Detecting Activity in Olfactory Bulb Glomeruli with Astrocyte Recording

Didier De Saint Jan and Gary L. Westbrook
Vollum Institute, Oregon Health and Sciences University, Portland, Oregon 97239

In the olfactory bulb, axons of olfactory sensory neurons (OSNs) expressing the same olfactory receptor converge on specific glomeruli. These afferents form axodendritic synapses with mitral/tufted and periglomerular cell dendrites, whereas the dendrites of mitral/tufted cells and periglomerular interneurons form dendrodendritic synapses. The two types of intraglomerular synapses appear to be spatially isolated in subcompartments delineated by astrocyte processes. Because each astrocyte sends processes into a single glomerulus, we used astrocyte recording as an intraglomerular detector of neuronal activity. In glomerular astrocytes, a single shock in the olfactory nerve layer evoked a prolonged inward current, the major part of which was attributable to a barium-sensitive potassium current. The K^+ current closely reflected the time course of depolarization of mitral/tufted cells, indicating that K^+ accumulation mainly reflects the activity of mitral/tufted cells. The astrocyte K^+ current was dependent on AMPA and NMDA receptors in mitral/tufted cells as well as on a previously undescribed metabotropic glutamate receptor 1 component. Block of the K^+ current with barium unmasked a synaptic glutamate transporter current. Perhaps surprisingly, the transporter current had components caused by glutamate released at both olfactory nerve terminals and mitral/tufted cell dendrites. The time course of the transporter currents suggested that rapid synchronous glutamate release at OSN terminals triggers asynchronous glutamate release from mitral/tufted cells. Glomerular astrocyte recording provides a sensitive means to examine functional compartmentalization within and between olfactory bulb glomeruli.

Key words: olfactory bulb; glomerulus; astrocytes; K^+ buffering; glutamate transporters; mGluRs

Introduction
Activation of each of the ~500 odorant receptors produces discrete activation of glomeruli in the olfactory bulb, thereby creating a spatial map (Ressler et al., 1994; Vassar et al., 1994; Mombaerts et al., 1996; Buck, 2000). Because mitral cells project their primary dendrites to a single glomerulus, the transformation of the spatial map into an odor code can be influenced by local processing within the glomerular layer. Glomeruli are thus often considered as functional units (Schoppa and Urban, 2003). Although the ultrastructural organization of a glomerulus has been well documented (Kosaka et al., 1998), the cascade of intraglomerular events triggered by olfactory inputs has been more difficult to explore (Schoppa and Urban, 2003). Neuronal recording is the usual approach to such questions within a neural circuit, but astrocytes also can be used as surrogate detectors of neuronal activity (Orkand et al., 1966; Bergles and Jahr, 1997).

Glomeruli are a complex mix of glial and neuronal elements. Astrocyte cell bodies form an almost complete envelope around a glomerulus and send processes into the central neuropil (Valverde and Lopez-Mascaraque, 1991; Bailey and Shipley, 1993; Chao et al., 1997). Along with periglomerular neurons, astrocytes encapsulate a tightly packed network of olfactory neuronal terminals, apical dendrites of mitral and tufted cells, dendrites of local periglomerular interneurons, astrocyte processes, and vasculature (Pinching and Powell, 1971). In vitro, extracellular potassium increases within glomeruli after afferent stimulation (Jahr andNicoll, 1981; Khayari et al., 1988; Friedrich and Korsching, 1998). Glial barriers that remove extracellular potassium (Amédée et al., 1997; Kofuji and Newman, 2004) may prevent the spread of activity (Goriely et al., 2002).

Within a glomerulus, excitatory axodendritic synapses are located in so-called “axonal” compartments that are relatively devoid of glial processes. In contrast, dendrodendritic synapses in “dendritic” compartments are often encapsulated by glial processes (Chao et al., 1997; Kosaka et al., 1997; Kasowski et al., 1999; Kim andGreer, 2000). Glomerular astrocytes express a high level of glutamate transporters (GluTs) (Utsumi et al., 2001). Thus, their distribution at the interface between subcompartments could prevent cross talk between axodendritic and dendrodendritic synapses.

We examined intraglomerular activity using whole-cell recordings from astrocytes. We used glial K^+ currents (Orkand et al., 1966) as a detector of the overall intraglomerular neuronal activity and glutamate transporter currents (Bergles and Jahr, 1997) as detectors of synaptic glutamate release within a glomerulus.

Materials and Methods
Slice preparation. Olfactory bulbs were prepared according to the procedure described by Schoppa et al. (1998). Animal use was approved by the
Institutional Animal Care and Use Committee of the Oregon Health and Sciences University. Briefly, postnatal day 14 (P14) to P20 Sprague Dawley rats or P14–P35 GFAP-hGFP-S65T mice (The Jackson Laboratory, Bar Harbor, ME) (Zhuo et al., 1997) were anesthetized with halothane and then decapitated. The bulbs were carefully removed, and 250–350-μm-thick horizontal slices were cut on a vibratome (VT1000S; Leica, Nussloch, Germany). During dissection and slicing, tissues were submerged in an ice-cold solution containing (in mM): 125 NaCl, 25 NaHCO₃, 2.5 KCl, 1.25 NaH₂PO₄, 2 MgCl₂, 0.5 CaCl₂, and 25 dextrose. This solution was continuously bubbled with a mixture of 95% O₂ and 5% CO₂ to maintain the pH at 7.4. The osmolarity was adjusted to 290 mosm. Once cut, slices were maintained in the same solution at 37°C for 40 min and then at room temperature for at least 30 min before experiments.

Electrophysiology. A slice was transferred in a recording chamber and visualized with an upright microscope (BX51W; Olympus Optical, Tokyo, Japan) using infrared differential interference contrast videomicroscopy. The slice was continuously perfused with a standard external solution similar to the slicing solution except for the concentrations of MgCl₂ (1 mM) and CaCl₂ (2 mM). Unless indicated, experiments were performed at 33–36°C. Whole-cell voltage-clamp recordings in visually identified or fluorescent-labeled astrocytes and current-clamp recordings from mitral/tufted cells were obtained using 3–7 MΩ patch pipettes filled with an internal solution containing (in mM): 125 K-gluconate, 2 CaCl₂, 2 MgCl₂, 1 or 10 EGTA, 2 Na-ATP, 0.5 Na-GTP, and 10 HEPES. We used an intracellular solution containing barium to record glutamate transporter currents from astrocytes (Matsui and Jahr, 2003). It contained (in mM): 125 K-gluconate, 10 HEDTA, 3 BaCl₂, 2 Na-ATP, 0.5 Na-ATP, and 10 HEPES. Currents were recorded with a Multiclamp 700A amplifier (Axon Instruments, Foster City, CA). Data were acquired using Axograph 4.6 or 4.9 software (Axon Instruments), digitized at 10 kHz, and filtered at 1–2 kHz.

Olfactory sensory neurons (OSNs) were stimulated using Axograph 4.6 or 4.9 software (Axon Instruments), digitized at 10 kHz, and filtered at 1–2 kHz. Olfactory sensory neurons (OSNs) were stimulated using a platinum/iridium bipolar electrode (Frederick Haer Co., Bowdoinham, ME) or a patch pipette filled with external solution, stimulated using a DS2A-Mk.II isolated stimulator (Digitimer, Hertfordshire, UK). The electrical stimulus was 100 μs with an intensity of 1–100 V. Each stimulation was preceded by a 2 mV depolarizing pulse to monitor the access resistance. Rundown of evoked astrocyte responses sometimes occurred during an experiment accompanied by a decrease in access resistance. Cells that showed a >20% change in access resistance were discarded. For analysis, 4–10 consecutive traces were averaged. Results are expressed as mean ± SE. p values were derived from paired t tests to assess statistical significance.

Immunohistochemistry. To examine the distribution of astrocytes, olfactory bulbs from GFAP–green fluorescent protein (GFP) mice were fixed in 4% paraformaldehyde in PBS for 48 h at 4°C and cut in 30-μm-thick horizontal sections using a microtome. After washout with PBS, fixed slices were incubated overnight at 4°C in a permeabilizing PBS solution (0.4% Triton X-100 plus 1% BSA) containing 1:1000 Alexa Fluor 488–labeled rabbit anti-GFP antibody (Invitrogen, Eugene, OR). After two washes with PBS, sections were washed three times with PBS before mounting with ProLong Antifade. For cell characterization, biocytin (0.2%) was included in the recording pipette solution. Slices were fixed in 4% paraformaldehyde overnight, washed three times, and incubated in a permeabilizing solution containing cyanine 5-conjugated streptavidin (1 μg/ml; Jackson ImmunoResearch, West Grove, PA) for 1 d. After three washes with PBS, propidium iodide (5 μg/ml; 30 min) was added as a nuclear stain. Sections were washed three times before mounting. Labeled cells were visualized with a confocal microscope. Unless indicated, all reagents were purchased from Molecular Probes (Eugene, OR).

Chemicals. Drugs were diluted in the standard external solution, except for cadmium, which was diluted in a phosphate-free external solution containing (in mM): 135 NaCl, 5 NaHCO₃, 5 HEPES, 2.5 KCl, 1 MgCl₂, 2 CaCl₂, and 25 dextrose. Dihydrokainic acid (DHA), 3-3-threo-β-benzyloxyaspartic acid (TBOA), 3-3-threo-β-amino-5-phosphonomopentic acid (AP-5), 6-nitro-7-sulfamoylbenzo[f]quinoxaline-2,3-dione (NBQX), and (S)-(-)-α-amino-4-carboxy-2-methylbenzeneacetic acid (LY367385) were purchased from Tocris (Ellisville, MO). Three-β-hydroxyaspartic acid (THA), cadmium chloride, and barium chloride were purchased from Sigma (St. Louis, MO).

Results

Identification of glomerular astrocytes

We made whole-cell voltage-clamp recordings from astrocytes in olfactory bulb glomeruli. In slices from rat brain, astrocyte cell bodies were visually identified at the inner edge of the ring of cell bodies surrounding a glomerulus or within the neuropil of a glomerulus. Because of their small number (~7% of juxtaglomerular cells are astrocytes) (Chao et al., 1997) and their resemblance to some periglomerular neurons, identification was difficult. Therefore, we also used transgenic mice expressing GFP under the control of a glial-specific GFAP promoter (GFAP-hGFP-S65T) (Zhuo et al., 1997). Fluorescent astrocytes were especially numerous in the glomerular layer, and several could be seen around and within a single glomerulus (Fig. 1 A). Consistent with previous descriptions (Bushong et al., 2002), fluorescent astrocytes exhibited dense spongiform ramifications extending from major processes. In both preparations, cells visualized with biocytin had a small diameter (~5–10 μm) and, as reported previously (Bailey and Shipley, 1993), projected processes into the core of a single glomerulus (Fig. 1 B). Several cell bodies often were labeled when a single astrocyte was filled with biocytin, consistent with gap junction coupling between adjacent astrocytes (data not shown). Astrocytes had typical electrical properties, including a low input resistance (19.1 ± 1.7 MΩ, n = 30 cells in rats; 12.4 ± 0.6 MΩ, n = 41 cells in mice), a negative resting
potential (usually more negative than −80 mV), and a quasilinear $I-V$ relationship (Fig. 1C).

The astrocyte response has two components

As illustrated in Figure 2A, a brief electrical stimulation (100 µs, 1–100 V) of the olfactory nerve layer elicited a slowly decaying inward current with an amplitude and duration that increased with stimulus strength. The evoked current had a half-width of 1108 ± 154 ms and an amplitude of 232 ± 20 pA in rats ($n = 27$; stimulus, 49.4 ± 5.5 V). In mice, the half-width was 1049 ± 156 ms and the amplitude was 384 ± 33 pA ($n = 16$; stimulus, 59.4 ± 7.9 V).

Bath application of barium (100–200 µM) inhibited the majority of the inward current (82 ± 3% charge reduction; $n = 11$) (Fig. 2B). At this concentration, Ba$^{2+}$ effectively blocks inward rectifier K$^+$ channels (IRKs) that are highly expressed in glial cells (Newman, 1993). IRKs are thought to be involved in the spatial buffering of K$^+$ released in the extracellular space during neuronal activity (Karwoski et al., 1989; Newman, 1993; Amédée et al., 1997; Kofuji and Newman, 2004). Because K$^+$ accumulates in the glomerular layer after OSN stimulation (Jahr and Nicoll, 1981; Khayari et al., 1988; Friedrich and Korsching, 1998), the Ba$^{2+}$-sensitive component is consistent with IRK-dependant current in response to extracellular K$^+$ accumulation.

However, a fast transient inward current remained in the presence of Ba$^{2+}$ (Fig. 2B, C). Subsequent addition of the nonselective GluT inhibitor TBOA (50–100 µM) inhibited this residual current (84 ± 1.8% peak reduction; $n = 17$), thus identifying it as a synaptically activated glutamate transporter current. In rat slices, the transporter current had a mean amplitude of 128 ± 20 pA and a mean 10–90% rise time of 5.2 ± 0.3 ms ($n = 20$). In 19 of 20 cells, the decay was well fitted with a single exponential with a time constant of 26 ± 1 ms. In mice, the amplitude of the transporter current was 151 ± 30 pA with a 10–90% rise time of 3.9 ± 0.2 ms and a decay time constant of 16 ± 0.8 ms ($n = 18$). DHK (300 µM), a specific blocker of GLT-1 (Bridges et al., 1999), reduced the amplitude of the GluT current by 35 ± 5% ($n = 5$; data not shown), indicating that both GLAST (the other glial glutamate transporter) and GLT-1 participate in glutamate clearance. These results indicate that olfactory nerve stimulation evokes a two-component response in glomerular astrocytes: a large K$^+$ current and a smaller and faster glutamate transporter current.

The slow component reflects mitral/tufted cell activity

It has been suggested that most of the K$^+$ released in glomeruli after olfactory nerve stimulation originates from postsynaptic spiking cells (Jahr and Nicoll, 1981; Khayari et al., 1988). Although mitral/tufted cells and periglomerular neurons could potentially contribute to K$^+$ accumulation and thus to the astrocyte response, the slow component of the astrocyte response closely matched the time course of depolarizations evoked in mitral/tufted cells (Fig. 3). Olfactory nerve stimulation elicited EPSPs in mitral/tufted cells (Fig. 3). Olfactory nerve stimulation elicited EPSPs in mitral or tufted cells that also lasted several seconds (Fig. 3D) (see also Chen and Shepherd, 1997; Carlson et al., 2000) and could be slowly oscillating (Fig. 3E) (Schoppa and Westbrook, 2001). Very similar oscillations were evoked in astrocytes ($n = 4$) (Fig. 3B). Furthermore, potentiation of the mitral cell EPSP by GluT blockers also increased the amplitude and duration of the astrocyte response (Fig. 3C,F). The total charge carried by the astrocyte current was increased 13 ± 2.2-fold by TBOA (100 µM; $n = 4$) and 9 ± 1.7-fold by the competitive GluT antagonist THA (300 µM; $n = 3$).

If the K$^+$ component of the astrocyte response requires electrical activity in postsynaptic mitral/tufted cells, then it should be
Astrocytes also detect a metabotropic glutamate receptor 1-mediated EPSP evoked in mitral or tufted cells.

Previous studies have suggested that afferent activation of mitral cells is completely blocked by AP-5 and NBQX (Chen and Shepherd, 1997; Carlson et al., 2000; Schoppa and Westbrook, 2001). However, inhibition of the astrocyte response by AP-5 plus NBQX was significantly less than inhibition by cadmium (Fig. 4D), suggesting the presence of an additional synaptic component. The kinetics of the currents in the two conditions were also different (Fig. 4C). The Cd$^{2+}$-resistant current was slowly activating and slowly decaying, whereas the astrocyte response in the presence of AP-5 and NBQX included a fast TBOA-sensitive transporter current (see Fig. 6) followed by a long-lasting component that peaked ~200 ms after the stimulus. This slow component increased in amplitude and duration as a function of the stimulus strength (data not shown) and was reduced by the metabotropic glutamate receptor 1 (mGluR1)-selective antagonist LY367385 (50 μM) (Fig. 4B). Block of all three types of glutamate receptors reduced the astrocyte response to the same extent as Cd$^{2+}$ (86 ± 1.7% reduction; n = 8) (Fig. 4D).

Glomerular astrocytes do not express mGluR1 (van den Pol, 1995). In contrast, mGluR1 is highly expressed in mitral and tufted cells, especially in apical dendrites within glomeruli (van den Pol, 1995). Thus, astrocytes detect a previously unreported mGluR1-mediated EPSP in mitral and tufted cells. To test this hypothesis, we recorded mitral or tufted cell EPSPs evoked by olfactory nerve stimulation (Fig. 5A). As reported by others (Chen and Shepherd, 1997; Carlson et al., 2000; Schoppa and Westbrook, 2001), mitral/tufted cell EPSPs were usually fully blocked by AP-5 plus NBQX (94 ± 1.7% charge reduction; n = 12 cells in mice). In some cells however, a slow EPSP remained in the presence of AP-5 and NBQX (Fig. 5A). This slow potential was blocked by LY367385 (Fig. 5A) and enhanced by TBOA (Fig. 5B). In cells that did not exhibit any residual depolarization in the presence of AP-5 and NBQX, adding TBOA or increasing stimulation was usually sufficient to reveal an mGluR1-mediated EPSP (data not shown). Thus, an mGluR1 response could be generated in mitral/tufted cells with only a single shock. This is in contrast to the mGluR postsynaptic response in neurons in other pathways, for which trains of stimuli are usually required (Anwyl, 1999).
The potentiation by TBOA of the mGluR1-mediated EPSP generated in mitral cells was also reflected in astrocyte recordings. In the presence of AP-5 and NBQX, TBOA enhanced the slow K+ component of the astrocyte response (compare gray and black traces). The astrocyte response still contained a transporter current (inset) when mGluR1 receptors were blocked by LY367385 (150 μM) and NBQX (20 μM) were present throughout the recording. LY, LY367385.

Astrocytes detect the glutamate released at olfactory neuron terminals

Morphological data suggest that astrocytes surround dendrodendritic synapses in dendritic compartments but are absent or less prominent at axodendritic synapses between olfactory nerve terminals and mitral or tufted cells (Chao et al., 1997; Kasowski et al., 1999). Thus, we initially hypothesized that the astrocytes would sense transmitter release only at dendrodendritic synapses. However, a TBOA-sensitive transient current remained when dendrodendritic synapses were blocked by AP-5 plus NBQX (Fig. 6A, inset) (n = 16 in rats; 25°C; n = 12 in mice, 33–36°C). This transporter current was also present in AP-5, NBQX, and LY367385 (Fig. 6B, inset), conditions that completely abolished mitral and tufted cell activation (Fig. 5A). Thus, glomerular astrocytes can detect glutamate release in the axonal compartment. The amplitude of the transporter current in AP-5 plus NBQX was not reduced further by LY367385 (p < 0.3; n = 7) (Fig. 6D), suggesting that the mGluR1 EPSP remaining in mitral/tufted cells in the presence of AP-5 and NBQX (Fig. 5A) is not sufficient to evoke detectable release of glutamate from mitral/tufted cell dendrites.

Astrocytes detect the glutamate released at olfactory neuron terminals and at mitral/tufted cell dendrites

To determine whether astrocytes detect glutamate released at dendrodendritic synapses, we examined the effect of glutamate receptor antagonists on the transporter current isolated in the presence of external Ba2+ (Fig. 7A). By preventing mitral/tufted cell activation, GluR blockers should selectively block the dendrodendritic component of the transporter current mediated by glutamate released from mitral/tufted cells but leave unaffected the axodendritic component mediated by glutamate released from olfactory neurons. In rat slices, AP-5 plus NBQX reduced the transporter current by 39 ± 5.2% (n = 9) but had no effect in three other cells. Similar results were obtained with AP-5 plus NBQX plus LY367385 in mice slices (35.6 ± 6.9% inhibition; n = 8). Thus most astrocytes detect glutamate release at both olfactory nerve terminals and mitral/tufted cell dendrites.

In cells exhibiting sufficiently large transporter currents, we examined the dendrodendritic transporter current by subtracting the axodendritic GluT current remaining in glutamate receptor antagonists from the control transporter current (Fig. 7B). In barium, the dendrodendritic transporter current was slightly delayed compared with the axodendritic transporter current (1.9 ± 0.7 ms between the onset of the dendrodendritic and axodendritic transporter currents, n = 7 cells in rats; 0.8 ± 0.3 ms in mice, n = 5), indicating that glutamate is released from mitral/tufted cells shortly after their activation by the olfactory nerve input. The dendrodendritic transporter current also had slower kinetics (10–90% rise time, 8.4 ± 0.9 ms; decay time, 26.6 ± 1.7 ms; half-width, 31.7 ± 1.1 ms) than the axodendritic transporter current (10–90% rise time, 4.2 ± 0.4 ms; decay time, 13.9 ± 1.4 ms; half-width, 17.3 ± 1.6 ms; n = 7 cells in rat slices) (Fig. 7C).

Discussion

Removal of K+ from the extracellular space (Amédée et al., 1997; Kofuji and Newman, 2004) and clearance of glutamate from the synaptic cleft (Danbolt, 2001) are two well known functions of astrocytes in the brain. Both mechanisms produce currents in glial cells that are caused by and reflect neuronal activity, as illustrated by our recordings from olfactory bulb astrocytes. Similar to astrocytes in the hippocampus (Bushong et al., 2002), olfactory bulb astrocytes exhibit a very dense spongiform arborization, a morphology that results in an intimate relationship with neurons and synapses and the ability to sense neuronal activity in compartments within the neuropil. Glomerular astrocytes project their ramifications into a single glomerulus, an anatomical specialization considered to be the functional unit for odor processing. Moreover, mitral cells projecting to the same glomerulus show highly correlated activity (Carlson et al., 2000; Schoppa and Westbrook, 2001, 2002). Therefore, currents produced by K+ and glutamate uptake in glomerular astrocytes report the ensemble activity of a group of neurons behaving as a single unit.
Potassium accumulation in olfactory bulb glomeruli

A single action potential may produce a transient increase of ~1 mM extracellular K⁺ (Walz, 2000). In the bulb, K⁺-sensitive electrodes have revealed that potassium can reach 7–8 mM in the glomerular layer in response to a single olfactory nerve stimulation (Jahr and Nicoll, 1981; Khayari et al., 1988). This K⁺ accumulation is reflected as a long-lasting and Ba²⁺-sensitive current in glomerular astrocytes, caused by K⁺ permeability of Ba²⁺-sensitive IRK channels. The similarity between the astrocyte and mitral/tufted cell responses to olfactory nerve stimulation suggests that mitral/tufted cells are the primary source of the K⁺. This is not surprising, because mitral/tufted cells have a depolarized resting potential (~55/−60 mV) (Schoppa and Westbrook, 2001) and generate long-lasting EPSPs in response to olfactory nerve stimulation. The highly correlated activity of mitral/tufted cells within a glomerulus will also enhance efflux of K⁺ into the extracellular space.

Astrocytes are thought to use IRK channels to remove K⁺ from regions with high extracellular K⁺ and release it to regions with lower K⁺, a mechanism known as spatial buffering or siphoning of K⁺ (Kuwana et al., 1989; Amédée et al., 1997; Kofuji and Newman, 2004). In the retina, Kir4.1 channels are the main channels involved in the regulation of external K⁺ (Kofuji et al., 2000). Kir4.1 is also highly expressed in glomerular astrocytes, particularly in processes wrapping synapses and blood vessels (Higashi et al., 2001). As proposed by Higashi et al. (2001), K⁺ could be siphoned from the glomerular neuropil by glial Kir4.1 channels and released into blood vessels.

A recent modeling study suggested that the envelope of astrocytes around each glomerulus should reduce K⁺ diffusion and thus limit interglomerular interactions (Goriely et al., 2002). The morphology of GFAP–GF and dye-loaded astrocytes supports a glomerular-specific distribution of astrocytes. Likewise, if we moved the stimulating electrode laterally by 50–100 μm, the glial potassium response diminished markedly (data not shown), consistent with limitation of extracellular K⁺ accumulation within glomeruli. Dual astrocyte recording in adjacent glomeruli would be required to definitively demonstrate the lack of interglomerular interaction, but this proved extremely difficult in our experience.

It is not clear whether removal of K⁺ is complete or fast enough to prevent intraglomerular excitation of neuronal processes. Murphy and Isaacson (2003) reported recently that a mild exogenous increase in extracellular K⁺ (5–7.5 mM) can depolarize olfactory nerve terminals and reduce their excitability. Thus, as proposed by Jahr and Nicoll (1981), depolarization of olfactory afferent terminals by high external K⁺ caused by mitral/tufted cell activity may contribute to the pronounced paired-pulse depression at axodendritic synapses. Consistent with this hypothesis, we found that transporter currents evoked by two OSN stimuli at 100 ms intervals were not depressed in the presence of NBQX, AP-5, and LY367385 [paired-pulse ratio (PPR) was 95.7 ± 2.9%; n = 7; data not shown]. This result is in contrast to the pronounced paired-pulse depression in tufted or periglomerular cells (PPR <50%) (Ennis et al., 2001; Murphy et al., 2004). However, other factors may also explain the absence of depression observed when astrocytes were used to monitor glutamate release from olfactory nerve terminals. First, dopamine and GABA, two potent retrograde inhibitors of presynaptic glutamate release (Aroniadou-Anderjaska et al., 2000; Ennis et al., 2001), are no longer released when excitatory transmission is blocked. Second, transporter currents were recorded in the presence of Ba²⁺ that may affect the properties of glutamate release from olfactory terminals.

Astrocytes as detectors of glutamate release

The glial transporter current evoked in glomerular astrocytes was mediated by glutamate release at both axodendritic and dendrodendritic synapses. In the presence of Ba²⁺, most of the glutamate detected by a glomerular astrocyte was released from OSN terminals. This result by itself is not surprising, because olfactory sensory neurons release glutamate with high probability (Murphy et al., 2004) and axodendritic synapses vastly outnumber dendrodendritic synapses in glomeruli (Kasowski et al., 1999). However, our estimate must be taken with caution, because Ba²⁺ directly depolarizes mitral and tufted cells (data not shown) and may affect the excitability of olfactory nerve terminals as well. Thus, the presence of Ba²⁺ may distort the relative contribution of the two synaptic compartments to astrocytic transporter current.

The transporter current mediated by glutamate released from...
mitral/tufted cell dendrites exhibited slower kinetics than the component mediated by glutamate release from olfactory axons. Asynchrony of glutamate release from mitral/tufted cells is a likely factor contributing to the slower time course. Although Ba\(^{2+}\) could alter the time course of glutamate release, asynchrony of glutamate release from mitral/tufted cells has been reported recently. Specifically, some periglomerular neurons receiving inputs from mitral/tufted cells respond to olfactory nerve stimulation with a barrage of EPSC of variable latency (Hayar et al., 2004). In contrast, in periglomerular cells that receive monosynaptic olfactory nerve input, afferent stimulation evokes a short-latency, monophasic EPSC (Ennis et al., 2001; Hayar et al., 2004). This result is consistent with synchronous release of glutamate as suggested by the fast kinetic of the axodendritic transporter current.

Anatomical and functional compartmentalization of olfactory glomeruli

The anatomical organization of olfactory glomeruli has been carefully examined with immunohistochemistry and electron microscopy. These studies indicate that the axodendritic and dendrodendritic synapses are spatially segregated in different glomerular subcompartments (Chao et al., 1997; Kosaka et al., 1997; Kasowski et al., 1999; Kim and Greer, 2000). Some reports have further argued that astrocyte processes delineate the subcompartments, enveloping some but not all dendrodendritic synapses, whereas they seem to be excluded from axodendritic synapses (Chao et al., 1997; Kasowski et al., 1999). This organization might suggest that astrocytes detect glutamate release only from mitral/tufted cell dendrites. In contrast, our results indicate that glomerular astrocytes also detect glutamate release from olfactory axon terminals. The kinetics of the synthetically evoked axodendritic transporter currents were similar to those recorded in the hippocampus (Bergles and Jahr, 1997), where astrocyte processes are closely apposed to synapses (Ventura and Harris, 1999). This might suggest that astrocyte processes are located close to axodendritic synapses. However, as in the hippocampus, where the glial coverage of synapses is variable (Ventura and Harris, 1999), astrocytic processes may not be present at all synapses. This could explain why glia-ensheathed axodendritic synapses were not seen in some studies (Chao et al., 1997; Kasowski et al., 1999) but reported in others (Higashi et al., 2001). Alternatively astrocyte processes might be located between axodendritic and dendrodendritic synapses, thereby providing a diffusional barrier. If the two surfaces of this barrier are covered with GluTs, astrocytes could detect glutamate released from both synapses.

Although mGluR1 has been shown to regulate the excitability of mitral cells (Heinbockel et al., 2004), our results provide the first evidence that mitral/tufted cell mGluR1s are synthetically activated by glutamate released at olfactory neuron terminals, even with single stimuli. Activation of mGluR1 was limited by glutamate transporters. Thus glial GluTs at axodendritic synapses could regulate olfactory bulb processing by controlling mGluR1 synaptic activation. The presence of glial GluTs at axodendritic synapses may also reinforce synaptic compartmentalization within glomeruli. Indeed, several properties of axodendritic synapses suggest that large amounts of glutamate are released in the axonal compartments. First, several olfactory neuron terminals form clusters of boutons onto mitral/tufted cell dendrites, leaving no apparent space between boutons for astrocytic processes [Kasowski et al. (1999), their Figs. 2, 4]. Second, the probability of transmitter release is high at olfactory afferent terminals (Murphy et al., 2004). These properties are a recipe for spillover of glutamate at axodendritic synapses. However, astrocytes GluTs in the axonal compartments may serve to limit glutamate diffusion and prevent cross talk between axodendritic and dendrodendritic synapses.

References

