Introduction

Ca\(^{2+}\) is a ubiquitous second messenger, and fluctuations in cellular Ca\(^{2+}\) are critical in embryonic development (for review, see Webb and Miller, 2003). The development of the CNS initially involves extensive proliferation of cells in the neuroepithelium as uncommitted precursors divide to self-renew and generate committed progenitors, which in turn differentiate into neural phenotypes. Steady-state levels of intracellular Ca\(^{2+}\) concentration ([Ca\(^{2+}\)]\(i\)) in proliferating neuroepithelial cells in the embryonic rat cortex are markedly dependent on Ca\(^{2+}\) entry (Maric et al., 2000a). The absence of voltage-dependent Ca\(^{2+}\) entry channels, which emerge later, indicates that other membrane mechanisms regulate [Ca\(^{2+}\)]\(i\) during proliferation. Canonical transient receptor potential (TRPC) family channels are candidates because they are voltage independent and are expressed during CNS development (Strübing et al., 2003).

Here, we investigated the involvement of TRPC1 in bFGF-mediated Ca\(^{2+}\) entry and proliferation of embryonic rat neural stem cells (NSCs). Both TRPC1 and FGFR-1 are expressed in the embryonic rat telencephalon and co-immunoprecipitate. Quantitative fluorescence-activated cell sorting analyses of phenotyped telencephalic dissociates show that ~80% of NSCs are TRPC1\(^{+}\) proliferating, and express FGFR-1. Like NSCs profiled ex vivo, NSC-derived progeny proliferating in vitro coexpress TRPC1 and FGFR1. Antisense knock-down of TRPC1 significantly decreases bFGF-mediated proliferation of NSC progeny, reduces the Ca\(^{2+}\) entry component of the Ca\(^{2+}\) response to bFGF without affecting Ca\(^{2+}\) release from intracellular stores or 1-oleoyl-2-acetyl-sn-glycerol-induced Ca\(^{2+}\) entry, and significantly blocks an inward cation current evoked by bFGF in proliferating NSCs. Both Ca\(^{2+}\) influx evoked by bFGF and NSC proliferation are attenuated by Gd\(^{3+}\) and SKF96365, two antagonists of agonist-stimulated Ca\(^{2+}\) entry. Together, these results show that TRPC1 contributes to bFGF/FGFR-1-induced Ca\(^{2+}\) influx, which is involved in self-renewal of embryonic rat NSCs.

Key words: calcium [Ca]; cortex; development; proliferation; TRPC; neural stem cells
Recent studies have shown that TRPC1 plays a role in Ca\(^{2+}\) influx and smooth muscle cell proliferation (Golovina et al., 2001; Sweeney et al., 2002a, b) and mediates Ca\(^{2+}\) influx activated by basic fibroblast growth factor (bFGF; FGF-2) in endothelial cells (Antoniotti et al., 2002).

bFGF also plays important roles in cortical neuroepithelial cell proliferation in vitro and in vivo (Vaccarino et al., 1995, 1999a, b; Dono et al., 1998; Ortega et al., 1998; Raballo et al., 2000; Korada et al., 2002). A major receptor for bFGF, FGF receptor-1 (FGFR-1) is expressed as early as embryonic day 8.5 (E8.5) to E9.5 in the rat telencephalon, with its expression being relatively confined to the proliferating neuroepithelium (Orr-Uttreger et al., 1991; Vaccarino et al., 1999a, b). In addition, FGFR-1 expression and bFGF-mediated Ca\(^{2+}\) signaling have been detected in the majority of neural stem cells (NSC) and their proliferating progeny (Maric et al., 2003). However, the mechanisms underlying bFGF/FGFR-1 signaling in determining the various fates of NSCs including self-renewal and the role of Ca\(^{2+}\) in this process have not been studied. Furthermore, continued proliferation of cortical neuroepithelial cells in vitro depends on the presence of bFGF as well as physiological levels of intracellular Ca\(^{2+}\) (Ma et al., 2000).

Here, we investigate the role of TRPC1 in NSC proliferation. The results show that TRPC1 and FGFR-1 are coexpressed in the neuroepithelium, communoprecipitate from extracts of tenecephalic membrane preparations, and colocalize in NSC-derived proliferating progeny. Antisense knock-down of TRPC1 transcripts and proteins decrease bFGF-mediated Ca\(^{2+}\) influx, inward current responses, and proliferation of NSC progeny. Together, these results show that bFGF/FGFR-1-mediated Ca\(^{2+}\) influx plays a role in embryonic rat NSC proliferation and (2) TRPC1 channels contribute to bFGF/FGFR-1-mediated Ca\(^{2+}\) influx.

Materials and Methods

Labeling of tissue sections

This research was performed in compliance with the Animal Welfare Act and the U.S. Public Health Service policy on Humane Care and Use of Laboratory Animals and was approved by the National Institute of Neurological Disorders and Stroke Animal Care and Use Committee.

FGFR1 or TRPC1 and PCNA plus Tuj1 immunostaining. Sprague Dawley rat embryos at 13 d of gestation (E13) were fixed in 4% paraformaldehyde (PF) for 4 h, cryoprotected in 30% sucrose for 3–5 d at 4°C, and frozen in dry ice. Sixteen-micrometer-thick sagittal sections were cut using a Jung Frigocut cryostat (model 2800E; Leica, Nussloch, Germany). The cells were fixed in 70% ethanol for 20 min and immunoreacted with a monoclonal mouse class IgM anti-FGFR-1 antibody (Chemicon, Temecula, CA) or a polyclonal rabbit anti-TRPC1 antibody (Wang et al., 1999) overnight at 4°C. These primary antibodies were visualized with goat anti-mouse IgG or goat anti-rabbit Alexa Fluor 546 antibodies (Molecular Probes, Eugene, OR). The cells were finally immunoreacted with a mouse monoclonal class IgG2a anti-proliferative cell nuclear antigen (PCNA; Chemicon) that labels proliferating cells and its emission was collected through 424/575 nm, respectively. Alexa Fluor 546 (Molecular Probes) fluorescence signals of individual cells were excited by an argon–ion laser at 488 nm, and Alexa Fluor 546 (Molecular Probes) fluorescence signals of individual cells were excited by an argon–ion laser at 543 nm.

Fluorescence microscopy. Phase-contrast and fluorescence signals of cells in culture and tissue sections were imaged using an Axiovert 200 inverted fluorescence microscope (Carl Zeiss, Thornwood, NY) equipped with an Orca ER cooled digital camera (CCD: Hamamatsu, Hamamatsu City, Japan). The cells were illuminated with a 100 W mercury arc lamp (Carl Zeiss), and the resulting fluorescence emissions were collected through a Plan-Neof 25×/0.8 oil immersion phase 2 objective (Carl Zeiss) using filter sets optimized to detect Alexa Fluor 350, Alexa Fluor 546, Alexa Fluor 647, and Alexa Fluor 750 (Omega Optical, Brattleboro, VT). Fluorescence emissions for each fluorescence signal were captured separately as a 12-bit image, using the video sensor of the Orca ER camera at a 512 × 480 pixel resolution, and analyzed using Adobe Photoshop software (Adobe Systems, San Jose, CA). In some experiments, fluorescence microscopy was used to quantify the fluorescence intensity of individual cells from 10 fields selected randomly from TRPC1 antisense-treated and random oligonucleotide (ODN)-treated cells, which served as a control. OpenLab software (Improvision, Lexington, MA) was used to acquire and analyze the images. For each set of experiments, identical settings of the OpenLab system were used. The cells were outlined manually, and the mean fluorescence intensity was obtained for the delineated regions. Data are presented as relative fluorescence intensity in arbitrary units. For confocal analyses, cells were imaged with an LSM 510 inverted fluorescence microscope (Carl Zeiss), and the resulting fluorescence emissions were collected through a 63×, 1.4 numerical aperture oil immersion objective (Carl Zeiss). Alexa Fluor 488 (Molecular Probes) fluorescence signals of individual cells were excited by an argon–ion laser at 488 nm, and Alexa Fluor 546 (Molecular Probes) fluorescence signals of individual cells were excited by an argon–ion laser at 543 nm.

Labeling of cells in suspension

Surface epitope labeling for cell identification. E13 telencephalic cells were identified using lineage-specific surface markers, as described previously (Maric et al., 2003). Briefly, the tissues were optimally dissociated into single-cell suspensions with papain (Maric et al., 1997, 1998a). Neuroglial and oligodendrocyte type 2 astrocyte oligoglial progenitors were immunolabeled using anti-A2B5 (Chemicon) and JONES (Sigma) antibodies and optimally visualized with an appropriate phycoerythrin (PE)-conjugated secondary antibody (Caltag, Burlingame, CA). Neuronal progenitors and differentiating neurons were labeled with cholera toxin B subunit (ChTx; Sigma) and tetanus toxin fragment C (TnTx; Roche Diagnostics, Indianapolis, IN) and visualized using appropriate PE/carboxyfluorocine 5 (CY5)-conjugated secondary reagents (Caltag). Annexin V (Treven, Gaithersburg, MD), which was visualized with PE/Texas Red (TR)-conjugated secondary reagent, was used as an additional surface marker in conjunction with forward angle light scatter, a property related to cell size, to discriminate among apoptotic, necrotic, and nonapoptotic cells (data not shown) (Maric et al., 2003).

Colabeling of surface-phenotyped cells for expressions of FGFR-1 and PCNA or TRPC1. After surface immunophenotyping (see above), E13 telencephalic cells were then double-fixed first in 4% PF for 20 min at room temperature, followed by 70% ethanol for 20 min at room temperature, and washed in Dulbecco’s PBS (Quality Biological, Gaithersburg, MD) supplemented with 1 mg/ml bovine serum albumin (BSA). The cells were immunoreacted with rabbit anti-FGFR-1 antibody (Santa Cruz Biotechnology, Santa Cruz, CA) and mouse IgG2a anti-PCNA antibody (Chemicon) for 1 h at room temperature, and these reactions were then visualized with Alexa Fluor 546-conjugated goat anti-rabbit and fluorescein isothiocyanate (FITC)-conjugated goat anti-mouse IgG2a antibodies (Caltag). In another set of experiments, after immunophenotyping and double-fixation (see above), the cells were immunoreacted with rabbit anti-TRPC1 antibody (Wang et al., 1999) and the reaction was visualized with FITC-conjugated donkey anti-rabbit IgG secondary antibody (Jackson ImmunoResearch, West Grove, PA). This multi-staining protocol revealed the distribution of FGFR-1 and TRPC1 among the proliferating (PCNA\(^{-}\)) and nonproliferating (PCNA\(^{+}\)) cells in each phenotyped population.

Quantitative flow cytometric analysis. The fluorescent labeling reactions of cells in suspension were analyzed using a FACSVantage SE flow cytometer (Becton Dickinson, Mountain View, CA) equipped with three lasers, which provide excitation wavelengths tuned to 488 nm, 647 nm, and broad UV (351–364 nm). The FITC and PE, PE/TR, and PE/CY5 fluorescence signals of individual cells were excited by an argon–ion laser at 488 nm, and the resulting fluorescence emissions from each cell were collected using bandpass filters set at 530 ± 30, 575 ± 25, 613 ± 20, and 675 ± 20 nm, respectively. Alexa Fluor 530 was excited using a UV laser, and its emission was collected through 424 ± 22 nm bandpass filter. Cell
Quest Acquisition and Analysis software (Becton Dickinson) was used to acquire and quantify the fluorescence signal intensities and to graph the data either as single-parameter histograms or bivariate dot density plots. In multiple labeling experiments, fluorescence emissions of individual fluorophores were corrected for spectral overlap using electronic compensation.

Protein extraction and Western blot analysis
Telencephalic tissue from E13 embryos was dissected and homogenized with a Dounce homogenizer, diluted in lysis buffer (100 mM Tris-HEPES, pH 8.0, and 1 mM MgCl₂) supplemented with protease inhibitor mixture (Roche Molecular Biochemicals, Indianapolis, IN), and centrifuged at 30,000 × g for 1 h to obtain the heavy membrane fraction that was frozen and stored at −80°C until further use. Protein concentration was determined using protein assay solution (Bio-Rad, Hercules, CA). Conditions for SDS-PAGE and Western blotting were as described previously (Wang et al., 1999). Polyvinylidene difluoride membranes were blocked and incubated for 1 h with rabbit IgG anti-TRPC1 antibody (Wang et al., 1999) and rabbit IgG anti-FGFR-1 antibody (Santa Cruz Biotechnology). As a control, the membrane fraction was incubated with an anti-TRPC1 in the presence of the corresponding antigen peptide (1 mg). The membrane was washed with Tris-buffered saline containing 0.1% Tween 20, incubated as required with HRP-conjugated anti-rabbit IgG antibody (Jackson ImmunoResearch), washed, treated with Super Signal West Pico chemiluminescent substrate (Pierce, Rockford, IL), and exposed to X-Omat films (Eastman Kodak, Rochester, NY).

Detergent solubilization of cell membranes and immunoprecipitation
Telencephalic tissue from E13 embryos was dissected and homogenized with a Dounce homogenizer, diluted in sucrose buffer (0.25 M sucrose and 10 mM Tris-HEPES, pH 7.4) supplemented with protease inhibitor mixture (Roche Molecular Biochemicals), and centrifuged at 100,000 × g for 1 h to obtain a microsome fraction. Solubilization and immunoprecipitation were performed with an octyl glycoside (OG) and potassium iodide (KI) solubilized preparation of the E13 telencephalic microsome fraction, as described previously (Lockwich et al., 2001). Briefly, 2 mg of the microsome fraction was washed by dilution into 5–6 ml of a buffer containing (in mM) 200 KCl, 50 K-4-morpholinoethanesulfonic acid (MOPS), pH 7.5, 2.5 mM MgCl₂, and 1 4-(2-aminoethyl) benzenesulfonylfluoride (AEBSF), followed by centrifugation at 50,000 × g for 30 min. The washed membranes were solubilized with 1.5% OG (Calbiochem, La Jolla, CA) in 0.96 ml of a medium containing 50 mM K-MOPS, pH 7.5, 20% (v/v) glycerol, 0.5 mM KI, 1.5 mM MgCl₂, 1 mM dithiothreitol, 0.5 mM AEBSF, 0.167 mM pepstatin A, 0.167 mM leupeptin, and 10 mg of lipids (Avanti Polar Lipids, Alabaster, AL) from a 50 mg/ml aqueous stock suspension containing 2% (v/v) β-mercaptoethanol (Sigma). The lipid stock solution consisted of 60% Escherichia coli ether-washed bulk lipids, 17.5% phosphatidylcholine, 10% phosphatidylethanolamine, and 12.5% cholesterol. The detergent-treated membranes were incubated on ice for 20 min and then centrifuged for 1 h at 140,000 × g. OG and KI solubilized fractions of the E13 telencephalic microsome fraction were incubated with an anti-TRPC1 antibody (1:20 dilution) overnight, then pulled down with precleared protein A-Sepharose CL-4B beads (50 mg/ml; Amersham Biosciences, Piscataway, NJ). The immunoprecipitated proteins were recovered by centrifugation at 1 min of 1000 × g. The beads were washed three times with buffer containing 500 mM NaCl, 10 mM Tris-HCl, pH 7.5, 10% (v/v) sucrose, 1 mM EDTA, 0.2 mM sodium vanadate, 0.2 mM phenylmethylsulfonyl fluoride, 0.5% (v/v) Nonidet P-40 (Sigma), 1 μg/ml aprotinin, 1 μg/ml leupeptin, and 1 μg/ml pepstatin A. The washed beads were then incubated with 200 μl of SDS-PAGE sample buffer for 5 min at 95°C. The immunoprecipitated proteins (and coimmunoprecipitated proteins) were detected by SDS-PAGE followed by Western blotting, as described above.

Cell sorting
We used E13 telencephalic tissues as a primary source of NSCs for fluorescence-activated cell sorting (FACS) and experimentation in vitrō. The methods are, for the most part, based on a recently published strategy (Maric et al., 2003). After dissociation, the cells were then labeled with antibodies against surface markers identifying early neuronal and/or glial progenitors (detailed briefly above) (see Fig. 2A1). Vital NSCs were then physically purified using a FACSVantage SE flow cytometer (Becton Dickinson) in conjunction with a quintuple epitope-negative selection sorting protocol (Maric et al., 2003). During the initial cell preparation, labeling of surface epitopes, and FACS, the cells were maintained in a normal physiological medium (NPM) supplemented with 1 mg/ml BSA. NPM consisted of the following (in mM): 145 NaCl, 5 KC1, 1.8 CaCl₂, 0.8 MgCl₂, 10 glucose, and 10 HEPES (all from Sigma), with pH and osmolarity adjusted to 7.3 and 290 mOsm, respectively.

Cell culture
Sort-purified NSCs were plated at clonal cell densities (5 × 10³ cells/cm²) on poly-β-lysine (Sigma) and bovine plasma fibronectin (Invitrogen, Frederick, MD)-coated coverslips, which were photo-etched with an alphanumeric grid (Belco Glass, Vineland, NJ) and preglued to 35 mm tissue culture dishes (MatTek, Ashland, MA). Clones derived from isolated cells were followed over a 7 d period using an Axiovert 200 inverted microscope (Carl Zeiss). The cells were cultured under control conditions in Neurobasal medium (Invitrogen) supplemented with 1 mg/ml BSA. NPM consisted of the following (in mM): 145 NaCl, 5 KC1, 1.8 CaCl₂, 0.8 MgCl₂, 10 glucose, and 10 HEPES (all from Sigma), with pH and osmolarity adjusted to 7.3 and 290 mOsm, respectively.

Labeling and quantitative analysis of cells in culture
FGFR1 and TRPC1. Cells in culture were double-fixed in PF and ethanol, as described above, and immunoreacted with a polyclonal rabbit IgG anti-TRPC1 antibody (Wang et al., 1999), a mouse monoclonal class IgM anti-FGFR-1 antibody (Chemicon), a mouse monoclonal class IgG1 anti-vimentin antibody (Chemicon), which labels immature precursors and progenitors, and a mouse monoclonal class IgG2a anti-PCNA antibody (Sigma). The reactions were visualized with goat anti-rabbit IgG–Alexa Fluor 546, goat anti-mouse IgM–Alexa Fluor 488, and goat ant-mouse IgG1–Alexa Fluor 350 antibodies (Molecular Probes), respectively. PCNA immunoreaction was visualized with biotinylated goat anti-mouse IgG2a antibody (Caltag), followed by Alexa Fluor 750-conjugated streptavidin (Molecular Probes).

Multi-epitope staining for proliferation and differentiation. The cells were first surface-immunoreacted with a mouse monoclonal class IgM JONES antibody (Sigma), followed by goat-anti mouse IgM–Alexa Fluor 350 antibody (Molecular Probes), and then sequentially double-fixed in PF and ethanol. The same cells were subsequently probed for lineage-specific cytosomeal markers, including a mouse monoclonal class IgG1 anti-vimentin antibody (Chemicon), a mouse monoclonal class IgG2b anti-Tuj1 antibody. These immunoreactions were visualized with a biotinylated goat anti-mouse IgG1 antibody (Caltag), followed by Alexa Fluor 750-conjugated streptavidin (Molecular Probes) and a goat anti-mouse IgG2b–Alexa Fluor 487 antibody (Molecular Probes). Sytos Orange was used to count the total cell number and to discriminate between viable cells and those undergoing apoptotic (fragmented nuclei) or necrotic (pyknotic nuclei) cell death.

In optimizing the above protocols, we have performed all of the appropriate control experiments to confirm the specificity of each immunoreagent. Control immunoreactions using single-, double-, or triple-staining protocols revealed no significant cross-epitope immuno-reactivity among primary or secondary antibodies.

Reverse transcription-PCR
Total RNA was isolated from sort-purified NSC progeny, which had been treated with either TRPC1 antisense or control ONDs (see below) for 7 d in culture, using RNA STAT-60 (Tel-Test, Friendswood, TX) following the manufacturer’s protocol. Briefly, cells were homogenized (1 ml of
RNA STAT-60/50–100 mg, chloroform was added (0.2 ml/ml homog-enate), and the mixture was spun. To the aqueous layer, isopropanol was added (0.5 ml) to precipitate RNA. The RNA pellet was washed (75% ethanol), air dried, and resuspended (DEPC-treated water). One microgram of each sample was used for reverse transcription (RT)-PCR.

First-strand cDNAs were synthesized using the SuperScript III First-Strand Synthesis System for RT-PCR (Invitrogen) following the manufacturer’s instructions.

PCR was performed to detect the different TRPC channel transcripts and the 60S ribosomal subunit gene, L-19. PCR primer pairs are reported in Table 1. All designed primers were screened using BLAST (Basic Local Alignment Search Tool) to ensure specificity of binding. Primers were used at a concentration of 250 nm.

For each reaction, 30.5 μl of nuclease free H2O, 5 μl of 10× PCR GOLD buffer (Applied Biosystems, Foster City, CA), 4 μl of 25 mM MgCl2, 5 μl of deoxynucleoside triphosphate mix (2.5 mM), and 0.5 μl of AmpliTaq Gold (Applied Biosystems) were mixed. Primers (2 μM of each) and template cDNA (2 μl) were added to the mixture. The PCR program was as follows: 10 min 94°C pre-run, 30 s at 94°C, 30 s at 55°C, 2 min at 72°C for 35 cycles, and 10 min 72°C post-run. No products were amplified in water.

Antisense targeting

Phosphorothionate-modified TRPC1 ODNs (5’-TGCTCTTTGAAA-GTATATCCTTTA-3’) were synthesized and purified by Biognostic (Göttingen, Germany). The control, provided by Biognostic, was a GC-matched randomized-sequence ODN (missense). Cells were grown on glass coverslips for 7 days in the presence of 2 or 5 μM antisense/TRPC1 or control ODNs and then examined for downregulation of TRPC1 transcript expression by RT-PCR, as described above. For analyses of different TRPC protein expressions, single-cell staining immunofluorescence was performed using polyclonal rabbit IgG anti-TRPC1 (Wang et al., 1999), chicken TRPC3 antisera (a kind gift from Dr. C. Montell, Departments of Biological Chemistry and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD), rabbit IgG anti-TRPC4 (Chemicon), and IgG anti-TRPC6 (Sigma) antibodies at a 1:100 dilution factor. The stainings were revealed with goat anti-rabbit IgG–Alexa Fluor 546 (Molecular Probes) and with anti-chicken FITC-conjugated (Jackson ImmunoResearch) antibodies. In other sets of experiments, NSC progeny grown for 7 d in culture in the presence of TRPC1 antisense or control ODN were used for Ca2+ imaging, electrophysiological recordings, or multi-epitope staining for proliferation and differentiation, as described above.

Calcium imaging

Changes in [Ca2+], levels in cultured cells were measured according to methods described previously (Maric et al., 2000b,c, 2003). Briefly, the cells were loaded with fura-2 AM and imaged at 2 s intervals using the

<table>
<thead>
<tr>
<th>Primers</th>
<th>Oligo Sequence (5’-3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRPC1</td>
<td>Forward cttgtcagcgtggacgtttggg</td>
</tr>
<tr>
<td>TRPC2</td>
<td>Reverse gcaagatgctggagctcttagg</td>
</tr>
<tr>
<td>TRPC3</td>
<td>Forward cgtaagctcggcttctggc</td>
</tr>
<tr>
<td>TRPC4</td>
<td>Reverse aagcaccaggtttaatc</td>
</tr>
<tr>
<td>TRPC5</td>
<td>Forward gcagtgtcggctttc</td>
</tr>
<tr>
<td>TRPC6</td>
<td>Reverse ttcagcagcactaccaggg</td>
</tr>
<tr>
<td>TRPC7</td>
<td>Forward gatgatgcggggggtctga</td>
</tr>
<tr>
<td>L-19</td>
<td>Reverse ctttaagggctaaaggggttc</td>
</tr>
</tbody>
</table>

Electrophysiological recordings

For patch-clamp experiments, coverslips of NSCs cultured for 7 d in antisense/TRPC1 or missense were transferred to the recording chamber and kept in a Ringer’s solution of the following composition (in mM): 145 NaCl, 5 KCl, 1 MgCl2, 1 CaCl2, 10 HEPES, and 10 glucose, pH 7.4 (NaOH). The patch pipettes had resistances of 3–5 MΩ after filling with the standard intracellular solution that contained the following (in mM): 145 Cs methane-sulfonate, 8 NaCl, 10 MgCl2, 10 HEPES, and 10 EGTA, pH 7.2 (CsOH). External solutions were composed as follows (in mM): 145 NaCl, 5 KCl, 1 MgCl2, 1 CaCl2, 10 HEPES, 10 glucose, and 10 EGTA, pH 7.2 (NaOH). A divalent cation-free (DVF) solution contained the following (in mM): 145 NaCl, 5 CsCl, 1 MgCl2, 10 CaCl2, 10 HEPES, and 10 glucose, pH 7.4 (NaOH). An N-methyl-D-glucamine (NMDG) solution contained the following (in mM): 170 NMDG, 5 CsCl, 1 MgCl2, 10 HEPES, and 10 glucose, pH 7.4 (HC1). The osmolality for all of the solutions was adjusted with mannose to 300–315 mmol/kg using a Vapor Pressure Osmometer (Wescor, Logan, UT).

Patch-clamp experiments were performed in the tight-seal whole-cell configuration at room temperature (22–25°C) using an Axopatch 200B amplifier (Axon Instruments, Union City, CA). The cells were routinely held at 0 mV, and the development of a current in response to bFGF was assessed by measuring the current amplitudes at a potential of −80 mV, taken from high-resolution currents in response to voltage ramps ranging from −90 to 90 mV over a period of 1 s every 4 s and digitized at a rate of 1 kHz. This electrophysiological protocol has been applied previously.

Table 1. ODN sequences of primers used for RT-PCR

<table>
<thead>
<tr>
<th>Primers</th>
<th>Oligo Sequence (5’-3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRPC1</td>
<td>Forward cttgtcagcgtggacgtttggg</td>
</tr>
<tr>
<td>TRPC2</td>
<td>Reverse gcaagatgctggagctcttagg</td>
</tr>
<tr>
<td>TRPC3</td>
<td>Forward cgtaagctcggcttctggc</td>
</tr>
<tr>
<td>TRPC4</td>
<td>Reverse aagcaccaggtttaatc</td>
</tr>
<tr>
<td>TRPC5</td>
<td>Forward gcagtgtcggctttc</td>
</tr>
<tr>
<td>TRPC6</td>
<td>Reverse ttcagcagcactaccaggg</td>
</tr>
<tr>
<td>TRPC7</td>
<td>Forward gatgatgcggggggtctga</td>
</tr>
<tr>
<td>L-19</td>
<td>Reverse ctttaagggctaaaggggttc</td>
</tr>
</tbody>
</table>
Representative NSCs show cellular localizations of TRPC1 throughout the populations. Data are means and bars, and PCNA identify and quantify individual populations. Figure 2. TRPC1, FGFR-1, and PCNA distributions among phenotyped E13 telencephalic cells and coexpression of TRPC1 and PCNA. Merger of A1 and A2 shows the colocalization of TRPC1 (red) and FGFR-1 (green) as a yellow signal. The complex distribution of labeling reactions was quantified by FACS and displayed as dot density plots in pseudocolor to reveal the conjoint distributions of fluorescence signals reflecting extracellular and intracellular epitopes and the percentages of cells expressing them.

Surface labeling with differentiating markers identifies six cell populations composing E13 telencephalic dissociates that include NSCs, which are devoid of the distinguishing surface markers, neuronal progenitors (ChTx, TnTx), neuroglial progenitors (A2B5, JONES), and apoptotic cells (annexin V) (data not shown), fixed, and immunoreacted to reveal their proliferation (PCNA) status and their expression of either TRPC1 or FGFR-1 (data not shown). The percentages of TRPC1 + cells in each of the five populations. The percentages of TRPC1 distributions of TRPC1 and FGFR-1 among the populations. Data are means ± SEM of three independent experiments. C1–C3. Confocal images of three representative NSCs show cellular localizations of TRPC1 (C1) and FGFR-1 (C2) in freshly sorted cells acutely cultured for 1 h. C3. Merge of C1 and C2 shows the colocalization of TRPC1 (red) and FGFR-1 (green) as a yellow signal. Color-coded epitopes are identified in each panel. Scale bar, 10 μm. D. PCR analysis of different TRPC mRNAs in E13 telencephalic dissociates (E13 tel) and in the freshly sorted NSC population (NSC). Equal amounts of RNA were reversed transcribed to generate cDNA. The cDNA was subjected to PCR amplification using paired primers specific for the different TRPCs. The right lane shows the negative control for each paired primer set used (H2O). NSCs clearly express TRPC1–4 and TRPC6, whereas the telencephalic dissociates express these and TRPC5. TRPC7 is barely detectable in NSCs.

to study Ca2+-permeable cation currents in other cell types (Liu et al., 2004). A liquid-junction potential, which was <8 mV, was not corrected, and capacitative currents and series resistance were determined and minimized. For analysis, the first ramp obtained under baseline conditions was used for leak subtraction of the subsequent current–voltage (I–V) plots.

Figure 2. TRPC1, FGFR-1, and PCNA distributions among phenotyped E13 telencephalic cells and coexpression of TRPC1 transcripts with other TRPCs in NSCs. Dissociates of the E13 rat telencephalon were phenotyped ex vivo using surface markers for neuronal progenitors (ChTx, TnTx), neuronal progenitors (A2B5, JONES), and apoptotic cells (annexin V) (data not shown), fixed, and immunoreacted to reveal their proliferation (PCNA) status and their expression of either TRPC1 or FGFR-1 (data not shown). The complex distribution of labeling reactions was quantified by FACS and displayed as dot density plots in pseudocolor to reveal the conjoint distributions of fluorescence signals reflecting extracellular and intracellular epitopes and the percentages of cells expressing them. A1. Surface labeling with differentiating markers identifies six cell populations composing E13 telencephalic dissociates that include NSCs, which are devoid of the distinguishing surface markers, neuronal progenitors (NGP), oligoglial progenitors (OGP), ENPs, and two populations of late neuronal progenitors (LNP, which are ChTx TnTx A2B5 JONES , and quadruple-positive cells, which are ChTx TnTx A2B5 JONES). The boxed regions represent electronic FACS gates used to identify and quantify individual populations. A2–A6. Frequency histograms demonstrate the relative numbers of TRPC1 + cells in the five subpopulations identified in A1. B. Bar plot summarizes the relative abundance of TRPC1 + cells (red bars), and PCNA + (blue bars) cells in each of the five populations. The percentages of TRPC1 + and PCNA + cells are greatest among NSCs and decline as cells differentiate along neuronal and neuro-/oligoglial lineages. FGFR-1 + cells are widely distributed throughout the populations. Data are means ± SEM of three independent experiments. C1–C3. Confocal images of three representative NSCs show cellular localizations of TRPC1 (C1) and FGFR-1 (C2) in freshly sorted cells acutely cultured for 1 h. C3. Merge of C1 and C2 shows the colocalization of TRPC1 (red) and FGFR-1 (green) as a yellow signal. Color-coded epitopes are identified in each panel. Scale bar, 10 μm. D. PCR analysis of different TRPC mRNAs in E13 telencephalic dissociates (E13 tel) and in the freshly sorted NSC population (NSC). Equal amounts of RNA were reversed transcribed to generate cDNA. The cDNA was subjected to PCR amplification using paired primers specific for the different TRPCs. The right lane shows the negative control for each paired primer set used (H2O). NSCs clearly express TRPC1–4 and TRPC6, whereas the telencephalic dissociates express these and TRPC5. TRPC7 is barely detectable in NSCs.

Statistical analysis
One-way ANOVA was performed to analyze sets of data. Post hoc tests were used to determine statistically significant differences among the groups (Student’s t test). Data were considered significantly different if p < 0.05. All data are expressed as means ± SEM.

Results

Differential distributions of FGFR-1 and TRPC1 in the developing telencephalon

Immunohistochemistry was performed to reveal the distributions of FGFR-1 and TRPC1 immunoreactivities in the embryonic telencephalon at the beginning of neurogenesis. FGFR-1 was primarily distributed in cells lining the lateral ventricle (LV), although some signal was also apparent in the neuroepithelium away from the ventricle (Fig. 1A). This is consistent with previous studies (Raballo et al., 2000). Immunostaining with anti-tubulin β III antibody (Tuji), which labels differentiating neurons, showed the distributions of neuronal progenitors and postmitotic neurons in the telencephalon (Fig. 1A). Some of the FGFR-1 immunoreactivity was expressed by cells progressing along the neuronal lineage. Tissue sections were also immunostained for the presence of PCNA to reveal the distribution of proliferating precursors and progenitors. FGFR-1 was detected in PCNA + cells primarily at the interface with the LV (Fig. 1B). These results show that FGFR-1 is widely distributed in the proliferating neuroepithelium. Unlike the broad distribution of FGFR-1, TRPC1 was predominantly confined to the cells lining the LV (Fig. 1C) and was coexpressed with proliferating (PCNA +) elements (Fig. 1D). In addition, TRPC1 and FGFR-1 signals were found to be colocalized in individual cells interfacing with the LV (data not shown). Together, these results reveal that FGFR-1 and TRPC1 are coexpressed in proliferating neuroepithelial cells.

Distributions of TRPC1, FGFR-1, and PCNA expressions among phenotyped telencephalic cells

We used multi-epitope immunophenotyping of telencephalic dissociates in conjunction with FACS to quantify the distributions of TRPC1 and FGFR-1 among proliferative (PCNA +) NSCs and committed neuronal and neuro-/oligoglial progenitors. NSCs were identified by their lack of four surface ganglioside markers (ChTx TnTx A2B5 JONES), which emerge as NSCs differentiate into progenitor phenotypes, whereas different progenitors were identified by their specific patterns of ganglioside expression (Fig. 2A1) (Maric et al., 2003). Each subpopulation was further divided into vital...
mRNA is well expressed in NSCs along with four other TRPC4, TRPC5, TRPC6, and TRPC7 transcripts, as well as TRPC1. Thus, genitor (ENP) population (data not shown). Thus, phalic dissociate but not in the NSC population. The results show that the great majority (~80%) of NSCs expressed TRPC1 (Fig. 2A2), which progressively decreased in abundance during both neuronal and neuro-/oligodendroglial lineage progressions (Figs. 2A3–A6). Oligodendroglial progenitors were virtually devoid of TRPC1 + cells, whereas a minority of “late” or well advanced neuronal progenitors expressed TRPC1 (Fig. 2A3–A6,B). Most TRPC1 + NSCs coexpressed PCNA (Fig. 2B), consistent with the coexpression of TRPC1 in PCNA + cells in vivo (Fig. 1D). Both TRPC1 + and PCNA + cells decreased during neuro-/oligodendroglial lineage progression (Fig. 2B). The coexpression of TRPC1 and PCNA among NSCs and neuroglial and neuronal progenitor cells demonstrate that the channel is specifically present in cells that are actively proliferating rather than in cells that are preterminally or terminally postmitotic.

Immunophenotyped populations were also probed for FGFR-1 expression in the context of PCNA staining. FGFR-1 and PCNA signals were highly coexpressed in NSCs (data not shown) (results plotted in Fig. 2B). Thus, NSCs actively proliferating in vivo express both TRPC1 and FGFR-1. However, whereas TRPC1 + PCNA + cells decreased during cell lineage progression, FGFR-1 immunoreactivity could be detected in the great majority of differentiating cells. This reveals that FGFR-1 persists in preterminally and terminally postmitotic cells.

Confocal microscopy was used to resolve the localization of TRPC1 and FGFR1 in single cells. NSCs, sorted as described above, were plated and allowed to attach for 1 h. Cells were then fixed in 4% PF and stained for FGFR-1 and TRPC1. No detergent was used to permeabilize the cells. The data show that TRPC1 and FGFR1 were expressed in the plasma membrane region, as well as intracellularly (Fig. 2C1,C2). A similar intracellular localization for TRPC1 has been described previously in human salivary gland (HSG) cells (Brazier et al., 2003). Notably, in another study, a considerable amount of TRPC1 appeared to be localized intracellularly in hippocampal neurons, and the presence of TRPC1 in the surface membrane fraction was detected by biotinylation (Bezzerides et al., 2004). In NSCs, colocalization of TRPC1 and FGFR-1 can be detected as a yellow fluorescence signal in the cytoplasmic and plasma membrane regions of single cells (Fig. 2C3 shows overlays of the green and red fluorescence signals). TRPC1 transcripts are expressed by NSCs

We used PCR to detect the expression of TRPC1 mRNA as well as those of six other TRPCs in dissociates of the telencephalon and in freshly sorted NSCs (Fig. 2D). TRPC1–6 transcripts were all present in dissociates of the E13 telencephalon, although TRPC4 mRNA was barely detectable. In contrast, TRPC7 was not detectable in dissociates of the E13 telencephalon, whereas a very faint band was present in the freshly sorted NSC population. TRPC1–4 and TRPC6 mRNAs were all present in the NSC population. Thus, TRPC4 seemed to be more enriched in the NSC fraction compared with that detected in the E13 telencephalic dissociate. Interestingly, TRPC5 transcripts were present in the E13 telencephalic dissociate but not in the NSC population. The TRPC5 band was instead found in the FACS-sorted early neuronal progenitor (ENP) population (data not shown). Thus, TRPC1 mRNA is well expressed in NSCs along with four other TRPCs.

TRPC1 and FGFR-1 coimmunoprecipitate in telencephalic membranes

Predominant coexpression of TRPC1 and FGFR-1 among proliferating NSCs led us to investigate possible interactions between them. A band of ~92 kDa corresponding to TRPC1 protein was detected in Western blots of telencephalic plasma membranes (Fig. 3A, lanes 1–3). HSG cells, which are known to express TRPC1, were used as a positive control (Fig. 3A, lane 4). The lower band (~52 kDa) that was detected in the crude membrane fraction of HSG cells has been described previously (Wang et al., 1999; Liu et al., 2000). Interestingly, this band was not detected in crude membranes prepared from the E13 rat telencephalon. FGFR-1 was also detected in the same membrane fraction as an ~120 kDa band, which represents the nonglycosylated form of the receptor, in accordance with the literature (Reilly et al., 2000; Kilkenny et al., 2003). Figure 3C shows the specificity of the anti-TRPC1 antibody. Detection of TRPC1 (Fig. 3C, lane 1) was completely blocked by incubation of anti-TRPC1 with the antigenic peptide (Fig. 3C, lane 2). To determine whether TRPC1 and FGFR-1 associate in vivo, we examined whether FGFR-1 coimmunoprecipitated with TRPC1 by using the TRPC1 antibody (Fig. 3D). Both proteins were detected in the total lysate and the solubilized fraction of the crude microsomal fraction (Fig. 3D, lanes 1, 2). FGFR-1 was highly enriched in the immunoprecipitate as well as TRPC1 (Fig. 3D, lane 3). Taken together, these data demonstrate that both TRPC1 and FGFR-1 are present in telencephalic membranes and can be immunoprecipitated as a complex, indicating that they are tightly associated with each other.
TRPC1 and FGFR-1 colocalize in proliferating NSC-derived progeny in vitro

We used immunophenotyping and flow cytometry to isolate NSCs by negative selection (Maric et al., 2003) to study the role of TRPC1 channels in NSC proliferation and self-renewal without differentiation, which can be sustained in defined serum-free medium containing bFGF. After 7 d in culture, NSC-derived progeny remained morphologically immature, resembling the initial NSC founders. Multi-epitope immunostaining revealed that the majority of the progeny were actively proliferating (91% PCNA\(^{+}\)), and virtually all were immature precursors (99% vimentin\(^{+}\)) (Fig. 4A1) devoid of differentiating epitopes (data not shown), confirming previous results (Maric et al., 2003). The great majority (84%) of proliferating progeny coexpressed TRPC1 and FGFR-1 (Figs. 4A2–A4, 5C), whereas few were either single-positive TRPC1\(^{+}\) (9%) or FGFR-1\(^{+}\) (6%) and only ~1% were TRPC1\(^{+}\) FGFR-1\(^{-}\). Most PCNA\(^{+}\) cells were TRPC1\(^{+}\) (79%) or FGFR-1\(^{+}\) (81%) (Fig. 4C). These widespread coexpressions resulted in the majority of immature NSC-derived progeny (77%) being TRPC1\(^{+}\) FGFR-1\(^{-}\) PCNA\(^{+}\) (Fig. 4C). Therefore, TRPC1 and FGFR-1 were coexpressed in most NSC-derived progeny proliferating in vitro in the presence of bFGF.

Confocal microscopy was used to resolve the localization of TRPC1 and FGFR1 in single cells. TRPC1 and FGFR-1 signals were localized in the plasma membrane and subplasma membrane regions, as well as in the cytoplasm of cells (Fig. 4B1,B2). Subcellular colocalization of TRPC1 and FGFR-1 in individual cells was reflected by the presence of intricate yellow fluorescence signals corresponding to the merge of the individual green and red immunoreactivities (Fig. 4B3).

Collectively, the data indicate that, similar to NSCs profiled ex vivo, TRPC1 and FGFR-1 are coexpressed in the majority of the actively proliferating NSC-derived progeny, where they are colocalized in both cytoplasmic and membrane regions.

Antisense/TRPC1 treatment attenuates TRPC1 expression but not other TRPCs in proliferating NSC-derived progeny

NSCs were plated at clonal density and incubated with either antisense/TRPC1 ODN or missense ODNs over a 7 d period. FITC-labeled ODNs were taken up by the majority of proliferating progeny as reflected by the green fluorescence signals associated with many of the cells (Fig. 5A2). RT-PCR showed that treatment with antisense ODN markedly reduced the presence of TRPC1 mRNA, whereas treatment with missense did not (Fig. 5B). Treatment with the antisense/TRPC1 ODN did not affect the transcript abundance of a housekeeping gene (L-19), demonstrating that the lack of TRPC1 transcripts was not attributable to improper amplification (Fig. 5B). Quantitation of TRPC1 immunofluorescence signal intensities in fields of NSC-derived progeny revealed that antisense/
TRPC1 significantly reduced the intensity of the fluorescence signals compared with missense treatment (Fig. 5C1, C2, D). To test whether antisense/TRPC1 treatment was specific for TRPC1 protein expression, we analyzed the effect of antisense/TRPC1 ODN on other TRPC expressions. As an example, Figure 5, C3 and C4, shows that TRPC6 expression was not affected by antisense/TRPC1 treatment compared with missense-treated cells. Quantitation of immunofluorescence signal intensities revealed that TRPC3, TRPC4, or TRPC6 was not affected by antisense/TRPC1 treatment (Fig. 5D). In addition, RT-PCR data show that TRPC2 levels did not change in antisense/TRPC1-treated cells compared with missense-treated cells (data not shown).

These results establish that antisense/TRPC1 effectively knocks down TRPC1 transcripts as well as proteins without affecting the expressions of other TRPCs expressed by NSC-derived progeny.

Antisense/TRPC1 treatment attenuates NSC proliferation

To test whether antisense treatment affected proliferation, NSCs were plated at clonal density and allowed to expand under self-renewing conditions in defined medium with bFGF for 7 d. Two concentrations of antisense/TRPC1 ODNs were used (2 and 5 μM). Both concentrations significantly reduced the total number of cells per clone compared with missense treatments and decreased the percentage of proliferating (PCNA−) cells per clone (Fig. 6A, B). There was not a significant difference (p > 0.05%) in the percentage of total cell death (because of either pyknosis or apoptosis) between the antisense/TRPC1-treated cells (4.9 ± 1.1 and 5.2 ± 1.5%, respectively, at 2 and 5 μM) and missense-treated cells (3.1 ± 0.7 and 2.5 ± 0.6%, respectively, at 2 and 5 μM), indicating that cell death did not account for the decrease in clone size. The results indicate that knock-down of TRPC1 channel proteins attenuates NSC proliferation without causing significant cell death. Furthermore, the knock-down of TRPC1 proteins did not induce NSCs to differentiate.

Because TRPC1 channel proteins comprise voltage-independent Ca2+ channels, we compared the effects of an inorganic (Gd3+) and an organic (SKF96365) (Beech et al., 2003) antagonist of Ca2+ entry, which are commonly used to block voltage-independent Ca2+ channels, and an antagonist at L-type voltage-dependent Ca2+ entry (nitrendipine) on NSC proliferation. Both Gd3+ (1 μM) and SKF96365 (1 μM) significantly reduced clone size and the percentage of proliferative cells (Fig. 6C–F). In contrast, nitrendipine did not affect either of these parameters (Fig. 6C, E). Furthermore, in the presence of Gd3+ or SKF96365, the percentages of total cell death (10.5 ± 2% for Gd3+ and 8.9 ± 1.5% for SKF96365) were not

Figure 5. TRPC1 antisense treatment of NSC-derived progeny decreases TRPC1 transcripts and protein expression. Phase contrast (A1) and epifluorescence (A2) images of a representative field of NSC-derived progeny show that FITC-labeled ODNs are taken up by virtually all progeny after 7 d in culture.

B, Analysis of TRPC1 mRNA levels reveals clear effects of NSCs treated with control (Cntrl) and TRPC1 antisense (AS) ODNs (5 μM). Equal amounts of RNA were reversed transcribed to generate cDNA. The cDNA was subjected to TRPC1-specific PCR amplification (500 bp product) using paired primers. cDNA from all samples was also subjected to L-19-specific PCR amplification (195 bp product). The left lane shows a ladder of molecular weight markers (M). Note the dramatic reduction of TRPC1 mRNA in NSC-derived progeny treated for 7 d with antisense ODNs compared with treatment with control ODNs.

C1–C4, Representative images of antisense/TRPC1-treated cells (AS) and missense-treated cells (CNTRL) stained for TRPC1 or TRPC6. The data show a clear difference in TRPC1 expression between CNTRL and AS, whereas no difference is evident in TRPC6 expression. D, Fluorescence intensities of TRPC1, TRPC3, TRPC4, and TRPC6 protein expressions in NSC-derived progeny shows a significant (***p < 0.005) reduction in progeny treated with 5 μM antisense TRPC1 (AS) compared with treatment with equimolar control ODNs (C) for TRPC1 but not for the other TRPCs studied. Scale bars, 10 μm.
independent experiments were quantified to reveal the total cell number per clone (conditions. After multi-epitope staining with lineage-specific markers, 10 clones from three
number of cells per clone as well as in the percentage of proliferative cells compared with
Figure 6.

Fiorio Pla et al. Role of TRPC1 in Neural Stem Cell Proliferation J. Neurosci., March 9, 2005 • 25(10):2687–2701 • 2695

Antisense/TRPC1 treatment attenuates bFGF-induced Ca\(^{2+}\) responses

NSC-derived progeny proliferating in bFGF respond to bFGF with elevations in \([Ca^{2+}]\) containing an initial peak and a later sustained phase (Maric et al., 2003). To test whether antisense/ TRPC1 treatment affected regulation of \([Ca^{2+}]\) by bFGF, we performed imaging experiments in cells treated with missense or antisense/TRPC1 ODN for 7 d. Peak and sustained Ca\(^{2+}\) responses to bFGF were readily detected in proliferating NSC-derived progeny treated with missense (Fig. 7A1). In contrast, there was a modest decrease in the peak amplitude of the bFGF-induced Ca\(^{2+}\) signal and a dramatic decrease in the amplitude of the sustained phase after treatment with antisense/TRPC1 ODN (Fig. 7A2). Statistical analysis of the results showed that the reduction in peak amplitude was not significant (Fig. 7B1), whereas the decline in the sustained phase was significant (Fig. 7B2).

Additionally, we compared bFGF-induced Ca\(^{2+}\) signals in Ca\(^{2+}\)-free medium to exclude Ca\(^{2+}\) entry. Transient Ca\(^{2+}\) responses to bFGF, reflecting Ca\(^{2+}\) release from intracellular stores, were virtually identical in cells treated with missense and antisense/ TRPC1 ODNs (Fig. 7C1–C3). Thus, downregulation of TRPC1 mRNA and proteins did not affect bFGF/FGFR-1 signaling that triggers Ca\(^{2+}\) release. Rather, the external Ca\(^{2+}\)-dependent contribution to the response (i.e., Ca\(^{2+}\) entry) is attenuated. To show that Ca\(^{2+}\) entry can also be triggered independently of bFGF, we exposed cells treated with missense or antisense/TRPC1 ODN to the membrane-permeant analog of diacylglycerol (DAG), 1-oleoyl-2-acetyl-sn-glycerol (OAG), which is thought to activate Ca\(^{2+}\) entry via TRPC channels not composed of TRPC1 subunits (for review, see Clapham, 2003). OAG evoked Ca\(^{2+}\) responses that were not significantly different in amplitude and time course in missense- and antisense/TRPC1-treated cells (Fig. 7D1–D3). Together, these results demonstrate that antisense/TRPC1 treatment affects the Ca\(^{2+}\) entry components of the Ca\(^{2+}\) response to bFGF without apparently affecting Ca\(^{2+}\) release. The lack of effect of antisense treatment on OAG-induced Ca\(^{2+}\) responses suggests that other voltage-independent Ca\(^{2+}\) channels putatively containing DAG-sensitive TRPC channel proteins are not affected.

The effect of antisense/TRPC1 treatment on the biphasic peak-and-plateau Ca\(^{2+}\) response to bFGF in the absence of any effects on bFGF-evoked Ca\(^{2+}\) signals in Ca\(^{2+}\)-free medium, which involve Ca\(^{2+}\) release, led us to study agents known to block Ca\(^{2+}\) entry in other cell types. Both SKF96365 (Fig. 8A2) and Gd\(^{3+}\) (Fig. 8A3) simplified the peak-and-plateau Ca\(^{2+}\) response to bFGF (Fig. 8A1) into one dominated by only a transient phase. This would be expected if both agents blocked the Ca\(^{2+}\) entry component but not the Ca\(^{2+}\) release component. The Ca\(^{2+}\) transients illustrated in Figure 8, A2 and A3, closely resemble those shown in Figure 7, C1 and C2, which demonstrate bFGF-induced Ca\(^{2+}\) transients in the absence of extracellular Ca\(^{2+}\). Not only was the sustained phase of the biphasic response to bFGF mostly eliminated by SKF96365 and Gd\(^{3+}\), but the peak amplitudes of the Ca\(^{2+}\) responses were significantly reduced (Fig. 8A4). This shows that Ca\(^{2+}\) entry also contributes to the initial peak of the Ca\(^{2+}\) response to bFGF. A clear and partly reversible depression of the sustained phase was readily apparent with both Gd\(^{3+}\) (Fig. 8B1) and SKF96365 (data not shown). Both of these effects were significant (Fig. 8B2). Finally, nitrendipine did not significantly affect the peak-and-plateau Ca\(^{2+}\) response to bFGF (Fig.

significantly different \((p > 0.01) \) compared with controls \(3.8 \pm 1.9 \) and \(5.8 \pm 0.7\% \), respectively, for Gd\(^{3+}\) and SKF96365). These results indicate that the effects of the drugs were not simply attributable to toxic actions and that cell death did not account for the decrease in clone size. Thus, different blockers of receptor-operated Ca\(^{2+}\) entry channels mimic the effect of antisense treatment, whereas antagonism of a major voltage-dependent pathway does not. These results are consistent with a role for voltage-independent Ca\(^{2+}\) channels including TRPC1 in sustaining NSC proliferation.
8C1,C2), demonstrating that voltage-dependent Ca^{2+} channels are not involved.

Based on these data, we suggest that a significant part of the biphasic Ca^{2+} response to bFGF involves Ca^{2+} entry mediated by voltage-independent Ca^{2+} channels. Our data showing that antisense/TRPC1 treatment attenuates this Ca^{2+} entry are consistent with this suggestion and indicate that TRPC1 channels mediate, at least in part, the Ca^{2+} influx induced by bFGF/FGFR-1 signaling.

Antisense/TRPC1 treatment depresses bFGF-induced current responses and conductance changes

The presence of a Ca^{2+} entry component throughout the biphasic Ca^{2+} response to bFGF and its sensitivity to both antisense and pharmacological treatments led us to use patch-clamp techniques to measure the currents stimulated by bFGF. Proliferating NSC-derived progeny were washed in bFGF-free saline solution and then clamped in the whole-cell mode to record cation currents in response to brief applications of bFGF. Cells were held at 0 mV and subjected to voltage ramps from −90 to +90 mV every 4 s. The traces shown in Fig. 9, A–C and E, represent bFGF-stimulated inward currents that have been reconstructed from the current amplitudes at −80 mV obtained from current responses to the intermittently imposed 1 s voltage ramps. The latter were used to construct I–V curves (Fig. 9D,F). We have illustrated bFGF-induced currents stimulated at −80 mV because this membrane potential is in the range previously reported for intact neuroepithelial cells studied with a calibrated potentiometric dye strategy and flow cytometry (Maric et al., 1998b) and because the current responses were readily detectable at this potential. bFGF triggered inwardly directed currents in all of the cells recorded, consistent with there being a quite widespread distribution of bFGF-induced Ca^{2+} responses among these cells. Superfusion of either Gd^{3+} (Fig. 9A) (n = 3 cells) or SKF96365 (Fig. 9B) (n = 3 cells) completely inhibited the bFGF-induced inward currents, which returned to baseline levels in all cells tested. The results are consistent with bFGF activation of voltage-independent cation conductance. From previous studies of mechanisms regulating [Ca^{2+}], in neuroepithelial cells at the beginning of neurogenesis, we found no evidence of voltage-dependent Ca^{2+} entry contributing to [Ca^{2+}], at this stage of development (Maric et al., 2000a). In addition, nitrendipine did not affect the peak-and-sustained Ca^{2+} responses to bFGF (Fig. 8C1,C2). Perfusion of DVF medium during the bFGF-induced current response transiently increased the amplitude of the inwardly directed current (Fig. 9C), which then relaxed to baseline levels (n = 4 cells). The current relaxation in the cell illustrated began before exposure to the DVF solution.

![Figure 7](image-url)
which accelerated the decline. The transient increase in current is consistent with the nonspecific cation selectivity of voltage-independent Ca2+ channels. I–V curves under control and perfusion with DVF conditions show that, in the latter, the reversal potential of the I–V curve shifts slightly in the negative direction but still remains positive (approximately +5 mV). In addition, the slope of the I–V curve increased, reflecting a transient increase in the membrane conductance in DVF saline in response to bFGF. These results are consistent with the well known unblocking effect of DVF solutions on voltage-independent channels with a relatively broad selectivity for cations. In the absence of divalent cations, ambient monovalent cations (Na+ and K+) are conducted more easily, thus generating more inward current at negative potentials and leading to a reversal potential nearer to 0 mV. These results led us to test the effect of exposure to a saline in which all the extracellular Na+ and Ca2+ ions were replaced by NMDG. Switching from normal to NMDG saline rapidly eliminated the bFGF-induced current response (Fig. 9E) and associated conductance (Fig. 9F) in a completely reversible manner (n = 3 cells). Thus, bFGF activates inward currents at negative potentials, which reverse polarity at approximately +15 mV and are completely blocked by both Gd3+ and SKF96365, and by either exposure to a DVF solution or to an Na+ and Ca2+-free saline. These characteristics are consistent with the activation of bFGF of voltage-independent cation channels with relatively little selectivity over monovalent and divalent cations.

In missense-treated cells, the current activated by bFGF increased, reached a maximum in ~40–60 s and remained sustained for ~40–60 s after bFGF was washed out, then gradually declined (Fig. 10A1), similar to responses recorded under control conditions (Fig. 9). In antisense/TRPC1-treated cells, the current response was lower in amplitude (1083 ± 27 pA in six missense-treated cells, 358 ± 104 pA in eight antisense/TRPC1-treated cells) and declined quickly after removal of bFGF (Fig. 10A1). There was a significant decrease in the bFGF-activated current density measured at the peak of the current response in antisense/TRPC1-treated cells compared with control cells (Fig. 10A2). The individual voltage ramps obtained at the peak of the bFGF-evoked responses showed relatively linear I–V relationships with a reversal potential of approximately +15 mV (Fig. 10B), similar to those recorded in untreated cells (Fig. 9). In antisense/TRPC1-treated cells, neither the reversal potential nor the characteristic of the I–V curve was altered (Fig. 10B). These results indicate that the decrease in the peak amplitude of the bFGF-evoked inward current was not attributable to a change in the driving force acting on the activated channels but rather to a decrease in their conductance.

Discussion

Salient findings

FACS analyses reveal that TRPC1 is expressed by the majority of proliferating NSCs, which also express FGFR-1, along with TRPC2, TRPC3, TRPC4, and TRPC6. As NSCs differentiate, TRPC1 expression progressively decreases, whereas FGFR-1, TRPC2, TRPC3, TRPC4, and TRPC6 remain relatively constant. TRPC1 and FGFR-1 coimmunoprecipitate from solubilized telencephalic membranes and colocalize in the membrane and cytoplasm of NSCs and their progeny. Antisense/TRPC1 treatment reduces TRPC1 transcript and protein expression in proliferating NSC progeny, without affect-
Figure 9. Pharmacological block of bFGF-induced currents and their sensitivity to DVF and Na\(^+\)/Ca\(^{2+}\)-free saline. NSC-derived progeny were expanded in medium with 10 ng/ml bFGF and then rinsed in bFGF-free saline before patch-clamp recordings were performed in the whole-cell mode. The cells were clamped at 0 mV, and 1 s voltage ramps were performed in the -80 to +90 mV range were applied every 4 s. Current traces at -80 mV before and during perfusion of bFGF in different salines were reconstructed from the protocol. A, Perfusion of 10 ng/ml bFGF triggers an inwardly directed current that peaks in -60 s. Coapplication of 1 \(\mu\)M Gd\(^{3+}\) rapidly and completely reduces the current response, which does not recover after stopping the Gd\(^{3+}\) perfusion. B, Coapplication of 1 \(\mu\)M SKF96365 (SKF) rapidly blocks the bFGF-induced current response, which does not recover during the recording period. C, bFGF induces an inward current (I), which transiently increases in amplitude (II) when DVF saline is perfused instead of normal saline containing Ca\(^{2+}\) and Mg\(^{2+}\) before relaxing to baseline. D, I–V plot of bFGF-induced currents in normal saline containing Ca\(^{2+}\) and Mg\(^{2+}\) (I) and in DVF (II) demonstrate relatively linear plots with similar reversal potentials (+15 mV in normal saline, +5 mV in DVF). The slope of the I–V plot increases in DVF, reflecting an increase in conductance. E, Perfusion of NMDG solution, which does not contain either Na\(^+\) or Ca\(^{2+}\), rapidly and completely blocks the bFGF-induced current response in a reversible manner. F, The I–V plot demonstrates the reversibility in the underlying bFGF-induced conductance. The traces shown are representative of three cells in Gd\(^{3+}\) and SKF96365 experiments, four cells in the DVF experiments, and three cells in the NMDG experiments.

Figure 10. Antisense/TRPC1 depresses bFGF-induced currents in NSC-derived progeny. NSC-derived progeny proliferating in medium with bFGF were rinsed with bFGF-free saline before recordings from the cells in whole-cell patch-clamp mode. A1, Inwardly directed cation current responses are detected after perfusion with medium containing 10 ng/ml bFGF. The current is reduced in cells treated with antisense/TRPC1 (AS/TRPC1; gray trace) compared with those treated with missense ODNs (CNTRL; black trace). A2, bFGF-activated current densities are significantly reduced in antisense/TRPC1-treated cells (AS; gray bar) compared with those treated with missense ODNs (CNTRL; black bar). Current densities of the control group are normalized to 100%. (**p < 0.01). The number of cells measured in each group is noted in parentheses above each bar. B, I–V relationships at the peak of the bFGF-induced currents are relatively linear in both antisense- and missense-treated cells with current reversing polarity at approximately +15 mV, indicating that the decrease in bFGF-evoked current amplitude reflects a reduction in membrane conductance.

TRPC1 and FGFR-1 are coexpressed in the embryonic rat telencephalon

TRPC1-immunoreactive cells were mostly located adjacent to the LV in the telencephalon, although some immunopositive cells were also found within the neuroepithelium. Quantitative FACS analyses demonstrated that most of the NSCs expressed TRPC1 and FGFR-1 and were actively proliferating. Furthermore, the relatively close correspondence between the percentages of PCNA\(^+\) and TRPC1\(^+\) cells among the five progenitor populations suggest that TRPC1 expression is closely linked to proliferation during the initial stages of NSC differentiation. The coexpression of TRPC1 and FGFR-1 in PCNA\(^+\) NSCs in vivo and the ability of bFGF to sustain self-renewal of NSCs in vitro strongly suggest that maintenance of the NSC pool in vivo includes a pathway involving bFGF, FGFR-1, and TRPC1. There is evidence in vivo for bFGF and FGFR-1 playing critical roles in neurogenesis of the cortex. bFGF knockout mice are missing about one-half of glutamatergic pyramidal neurons in the anterior cortex (Vaci-
carino et al., 1999a; Korada et al., 2002). This is attributable to a corresponding loss in neuroepithelial cells composing the dorsal telencephalon in early neurogenesis (Vaccarino et al., 1999a; Raballo et al., 2000). Recently, a transgenic mouse strain conditionally overexpressing a tyrosine kinase domain-deficient FGFR-1 gene construct has generated the same phenotype (Shin et al., 2004). Thus, bFGF activation of FGFR-1 is critical for generating and maintaining a population of precursors, the progeny of which differentiate into pyramidal neurons. No data have been reported to demonstrate a role for TRPC1 in neurogenesis.

In our study, TRPC1 and FGFR-1 coimmunoprecipitated from telencephalic membranes, indicating that they interact either directly or indirectly in a complex. An interaction between tyrosine kinase receptors and TRPC channels has previously been reported in pontine neurons in which TRPC3 has been proposed to be activated through a pathway that is initiated by brain-derived nerve growth factor activation of the tyrosine kinase receptor TrkB (Li et al., 1999). Furthermore, there are different experimental observations supporting the hypothesis that TRPC1 functions within a signalplex in non-neuronal (Lockwich et al., 2000; Rosado and Sage, 2001; Singh et al., 2001, 2002) and neuronal cells, including the adaptor protein Homer, which facilitates a physical association between TRPC1 and IP3 receptor that is required for the channel to respond to signals (Kim et al., 2003; Yuan et al., 2003).

TRPC1-mediated Ca2+ influx is important in NSC proliferation

An important finding was that TRPC1 is involved in NSC self-renewal in vitro and in bFGF-mediated Ca2+ influx. Similar to NSCs profiled ex vivo with flow cytometry, 75–80% of self-renewing NSC-derived progeny were PCNA+ TRPC1+ FGFR-1+. Ipsa facto, bFGF/FGFR-1 signaling via TRPC1 could serve to sustain symmetrical divisions of self-renewing NSCs in vivo.

Antisense/TRPC1 treatment, which decreased TRPC1 transcript as well as protein levels in NSC-derived progeny, also reduced both the clone size and percentage of proliferating cells. These effects indicate that TRPC1 channels are associated with NSC proliferation. Importantly, antisense/TRPC1 treatment did not induce significant cell death. Similar effects on clone size and the percentage of proliferative cells were obtained by including pharmacological antagonists of agonist-stimulated Ca2+ entry in response to bFGF/FGFR-1 signaling via TRPC1 and eliminated completely by blockers of L-type Ca2+ channels that is required for the channel to respond to signals (Kim et al., 2003; Yuan et al., 2003).

Many developmental studies on Ca2+ signaling during organogenesis have established Ca2+ as a ubiquitous second messenger, the regulation of which in cells is critical to each phase of development beginning with proliferation (for review, see Webb and Miller, 2003). A variety of mitogenic agonists are known to stimulate the growth of different cell phenotypes by increasing [Ca2+]i levels (Kao et al., 1990; Chao et al., 1992; Pitt et al., 1994). In this regard, human pulmonary arterial smooth muscle cell proliferation stimulated by serum and growth factors is attenuated by depletion-induced Ca2+ influx, as well as that after store-depletion, involving voltage-independent TRP-type Ca2+ channels. TRPC1 expression is upregulated during human smooth muscle cell proliferation, and inhibition of its expression attenuates proliferation as well as store-depletion-induced Ca2+ influx. Similar results have also been obtained in a study on proliferating rat bronchial smooth muscle cells in terms of establishing a critical role for TRPC1 in sustaining both proliferation and elevated [Ca2+]i, required for proliferation (Sweeney et al., 2002b).

Similar to smooth muscle cells, embryonic rat cortical neuroepithelial cells require physiological Ca2+ levels for growth factor-mediated proliferation (Ma et al., 2000). Flow cytometric analyses of proliferating neuroepithelial cells profiled ex vivo have revealed significant contributions of Ca2+ entry to baseline Ca2+ levels among proliferating undifferentiated precursors (Maric et al., 2000b). This study also demonstrated that voltage-dependent mechanisms are not involved in constitutive Ca2+ expression by these cells.

Here, we show that the bFGF-mediated Ca2+ response was attenuated by treatment with antisense/TRPC1 and by blockers of voltage-independent Ca2+ channels. The treatment affected the sustained phase significantly. The effects of antisense/TRPC1 treatment clearly target TRPC1 channels involved in Ca2+ entry, because there was no effect of antisense treatment on bFGF-evoked release of Ca2+ from intracellular stores in Ca2+-free medium. The role of TRPC1 in bFGF-mediated Ca2+ signaling was further confirmed by whole-cell patch-clamp recordings. Cation substitution experiments showed that bFGF activated inward currents primarily involving Ca2+. These and the associated conductance changes were significantly reduced by antisense/TRPC1 treatment and eliminated completely by pharmacological blockers of voltage-independent cation channels. TRPC1 has been proposed to be associated with store-operated Ca2+ influx (Liu et al., 2000; Vaca and Sampieri, 2002; Beech et al., 2003). However, the present data do not establish whether TRPC1 mediates store-operated or non-store-operated Ca2+ entry in response to bFGF/FGFR-1 signaling in NSC progeny. Besides a contribution attributable to Ca2+ release from the intracellular stores, other pathways are activated by bFGF/FGFR1 signaling (for review, see Vaccarino et al., 1999b; Cross and Claassen-Welsh, 2001). For example, stimulation of phospholipase Cγ leads to the generation of DAG together with IP3. DAG is known to stimulate Ca2+ influx through TRPC channels, in particular TRPC3, TRPC6, and TRPC7 (Hofmann et al., 1999; Clapham, 2003). In this regard, we show here that there was no effect of antisense/TRPC1 treatment on Ca2+ responses induced by OAG, which involve Ca2+ entry but not Ca2+ release from intracellular stores. The unmodified Ca2+ responses to OAG demonstrate that OAG-sensitive Ca2+ entry mechanisms do not involve TRPC1 channels. Furthermore, a previous study has shown that TRPC1 can heterotetramerize with other TRPCs expressed during brain development, forming complexes containing TRPC1/TRPC3/TRPC6 and TRPC1/TRPC4/TRPC5, giving rise to channels with different properties (Strübing et al., 2003). We have used RT-PCR and immunocytochemistry to detect the presence of TRPC channels other than TRPC1 in the embryonic rat telencephalon and in NSCs profiled ex vivo with flow cytometry. Interestingly, TRPC5 mRNA expression displayed a differential distribution in the E13 telencephalon. It was detected in dissociates of the entire telencephalon and in the neuronal progenitor population but not in NSCs, which express TRPC1–4 and 6. These data exclude a possible interaction between TRPC1 and TRPC5 in the NSC. The absence of TRPC5 in NSCs may help to explain the I–V characteristics of bFGF-activated currents in

Fiorio Pla et al. • Role of TRPC1 in Neural Stem Cell Proliferation

J. Neurosci., March 9, 2005 • 25(10):2687–2701 • 2699
NSC-derived progeny, which differ from those described for heteromeric TRPC(1+5) and TRPC(1+3+5) channels (Strübing et al., 2003). Thus, our results do not exclude a possible involvement of other TRPC channels during NSC proliferation, cell lineage progression, and the development of the telencephalon. In this regard, it is likely that the other members of the TRPC family expressed by NSCs mediate the OAG-evoked Ca^{2+} responses recorded in NSC progeny. Future studies will address whether these channels are involved in bFGF/FGFR-1-mediated NSC proliferation.

In conclusion, our study indicates that TRPC1 plays a role in NSC proliferation by contributing to bFGF/FGFR-1-induced Ca^{2+} influx.

References

