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The Integration of Multiple Stimulus Features by
V1 Neurons

Alexander Grunewald and Evelyn K. Skoumbourdis
Harlow Center for Biological Psychology, Departments of Psychology and Physiology, University of Wisconsin-Madison, Madison, Wisconsin 53706

We investigated how V1 neurons integrate two stimulus features by presenting stimuli from a stimulus set made up of all combinations
of eight different directions of motion and nine binocular disparities. We investigated the occurrence and shape of the resulting joint
tuning function. Among V1 neurons, ~80% were jointly tuned for disparity with orientation or direction. The joint tuning function of all
jointly tuned neurons was separable into distinct tuning for disparity on the one hand, and orientation or direction tuning on the other.
The degree of separability and the mutual information between the stimulus and the firing rates were strongly correlated. The mutual
information of jointly tuned neurons when both features were decoded together was highly correlated with the mutual information when
the two features were decoded separately, and the information was then summed. Jointly tuned neurons were just as good at representing
information about single features as neurons tuned for only a single feature. The tuning properties of most jointly tuned neurons did not
dynamically evolve over time, nor did jointly tuned neurons respond earlier than neurons tuned for only a single feature. The response
selectivity of V1 neurons is low and decreases the information that a neuron represents about a stimulus. Together these results suggest
that distinct stimulus features are integrated very early in visual processing. Furthermore, V1 generates a distributed representation

through low response selectivity that avoids the curse of dimensionality by using separable joint tuning functions.
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Introduction

Our visual environment contains objects that differ in terms of
many stimulus features, or dimensions, such as orientation,
color, direction of motion, binocular disparity, and spatial fre-
quency. To process information, the visual system needs to be
sensitive to each of these features. Although it is well understood
how these attributes are processed independently from each
other, they rarely appear singly. This study aims to clarify how
combinations of features are processed and integrated by the
visual system.

Several strategies to process and represent multiple features
have been proposed. According to a simple but popular ap-
proach, each dimension is initially represented by its own exclu-
sive pool of neurons (Treisman and Gelade, 1980; Livingstone
and Hubel, 1988; Zeki, 1993). Each pool is tuned only for a single
feature (see Fig. 1a,b), and the information across the different
neuron pools is subsequently processed to allow for interactions
across them. An alternative possibility is that the visual system
integrates different features very early in processing. Lennie
(1998) proposed the generation of a joint representation, where a
single neuron pool represents various features and each neuron is
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jointly tuned for a combination of stimulus attributes (see Fig.
1c,d).

The way in which a neuron responds to multiple stimulus
features is expressed by a joint tuning function, which is the
activity of a neuron in response to all combinations of stimulus
features. This function can take many different shapes, giving rise
to two possible representational strategies. In one strategy, mul-
tiple features are represented by a joint tuning function that is the
combination (e.g., multiplication) of distinct tuning curves for
each individual feature (see Fig. 1¢). Such a joint tuning function
is called “separable.” It has the virtue that the joint tuning is a
natural extension of the tuning for each individual feature, thus
simplifying the decoding of single features. Another strategy is to
represent features by a joint tuning function that cannot be ex-
pressed as the combination of distinct tuning curves for individ-
ual features (see Fig. 1d). Such a joint tuning function is called
“inseparable,” because the tuning for a single feature depends on
the specific choice of another feature. An inseparable joint tuning
function allows neurons to represent higher-level features. For
example, space—time inseparability by striate cortex (V1) neurons
gives rise to direction selectivity (Adelson and Bergen, 1985).

Although several groups have studied single-feature tuning
curves for several stimulus attributes (Schiller et al., 1976; De
Valois et al., 1982; Leventhal et al., 1995; Geisler and Albrecht,
1997; Smith et al., 1997; Grunewald et al., 2002; Prince et al.,
2002a), very little research has systematically explored joint tun-
ing by presenting stimuli made up of feature combinations. Some
studies have focused on contrast, orientation, or spatial fre-
quency (Webster and De Valois, 1985; Jones et al., 1987; Ham-
mond and Kim, 1996; Victor and Purpura, 1998; Bredfeldt and
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Ringach, 2002; Mazer et al., 2002). The joint representation of
these features has been modeled with the same spatial filter and
thus may be a special case (Daugman, 1985; Jones and Palmer,
1987; Parker and Hawken, 1988). To extend our understanding
of the representation of multiple features, Qian (1994) proposed
that direction and disparity are represented jointly and this rep-
resentation is separable. It is now known that some V1 neurons
are jointly tuned for direction and disparity and these neurons
exhibit spatiotemporal as well as disparity—temporal tuning (An-
zai et al., 2001; Pack et al., 2003). At present, however, the hy-
pothesis of Qian (1994) that direction and disparity are primarily
represented jointly in V1, and that this representation is separa-
ble, still has not been tested. In contrast, it has been shown that
many neurons in area medial superior temporal (MST) represent
direction and disparity inseparably (Roy and Wurtz, 1990).
Therefore, the present study aims to elucidate the strategy used by
V1 to represent and integrate several important features: binoc-
ular disparity, direction of motion, and orientation.

Materials and Methods

Animal preparation. Two male monkeys (Macaca mulatta), aged 3-5
years, were used. All procedures were in compliance with the National
Institutes of Health Guide on the Treatment of Animals and were approved
by the Animal Care and Use Committees at the University of Wisconsin—
Madison. All surgeries were performed under sterile conditions using
general anesthesia. In one procedure, two scleral search coils (one in each
eye) were implanted, craniotomies were performed, and recording cyl-
inders were implanted over V1 (30° bevel, normal to skull; 15 mm lateral
from midline, 12 mm above occipital ridge). Water intake of the animals
was regulated during experimental sessions, and water intake and weight
were monitored on a weekly basis to ensure the health of the animals.
Usually animals were used in experimental sessions during the week, and
they had ad libitum access to water on the weekends.

Experimental apparatus. All experiments were performed in a dark,
sound- and radiofrequency-shielded booth (Acoustic Systems, Austin,
TX). To measure eye position, the animals were placed inside an 18 inch
field coil (Crist, Bethesda, MD) that induces a magnetic field. Animals
were under constant supervision via an infrared camera. Behavioral con-
trol and data collection were performed using a commercially available
experimental control program (TEMPO, Reflective Computing, St.
Louis, MO) running on two PCS. Visual stimuli were generated by a
dedicated graphics computer, running an OpenGL graphics program on
a dual Processor PC.

Data collection. The animals were seated in a primate chair, facing a
computer monitor, and performed a fixation task for fluid reward. In this
task, animals maintained their gaze within 1° of a central spot of light for
2 sec. The head was fixed, and the eye position of both eyes was moni-
tored using the scleral search coil technique (Judge et al., 1980). Between
one and four epoxy- (Fred Haer, Bowdoinham, ME) or glass-coated
(Alpha-Omega, Jerusalem, Israel) tungsten electrodes with 0.5-3 M()
impedance at 1 kHz were independently advanced into V1 using a multi-
electrode microdrive (MT and EPS, Alpha-Omega). The signal from each
electrode was amplified and filtered (0.6—6 kHz), and a notch filter was
applied (MCP, Alpha-Omega). Single neurons were isolated on-line us-
ing a template-matching algorithm (MSD, Alpha-Omega). The receptive
field (RF) of each neuron was mapped using a pattern of dots that could
be moved on a computer screen using a computer mouse.

Visual stimuli. Visual stimuli were shown on a high-speed monitor
(CV 931 X, Totoku) running at 160 Hz, with a resolution of 1024 X 768.
Visual stimuli consisted of moving dots that were anti-aliased, allowing
for subpixel resolution. Thus, visual stimuli could be rendered with high
temporal and spatial resolution. Moving dots had 0.12° diameter and
appeared in yellow, red, or green. Visual disparity was generated using a
red/green anaglyph system using Kodak Wratten filters: in front of the
right eye was a red filter (filter number: 29), and in front of the left eye was
a green filter (filter number: 61). All luminances had been adjusted so
that dots of all colors (red, green, or yellow) had the same luminance
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when viewed through the filters (5.4 cd/m?). The cross talk between the
two eyes was as follows: the luminance of green dots seen through the red
filter was 0.2 cd/m?, and the luminance of red dots seen through the
green filter was 0.7 cd/m?. In addition, a fixation point (diameter 0.2°)
was shown in white.

All stimuli were composed of a single set of dots moving coherently in
a fronto-parallel plane. The moving dots were shown within a circular
aperture, having a diameter of 5° and dot density of 40 dots per square
degree. The stimuli were positioned to cover the RFs of all neurons that
were being recorded. The RFs had median eccentricities of 2.2° (range
0.1°-5°) in animal A and 3.9° (range 1.8°-18.6°) in animal D. The speed
of the dots was 6°/sec, and there were eight possible directions of motion
spaced at 45°. The dots were shown at one of nine possible disparities,
ranging from near (—0.8°) to far (0.8°) in steps of 0.2°. All (8 X 9 = 72)
combinations of directions and disparities were used as visual stimuli.
For control purposes, a blank stimulus was also shown, yielding a total of
73 distinct stimuli. A single visual stimulus was shown per trial, lasting 1
sec. Other than the fixation point, the screen was blank for 0.5 sec both
before and after the stimulus. Trials were blocked so that within each
block each stimulus was presented exactly once. Usually five blocks were
run during a recording session.

Analysis. Most of the analyses were performed using Matlab (Math-
works, Natick, MA), although SAS was also used for some statistical
analyses (SAS Institute, Cary, NC). In each trial the firing rate was deter-
mined over the 1 sec stimulus interval. To determine tuning properties,
we performed a weighted two-way ANOVA, where the weighting (by the
inverse of the variance) served to homogenize the variance across stim-
ulus conditions. We used a bootstrap analysis to determine whether a
neuron that showed a significant effect of direction/orientation was ac-
tually direction selective or tuned for orientation. Throughout our anal-
yses, the distinction between direction- and orientation-tuned neurons
was maintained. To determine tuning indices, we averaged data across
different repetitions of the same stimulus. For each neuron we deter-
mined the peak response P, which occurred at the preferred direction and
the preferred disparity. The direction index is 1 — A/P, in which A is the
response to a stimulus moving opposite to the preferred direction at the
preferred disparity. The disparity index is 1 — W/P, where W is the
weakest response to a stimulus moving in the preferred direction. In
control analyses we also determined more traditional indices: the tradi-
tional direction index using a direction tuning curve at zero disparity and
the traditional disparity index using a disparity tuning function at the
preferred direction. These two traditional indices were strongly corre-
lated with our indices. Because our indices use all of the available data, we
preferred them in our analyses.

To determine whether a neuron was separable, we performed a singu-
lar value decomposition (SVD) (Pena and Konishi, 2001; Mazer et al.,
2002). SVD is the decomposition of a matrix into a sum of matrices, each
of which in turn is the product of separate direction and disparity tuning
curves. The matrices are ordered such that the first contributes most to
the sum and the last contributes the least. The weight of each matrix is
called the singular value (SV). To determine whether a neuron is separa-
ble, it is enough to test that the first (and therefore strongest) but not the
second SV is significantly larger than the noise level (permutation test;
p < 0.05). If the second SV exceeds the noise level, a neuron is not
separable. The degree of separability was further quantified using the
separability index, which is obtained by squaring the first SV and dividing
it by the sum of the squares of all SVs. It ranges from 12.5% (not at all
separable) to 100% (completely separable).

To better understand the joint tuning function, we fit the mean firing
rates to four distinct models, each of which combined single-feature
tuning functions (Fig. 1) that were obtained in the optimization process.
These single-feature tuning functions were nonparametric. The single-
feature tuning function was made up of eight direction weights, and the
disparity was made up of nine disparity weights. Fits for orientation
tuning had only four orientation weights. The combination of the orien-
tation and disparity weights could be multiplicative (12 df because there
was a common gain, and each single-feature tuning function had one
redundant weight), additive (12 df), or the larger of the two (winner-
take-all, 13 df). We also fit a multiplicative model with an additive base-
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Figure1.  Ways of representing multiple stimulus features. These maps show the firing rate
of hypothetical neurons as a function of direction and disparity. Multiple stimulus features could
be encoded in three different ways: by neurons that are exclusively tuned for a single stimulus
feature such as only direction (a) and only disparity (b), by neurons that encode multiple
stimulus features separably (c), and by neurons that encode multiple stimulus features in a
nonseparable way (d).

line term (13 df). The combination of direction and disparity had four
additional degrees of freedom in each model. The modulation strength
was determined based on the single-feature tuning functions obtained in
this latter, enhanced multiplicative fit, although the trends reported are
true for all of the models. (This measure is also known as the modulation
depth; however, to avoid confusion with binocular disparity, we refer to
it as modulation strength here.) The modulation strength related to a
single-feature tuning curve was defined as the difference between the
largest and smallest weights divided by their sum. Because for each neu-
ron there were three single-feature tuning curves (orientation, direction,
and disparity), there are also three distinct modulation strengths, one for
each feature. For orientation-tuned neurons, we used only the orienta-
tion modulation strength, and for direction-tuned neurons, we used only
the direction modulation strength. To determine the variability of a neu-
ron, we used the relationship between the mean and variance of the firing
rate (Vogels et al., 1989; Snowden et al., 1992). We performed a linear
regression in log—log coordinates resulting in a slope and an offset. We
refer to the slope as “response variability.”

To determine the mutual information, we used the raw, unaveraged data
and binned the firing rates into six bins of variable width such that on aver-
age, each bin contained the same number of trials. We have varied the num-
ber of bins used (range, 4—12) and obtained similar results. Using the binned
data, we estimated the probability distributions of the stimulus p(s),
the neural response p(r), and their joint distribution p(s,r). We deter-
mined the mutual information using the following standard equation:
I(SR) = H(S) + H(R) — H(SR), where H(X) = —3, p(x) log,
p(x).We compensated biases in the estimation of the mutual information
using extrapolation (Strong et al., 1998) and randomization procedures.
In rare cases, the information estimate was negative, which was corrected
by setting the information to zero. We also used a parametric technique
to determine mutual information without the need for binning (Gershon
et al., 1998), which yielded similar results. To determine the response
selectivity (Rolls and Tovee, 1995; Vinje and Gallant, 2002), we deter-
mined the selectivity index by applying the following equation to the data
from each neuron separately:

LSS

1 >
1 ——
n

where r; is averaged firing rate, i indexes is different stimulus conditions,
and 7 is the total number of stimulus conditions. The selectivity index
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ranges from 0% (not at all selective) to 100% (selectivity for only one
stimulus).

We also determined the effect of eye movements. To do so we deter-
mined the mean fixation drift and mean vergence in each trial. We then
subjected both of these measures separately to a two-way ANOVA with
direction and disparity as main effects. Sessions that showed a significant
effect of direction on the fixation drift and those that showed a significant
effect of disparity on vergence were excluded from further analysis.

Results

Database

We performed 110 recording sessions in two animals. Of these
sessions, approximately one-third were excluded from further
analysis because there were systematic effects of eye movements.
In these sessions, the stimulus condition affected fixation drift in
23% of sessions and vergence in 15% of sessions (some sessions
showed both effects). Because V1 RFs are tiny, small but system-
atic changes in eye position may affect firing rates, thus poten-
tially biasing direction and disparity tuning. To avoid any biases,
we removed all neurons recorded during these sessions from the
database. In the remaining 75 recording sessions, we recorded the
neuronal activity of 184 neurons. Based on neuronal depth under
the dura and the position of layer 4C, we estimate that most of the
neurons recorded were located in the supragranular layers; how-
ever, no histological data are available to confirm this. Further-
more, because of the very large number of different stimulus
conditions, no classification of neurons as simple or complex
cells could be performed.

Tuning

We determined the joint tuning for binocular disparity and di-
rection of motion of single neurons by presenting all 72 combi-
nations of 8 directions and 9 disparities (Fig. 2a). Although the
stimulus set does not contain orientations per se, orientation-
selective neurons do respond to these stimuli, although they re-
spond similarly for opposite directions of motion. The two op-
posite directions resulting in maximal responses are parallel to
the preferred orientation of a neuron. Neurons are categorized as
tuned for orientation or direction, and all further analyses are
adjusted accordingly. The joint tuning function for one example
neuron is shown in Figure 2b. A weighted two-way ANOVA is
used to analyze the tuning properties of this neuron. This neuron
is tuned for both orientation and disparity and has no interaction.
A second neuron that is tuned for direction and disparity is
shown in Figure 2c¢. Finally, Figure 2d shows a neuron that has an
interaction between direction and disparity. Among the 184 sin-
gle neurons that we recorded from, 150 are tuned for our stimu-
lus set. Among these tuned neurons, only a small proportion of
neurons are tuned exclusively for one stimulus feature (orienta-
tion, 8%; direction, 5%; disparity, 6%). The remaining 81% of
neurons are jointly tuned and thus integrate multiple stimulus
features. From this, we conclude that joint tuning for multiple
stimulus features is a common property of V1 neurons.

Among the neurons that integrate multiple features, three
neuron types could be distinguished. As one would expect in V1,
the largest group of neurons (45%) were tuned for orientation
and disparity. Furthermore, 21% were tuned for direction and
disparity, and 34% had a significant interaction between direc-
tion and disparity. Unless stated otherwise, “joint tuning” refers
to all three of these neuron types together. Note that the existence
of an interaction in a neuron does not imply that it is not separa-
ble. For example, if direction and disparity are multiplied by a
neuron, that neuron is likely to have a significant interaction,
although its joint tuning function is separable.



9188 - J. Neurosci., October 13,2004 - 24(41):9185-9194

Separability

The integration of multiple features can be
accomplished in many ways. One obvious
possibility is that the joint tuning function
is simply a combination of separate tuning
for each stimulus feature. Neurons for
which the joint tuning function can be de-
composed into distinct orientation and
disparity tuning curves or distinct direc-
tion and disparity tuning curves are called
separable. (For simplicity, we will hence
forth refer to orientation/direction, mean-
ing that for neurons tuned for orientation
we used orientation, and for neurons
tuned for direction we used direction.) An
SVD was used to test whether V1 neurons
are separable. Across our sample of jointly
tuned neurons, every one was separable
(permutation test; p < 0.05). The separa-
bility index quantifies the degree of sepa-
rability without using a binary criterion
(see Materials and Methods).

The separability index can be thought
of as the proportion of the variance that is
accounted for by a separable model given
the data. As such, one might worry that
this index may be affected by two different
components: the true separability of a
neuron under study, and noise in the data.
Because the separability index is analo-
gous to the R? statistic, the noise has al-
ready been taken into account by the sep-
arability index. Still, to limit the effect of
noise, we use averaged firing rates when
determining the separability index. Fur-
thermore, we directly investigated the re-
lationship that peak response, single-
feature tuning, or response variability
have on the separability index using corre-
lation analyses. We find that none of these
variables that are not tied to separability
are correlated with the separability index
(Table 1). Thus, having eliminated poten-
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Figure 2.  Stimulus set and example neuron. a, The joint tuning for direction and disparity was studied by presenting stimuli
that varied in both direction of stimulus motion and binocular disparity. The resulting firing rates give rise to a joint tuning
function, which depends on both direction and disparity. b, A map representation of the joint tuning function. Maps have been
aligned such that 0° corresponds to the preferred direction. Calibration indicates firing rate calculated over the 1 sec stimulus
interval. This neuron is tuned for orientation and disparity. The neuron is orientation selective because there are two (opposite)
directions for which it is strongly activated. ¢, A neuron that is tuned for direction and disparity. d, A neuron that exhibits a
significant interaction between direction and disparity. Note that direction is circular and hence wraps around.

Table 1. Correlation of separability index with other variables

Correlation coefficient pvalue greater than
Response peak 0.07 0.5
Modulation strength (orientation) 0.08 0.5
Modulation strength (direction) —0.01 0.9
Modulation strength (disparity) —0.02 0.8
Response variability —0.08 0.4

This table shows for five distinct variables that could be related to the separability index the Spearman Rank correlation index and the corresponding p value
(rounded down to the nearest decimal). As shown, none of the correlations are significant, suggesting that the separability index does not represent these
other variables and instead is a true measure of separability.

tial confounding variables, we are confi-
dent that the separability index is a mea-
sure of separability.

In our sample of V1 neurons, the separability index was quite
high (50%). Among the three neuron types, the separability index
differed significantly, being largest for neurons with an interac-
tion between direction and disparity (Kruskal-Wallis test; p <
0.01). This is consistent with a multiplicative rather than an ad-
ditive combination of the two stimulus features.

Although SVD is very sensitive at detecting separability, it is
not as sensitive in determining how single-feature tuning curves
are combined. To study how the single-feature tuning curves are
combined, we fit the data with three possible models. In the mul-
tiplicative model, the joint tuning was caused by the multiplica-
tion of separate orientation/direction and disparity tuning
curves; in the additive model, the joint tuning was caused by the
addition of separate tuning curves; in the winner-take-all model,
the joint tuning was the larger of the separate tuning for each
condition. Across our sample of neurons, we find that all three
models account for the data very well, with <5% of neurons

failing a x° goodness-of-fit test. There were only small but signif-
icant ( p < 0.001) differences between the proportion of variance
accounted for by each model (multiplicative, 67%; additive, 66%;
winner-take-all, 62%). Our previous finding that joint tuning is
separable is supported by the fact that these three models provide
very good fits, and they are all separable. Adding an extra param-
eter to the multiplicative model for the baseline activity signifi-
cantly improves the variance accounted to 69%.

We noticed that the joint tuning function for many neurons
was dominated by one feature and that the other feature seemed
to provide a smaller contribution (Fig. 2b,¢). To find out whether
this impression is generally true, we determined the strength of
modulation for orientation, direction, and disparity separately
using the models just described (see Materials and Methods). The
strength of modulation is a measure of how much the firing rate
changes as one of the features is changed. Thus, there are three
modulation strengths: one for orientation, one for direction, and
one for disparity. We find that for neurons tuned for orientation
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Figure 3.  Separability index and joint information. As the separability index increases, so

does theinformation that ajointly tuned neuron represents about the stimulus. The separability
index is a percentage that expresses how separable a neuron joint tuning is. Neurons that are
completely separable have a separability index of 100%. Neurons that are completely insepa-
rable have a separability index of 12.5%.

and disparity, the median modulation strength for orientation is
31% lower than that for disparity (Wilcoxon test; p < 0.005). For
neurons tuned for direction and disparity, the median modula-
tion strength for direction is ~64% higher than that for disparity
(Wilcoxon test; p < 0.05). This effect might be an artifact of the
stimulus space. Although orientation and direction are circular
and we can therefore map the entire space, the disparity is linear,
and we map only a section of this space (—0.8° to 0.8°); however,
because the maximum disparity is large (0.8°), which is a hori-
zontal offset on the order of the size of a receptive field of a V1
neuron, this is unlikely to be a problem. Furthermore, the orien-
tation modulation strength for neurons only tuned for orienta-
tion does not differ significantly from the disparity modulation
strength for neurons that are only tuned for disparity (Mann—
Whitney; p > 0.1). Finally, previous reports have shown that for
the majority of V1 neurons, the extrema of the disparity tuning
curves lie within the range that we tested (Poggio et al., 1985;
Prince et al., 2002b). Thus, for jointly tuned V1 neurons, the
modulation strength for direction is larger than that for disparity,
which in turn is larger than that for orientation.

Mutual information

The results described thus far show that V1 neurons are separa-
ble, but this analysis leaves unclear what the benefit of separability
is for a single neuron. This benefit can be gleaned from the main
role of a neuron, which is to process and transmit information.
Consequently, to determine whether separability is useful for
neurons, we determined the mutual information between our
stimulus set containing both direction and disparity and the fir-
ing rate. Because both stimulus features are included, we call this
the joint information. If separability is important for neurons,
then across our neuron sample the joint information and the
separability index should be correlated, which we find confirmed
(Spearman rank correlation r, = 0.58; p < 0.001) (Fig. 3). We
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noted previously that, in principle, the separability could be con-
founded with other variables, such as peak response, modulation
strength, or response variability. Although we have already
shown that these variables are not related to the separability in-
dex, we wanted to ascertain that there are no residual effects. To
this end, we determined the partial correlation between the joint
information and the separability index, from which potential
correlations attributable to peak response, modulation strengths,
and response variability are removed. This partial correlation is
highly significant (r, = 0.63; p < 0.001), indicating that the rela-
tionship between separability index and joint information is truly
caused by separability and not an artifact of other variables. This
is a correlational analysis, without a specific causal direction;
however, if one accepts that the degree of separability is a con-
stant property of a neuron and the joint information is the out-
come of processing in a specific set of trials, then our results
suggest that the degree of separability enhances the ability of
individual neurons to represent visual information. This makes
separability a highly advantageous strategy to integrate multiple
stimulus features, such as direction and disparity.

In some situations it may be of interest to access only a single
stimulus feature such as direction, although a neuron is tuned for
both orientation/direction and disparity. How well are individual
neurons able to represent single features? To understand this, we
determined the direction information, which is the information
that a neuron provides about the stimulus direction while ignor-
ing the disparity. Similarly, we determined the orientation and
disparity information. Jointly tuned neurons that were orienta-
tion tuned represented ~20% more information about disparity
than about orientation (Wilcoxon test; p < 0.05); however, the
theoretical maximum orientation information is only ~60% of
the maximum disparity information, because there were only
four orientations and nine disparities. If we take this into ac-
count, in other words if we compare the capacity, the difference
between orientation and disparity vanishes (Wilcoxon test; p >
0.2). In contrast, jointly tuned neurons that were direction tuned
represented more than four times as much information about
direction than about disparity (Wilcoxon test; p < 0.001), with or
without taking the maximum information into account. This
pattern of results is consistent with our previous results that the
modulation strength for direction is larger than that for disparity,
which in turn is larger than that for orientation. Having looked at
the representation of individual features, we next turn to the joint
representation.

The summed information is the sum of the orientation/
direction and disparity information. One of the results from in-
formation theory states that if the representation of orientation/
direction and disparity is statistically independent (which is a
stronger statement than separability, because separabililty is only
astatement about mean firing rates, whereas independence is also
a statement about higher-order statistics, such as the variance),
then the joint information should equal the summed informa-
tion. Otherwise, the joint information should be larger than the
summed information. Across our sample of jointly tuned neu-
rons, these two quantities are strongly correlated (r, = 0.9; p <
0.001) (Fig. 4); however, the joint information is consistently
larger than the summed information (Wilcoxon test; p < 0.001).
It is interesting to note that the difference (0.07 bits) is approxi-
mately constant and does not depend on how large the joint or
summed information is (Fig. 4). Thus, there is a nearly constant
cost associated with neurons that integrate multiple features
when decoding only a single feature. As one would expect, this
cost is negligible for single tuned neurons. Of course, the cost for
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Figure4. Comparison of decoding both stimulus features at once or one at a time. The joint
information (about both direction and disparity) is strongly correlated with the summed infor-
mation (the sum of the separate direction and disparity information).
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Figure 5. Representation of single features by single and jointly tuned neurons. a, The
orientation information for neurons tuned only for orientation (Ori) is not significantly different
from that for jointly tuned neurons that are orientation selective [Joint (Ori)]. b, The direction
information for neurons tuned only for direction (Dir) is not significantly different from that for
jointly tuned neurons that are direction selective [Joint (Ori)]. ¢, The disparity information for
disparity tuned neurons (Disp) is not significantly different from that for jointly tuned neurons
(Joint). Bar height denotes median information, and error bars represent SEs.

jointly tuned neurons disappears if the other feature is known
ahead of time.

Neurons only tuned for a single feature should have, in prin-
ciple, an advantage in representing a single stimulus feature. To
test this, we compared the orientation/direction information of
neurons tuned only for orientation or direction and of neurons
jointly tuned for orientation/direction and disparity. Similarly,
we compared the disparity information of disparity tuned neu-
rons and jointly tuned neurons. Across our sample of neurons,
the information represented about single stimulus features (ori-
entation, direction, or disparity) by single tuned neurons was not
significantly different from the information represented by
jointly tuned neurons (Mann—Whitney test; p > 0.4) (Fig. 5).
Because of the small number of neurons tuned for a single fea-
ture, the power of this test is limited; however, based on the
difference between joint information and summed information
0f0.07 (see above), one would expect half that difference between
jointly tuned and single tuned neurons when decoding a single
stimulus feature. The actual difference is considerably smaller
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Table 2. Response latencies as a function of neuron type

Single Joint Inter
Mean latency (msec) 89 69 81
SE (msec) 1.7 0.4 0.8

Neurons that are tuned for a single feature (Single) have longer latencies than neurons that are tuned for two
features (Joint) or neurons that have an interaction (Inter).

than the expected value, suggesting that joint tuning does not
adversely affect the ability to represent single stimulus features.
This is a counterintuitive result, because, in principle, single
tuned neurons should always have a large advantage over jointly
tuned neurons when only single stimulus features are considered.

Thus, it appears that the neurons that are only tuned for a
single stimulus feature are particularly poor at representing that
stimulus feature. There are three obvious explanations for this.
First, the mean firing rates of neurons that are tuned for a single
stimulus feature may not be spread out as much as those of jointly
tuned neurons. If this is the case, then the modulation strength
for single tuned neurons should be smaller than the modulation
strength for jointly tuned neurons. This difference is not signifi-
cant for orientation (Mann—Whitney test; p > 0.2), direction
(p>0.1), or disparity ( p > 0.3). Alternatively, the mean firing
rates of single tuned neurons may be higher than for jointly tuned
neurons. Because the variance of the firing rate is correlated with
the mean firing rate (Vogels et al., 1989; Snowden et al., 1992),
this would result in higher variances; however, the opposite is the
case. Single tuned neurons have lower mean firing rates than
jointly tuned neurons (Mann—Whitney test; p < 0.05). Finally, it
is possible that the relationship between mean and variance is
steeper for singly tuned neurons than for jointly tuned neurons,
resulting in noisier responses. As is customary, we performed a
regression of the mean against the variance in log—log coordi-
nates (Vogels et al., 1989; Snowden et al., 1992). This regression
results in a slope and an offset. We refer to the slope as response
variability. Across our sample of neurons, we find that neurons
tuned for a single stimulus feature tend to have a larger response
variability than jointly tuned neurons (Mann—Whitney test; p <
0.005), whereas the offset does not differ significantly ( p > 0.6).
In other words, when the mean is factored out, the firing rate of
single feature neurons is more variable than that of jointly tuned
neurons. This increased variability of single feature neurons re-
duces their ability to represent single feature information in a way
that is comparable with the reduction of jointly tuned neurons
because of their joint tuning. This reduction is of a magnitude
similar to the cost of jointly representing two features. As a
result, single and jointly tuned neurons represent single fea-
tures equally well.

Dynamics
Neuronal responses develop over time. It is possible that the first
neurons that respond are tuned for single features and neurons
that integrate multiple stimulus features start responding later,
for example, because of feedback mechanisms. To understand
this we determined neuronal response onset latencies. On aver-
age, latencies depend on the neuron type. Neurons that are tuned
for two stimulus features tend to have shorter latencies than neu-
rons that are tuned for a single feature or show an interaction
(Kruskal-Wallis test; p < 0.05) (Table 2). Therefore, jointly
tuned neurons in general are not activated after single tuned
neurons.

Alternatively, it might be that neurons initially are tuned for
single features and that they develop tuning to multiple features
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over time. To test this, we determined the firing rate over the first
25 msec after response onset for neurons for which the response
onset latency could be determined. We then classified the neu-
rons as singly or jointly tuned. The proportion of these neurons
that are jointly tuned is only slightly smaller over the first 25 msec
(73%) than over the entire 1 sec stimulus interval (81%). This
indicates what happens across the population of neurons. For
individual neurons, tuning properties remain fairly constant:
86% of neurons that were jointly tuned over the first 25 msec are
also jointly tuned across the entire 1 sec stimulus interval. Con-
versely, of the neurons that are jointly tuned over the 1 sec stim-
ulus interval, 76% were jointly tuned during the first 25 msec.
Thus, whether a neuron is singly or jointly tuned remains fairly
constant across the response. Together, these analyses suggest
that joint tuning arises early in the response and dynamical
changes over time play a role in only a minority of neurons.

Response selectivity

Two different models have been proposed to show how a popu-
lation of neurons represents stimuli. In a sparse code, the activity
of a very small number of neurons represents a stimulus. In con-
trast, in a distributed code, most neurons are active in response to
a stimulus. These two codes impose important requirements in
single neuron responses. In the sparse code, a single neuron
should be highly selective and thus not very responsive, whereas
in a distributed code, a single neuron should only be weakly
selective, and therefore active most of the time. Clearly, the selec-
tivity of a neuron is based on properties of the joint tuning func-
tion; but which properties of this joint tuning function matter?

To answer this question we determined the selectivity index. It
is an index that indicates how rarely a neuron is active (Rolls and
Tovee, 1995; Vinje and Gallant, 2002). Across our sample of V1
neurons, the selectivity index is quite low (18%) and does not
differ across the three jointly tuned neuron types or between
singly and jointly tuned neurons (Kruskal-Wallis test; p > 0.8).
The selectivity index is distinct from the separability index, but
they are correlated (r, = 0.44; p < 0.001). The selectivity index is
strongly correlated with the direction index (r, = 0.52; p <
0.001), meaning that direction tuned neurons are highly selec-
tive. The response selectivity is also correlated with the disparity
index (r, = 0.80; p < 0.001). This is not surprising, because it
measures the selectivity of a neuron. More importantly, the selec-
tivity index is correlated with the excess fit of the multiplicative
model over the additive model (r, = 0.31; p < 0.001). In other
words, neurons are more selective the more multiplicative the
two feature dimensions interact in the joint tuning.

If neurons use sparse coding to enhance their ability to repre-
sent visual information, then there should be a correlation be-
tween selectivity index and the joint information. In contrast, ina
distributed code, there should be a negative correlation. These
two quantities are not correlated (r, = —0.09; p > 0.3), thus not
favoring either model. It is possible, however, that the separabil-
ity index somehow masks the effect of the selectivity index. To
uncover this, we performed multiple regression, using the joint
information as the dependent variable and the separability and
selectivity indices as independent variables. The multiple regres-
sion model is significant ( p < 0.001) and accounts for 54% of the
variance. We find that, as before, the separability index increases
the information represented (slope = 0.8 bit per percentage sep-
arability index; p < 0.001), whereas the selectivity index decreases
the information represented (slope = —0.3 bit per percentage
selectivity index; p < 0.001). The decrease in the information
with increasing selectivity means that a neuron that fires in re-
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sponse to more stimuli can represent more states that are distinct
from each other than a neuron that is only active for very few
stimuli.

Having used multiple regression as a way to unmask weak
effects on the joint information, we extended this by adding five
additional factors to the regression model: peak firing rate, all
three modulation strengths, and the response variability. This
leads to an increase of variance accounted to 60%. The coeffi-
cients of peak firing rate and all modulation strengths are not
significant. In contrast, the coefficient for the response variability
(slope = —0.0322 bit; p < 0.05) is significant. It is not surprising
that the response variability should reduce the overall amount of
information represented. Based on these results, we developed a
final model that contained only separability index, selectivity in-
dex, and response variability. This model accounted for 58% of
the variance. The slopes and significance of separability index,
selectivity index, and response variability were not different from
the previous model. Together, these analyses confirm that sepa-
rability per se was the best predictor of the information that a
neuron could represent and this predictive power could not be
explained on the basis of other factors such as peak response,
modulation strengths, or response variability.

More selective neurons respond to fewer different stimuli; in
the extreme case, such neurons respond to only one stimulus at a
specific direction and disparity. For such a neuron it would be
irrelevant how it was decoded, because the joint and the summed
information would be the same. On the other hand, a neuron that
is very unselective (but still jointly tuned) will have responses for
many feature combinations. How such a neuron is decoded (both
features together or each separately) would strongly affect the
result. Thus, the joint information should be larger than the
summed information, as can be seen in Figure 4. Taking these
considerations together suggests that the difference between the
joint and the summed information, that is the cost of joint tun-
ing, should decrease with increasing selectivity index. This is in-
deed the case (r, = —0.31; p < 0.001).

In conclusion, our results show that the response selectivity is
low and increases to the extent that the single feature tuning
curves interact multiplicatively. Increasing the response selectiv-
ity reduces the ability of a neuron to represent information. Be-
cause a distributed code requires low selectivity and a sparse code
requires high selectivity, our results suggest that V1 uses a distrib-
uted code as a way to ensure fidelity of representation of the
stimulus. Furthermore, our results show that the response selec-
tivity of neurons makes it easier to access information about in-
dividual stimulus features.

Eye movements

Because V1 receptive fields are so small, one has to worry about
the effects of eye movements in awake behaving monkeys
(Grunewald et al., 2002). Three types of eye movements are of
particular concern: fixation error, fixation drift, and vergence. To
ensure that our results were not confounded by eye movements,
we took several steps. First, we performed an analysis to detect
systematic deviations attributable to the stimulus condition. As
described previously, any experimental session with a significant
effect was removed from further analysis; however, it is still pos-
sible that systematic deviations that did not reach significance
affected our results. To safeguard against this, we determined the
mutual information of the fixation error and the stimulus. We
found that this quantity was not correlated with the joint infor-
mation, which is the mutual information between neuronal firing
rates and the stimulus (r, = 0.0; p > 0.9). Similarly, the mutual
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information between eye drift and stimulus was not correlated
with the neuronal joint information (1, = —0.02; p > 0.7), nor
was the mutual information between vergence and the stimulus
(ry = 0.12; p > 0.2). The partial correlation between the joint
information and the separability index, from which any potential
linear effects caused by drift or vergence have been removed, is
highly significant (r, = 0.6; p < 0.001). Finally, a partial correla-
tion analysis showed that the relationship between the joint and
the summed information was not affected by the fixation drift or
vergence (r, = 0.9; p < 0.001). Thus, we conclude that the effects
that we report are not artifacts attributable to eye movements but
instead reflect neuronal processing.

Discussion

Joint tuning

Previous research has shown that some neurons in area V1 are
tuned for multiple stimulus features (Schiller et al., 1976; De
Valois et al., 1982; Leventhal et al., 1995; Geisler and Albrecht,
1997; Smith et al., 1997; Grunewald et al., 2002; Prince et al.,
2002a). Such multidimensional representations have been stud-
ied by testing for single stimulus features one at a time. For ex-
ample, in V1 studies it is common to first vary orientation and
then spatial frequency at the preferred orientation (Schiller et al.,
1976; De Valois et al., 1982; Geisler and Albrecht, 1997). Al-
though these approaches form a good starting point, they are
problematic. First, if the initial stimulus feature is chosen incor-
rectly, the second feature may be poorly mapped. Second, tuning
curves that are obtained for only a single stimulus feature cannot
detect any interactions between features. Finally, if neurons are
tuned for several features, then a joint mapping will be much
more sensitive in detecting tuning for each individual stimulus
feature because multi-way statistics can be used. Thus, traditional
experiments may have underestimated the prevalence of multi-
feature tuning. In our experiments, we extensively mapped all
combinations of eight directions and nine disparities. We find
that 80% of neurons are jointly tuned and these neurons respond
as early as singly tuned neurons. Thus, our data support the pos-
sibility that orientation, direction, and disparity are integrated
early on.

Recently, several other studies have investigated tuning for
motion and disparity (Anzai et al., 2001; Pack et al., 2003). The
former study (Anzai et al., 2001) presented stimuli of preferred
orientation and looked at the effects of spatiotemporal offsets
within one eye (motion) and across eyes (motion-in-depth).
Pack et al. (2003) investigated the spatiotemporal interactions of
light flashes within the same eye (motion) and across eyes (dis-
parity); however, neither study performed a joint mapping of
direction and disparity. As a result, those experiments do not
address joint tuning for two stimulus features other than spatial
and temporal position. For example, although Anzai et al. (2001)
showed that in some neurons the preferred disparity changes
over time, giving rise to sensitivity to motion-in-depth, their re-
sults do not provide information about whether the preferred
disparity changes at different orientations or directions of mo-
tion in a fronto-parallel plane. Separate experiments, like those
described in the present study, are necessary to elucidate joint
tuning.

Separability

Thus far, separability has been studied in V1 neurons for orien-
tation, spatial frequency, and phase (Webster and De Valois,
1985; Jones et al., 1987; Hammond and Kim, 1996; Victor and
Purpura, 1998; Bredfeldt and Ringach, 2002; Mazer et al., 2002).
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These features are represented by V1 neurons with small devia-
tions from separability; however, these results may be a special
case. Although orientation, spatial frequency, and phase are dif-
ferent concepts, they appear to be related because the same spatial
Gabor filter (although with different parameter settings) believed
to be underlying simple and complex cell responses gives rise to
all of them (Daugman, 1985; Jones and Palmer, 1987; Parker and
Hawken, 1988). Consequently, it is not surprising that there are
only small deviations from separability between orientation and
spatial frequency (Webster and De Valois, 1985; Jones et al., 1987;
Hammond and Kim, 1996; Victor and Purpura, 1998; Bredfeldt
and Ringach, 2002; Mazer et al., 2002). Thus, to understand the
representation and integration of multiple features in general, it
is essential to broaden the scope of features that are tested for
separability beyond the traditional candidates.

Joint tuning for direction and disparity in V1 is of consider-
able interest, because many cortical areas, including V1, V2, V3,
the middle temporal area (MT), and MST, respond to direction
and disparity. It is not known, however, how direction and dis-
parity are jointly represented. One notable exception is MST, a
later stage of visual processing, in which many neurons have
opposite preferred directions, depending on the disparity (Roy
and Wurtz, 1990). Thus, the representation of direction and dis-
parity by many MST neurons is not separable. In contrast, the
present study shows that direction and disparity are represented
separably by V1 neurons. To understand processing in the mo-
tion pathway going from V1 to MST via MT, it will be crucial to
understand how the separable representation in V1 is converted
into a nonseparable representation in MST.

Our results show that V1 neurons that are tuned for single
stimulus features are noisy, represent little information, and have
long latencies. Thus, these neurons appear distinct from jointly
tuned neurons. It is possible that single and jointly tuned neurons
are located in different cortical laminas and thus also differ on
anatomical grounds. Alternatively, it is possible that singly tuned
neurons may turn out to be simple cells and jointly tuned neu-
rons are complex cells (in principle, the reverse assignment is also
possible, although less likely). Unfortunately, our data do not
provide precise laminar information and do not speak to the
distinction between simple and complex cells. Thus, this awaits
future study. Our data do argue, however, against the strong
model that orientation, direction, and disparity are represented
by separate populations of neurons, as shown in Figure 1, a and b
(Treisman and Gelade, 1980; Livingstone and Hubel, 1988; Zeki,
1993). Instead, our results show that most V1 neurons integrate
different stimulus features early on, supporting the two joint tun-
ing models shown in Figure 1, c and d. Finally, our data provide
strong support for the model that orientation, direction, and
disparity are represented separably by V1 neurons. What might
be the benefits of such a representation for visual processing?

Importance of separability

The importance of the present study is that it demonstrates sep-
arability for features that, by necessity, are not obtained through
the same mechanisms and for which the joint representation has
not yet been studied. The prevalence of separability in our data
confirms a long-held assumption about the joint encoding of
several variables held by theoretical and experimental neurosci-
entists alike. Theoretical neuroscientists appreciate separability
because the mathematics of separable and multiplicative joint
tuning is considerably simpler than that of nonseparable joint
tuning (Vogels, 1990; Zohary, 1992; Seung and Sompolinsky,
1993; Brown et al., 1998; Zemel et al., 1998; Zhang et al., 1998).
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Experimentalists, in turn, assume separability when they map
each stimulus feature separately, which reduces the number of
trials required to understand the tuning properties of a neuron
(Schiller et al., 1976; De Valois et al., 1982; Webster and De Val-
ois, 1985; Jones et al., 1987; Geisler and Albrecht, 1997). Are there
other, more general benefits to the brain for having a separable
representation?

In a representation that encodes multidimensional stimuli,
decoding of individual stimulus dimensions is not trivial. In gen-
eral, if a population of neurons encodes multidimensional stim-
uli, the best way to access individual dimensions is to encode the
dimensions separably. This means that tuning for different stim-
ulus dimensions does not interact. In this case, averaging across
irrelevant feature dimensions very easily retrieves each individual
feature dimension (Heeger, 1987; Grzywacz and Yuille, 1990).
For example, for neurons tuned for direction and disparity, av-
eraging across disparity can specify the direction (Qian and
Andersen, 1997); however, our results show that there is a cost for
decoding single features in comparison to decoding all features at
once. This cost is reduced with increasing response selectivity.
The response selectivity is related to how single features interact
to give the joint tuning function. Our results show that a multi-
plicative interaction increases response selectivity. Thus, al-
though separability and response selectivity are properties of en-
coding, their importance is to simplify decoding of individual
stimulus features.

Population coding

Having studied how a single neuron represents multiple stimulus
features, we now look at how this constrains how a population of
neurons represent visual information. There are two extreme
possibilities. At one extreme, a small number of neurons repre-
sent each combination of specific feature values. This is called a
sparse code (Barlow, 1972), and it requires neurons that are
highly selective in their responses. The advantage of this code is
that at any given point in time, only a small number of neurons is
active; however, there is a serious disadvantage. To represent all
possible combinations of many stimulus features, a very large
number of neurons is necessary, growing exponentially with the
number of dimensions. This is called the “curse of dimensional-
ity” (Bellman, 1961).

On the other extreme, a large number of neurons, possibly all
in a cortical area, represent a stimulus (Grossberg, 1973; Rumel-
hart et al., 1986; Grunewald and Lankheet, 1996). In such a rep-
resentation, most neurons are active to some degree most of the
time, which is why this is called a distributed code. A disadvan-
tage of this code is the high metabolic demands of the ongoing
activity (Levy and Baxter, 1996; Laughlin et al., 1998). Can such a
representation overcome the curse of dimensionality? Theoreti-
cal work suggests that distributed representations can represent
stimuli with high accuracy, although not requiring an exponen-
tial increase in the number of neurons if single neuron tuning
curves are separable (Sanger, 1991).

Our single neuron results suggest, for several reasons, that V1
uses a distributed representation and not a sparse code. First of
all, our data show that response selectivity is low, which means
that many neurons are active in response to all stimuli that we
used. Second, we find that neurons with lower response selectiv-
ity represent more information, just as one would expect in a
distributed code. Third, our analyses demonstrate that separabil-
ity enhances the information represented, consistent with theo-
retical work that shows that a distributed code can escape the
curse of dimensionality when neurons are separable (Sanger,
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1991). Because it is known that in higher cortical areas the repre-
sentation is sparse (Young and Yamane, 1992), it will be impor-
tant to study how the distributed representation in V1 is con-
verted to a sparse representation in higher cortical areas.
Furthermore, a distributed representation in V1 based on firing
rates opens the possibility that synergistic codes, for example,
interneuronal correlations of firing rates, play a role in the repre-
sentation of information in V1 (Oram et al., 1998; Abbott and
Dayan, 1999; Panzeri et al., 1999; Jenison, 2000). Current exper-
iments in our laboratory are exploring this possibility.
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