition of the
network behavior or to derive physiological values for these tran-
sitions but to give an intuitive feel for why these transitions occur.
The exact parameter values where the networks transition be-
tween behaviors may differ as we change the form and constitu-
ents of the network, but we expect that these transitions will
remain qualitatively the same. Nevertheless, we feel that our sim-
ple network is useful as one approximation to the qualitative
properties of collective behavior in the hippocampus.
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