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Adaptivity of Tuning Functions in a Generic Recurrent
Network Model of a Cortical Hypercolumn

Lars Schwabe and Klaus Obermayer
Department of Computer Science and Electrical Engineering, Berlin University of Technology, 10587 Berlin, Germany

The representation of orientation information in the adult visual cortex is plastic as exemplified by phenomena such as perceptual
learning or attention. Although these phenomena operate on different time scales and give rise to different changes in the response
properties of neurons, both lead to an improvement in visual discrimination or detection tasks. If, however, optimal performance is
indeed the goal, the question arises as to why the changes in neuronal response properties are so different. Here, we hypothesize that these
differences arise naturally if optimal performance is achieved by means of different mechanisms. To evaluate this hypothesis, we set up
arecurrent network model of a visual cortical hypercolumn and asked how each of four different parameter sets (strength of afferent and
recurrent synapses, neuronal gains, and additive background inputs) must be changed to optimally improve the encoding accuracy of a
particular set of visual stimuli. We find that the predicted changes in the population responses and the tuning functions were different for
each set of parameters, hence were strongly dependent on the plasticity mechanism that was operative. An optimal change in the strength
of the recurrent connections, for example, led to changes in the response properties that are similar to the changes observed in perceptual
learning experiments. An optimal change in the neuronal gains led to changes mimicking neural effects of attention. Assuming the
validity of the optimal encoding hypothesis, these model predictions can be used to disentangle the mechanisms of perceptual learning,

attention, and other adaptation phenomena.
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Introduction
Orientation tuning is the paradigmatic example of stimulus se-
lectivity in the visual cortex. It first arises in the primary visual
cortex (V1) and is preserved in higher visual areas such as V2 and
V4. The typically bell-shaped orientation tuning functions, how-
ever, have been shown experimentally to be highly adaptive. They
depend on the temporal context of the stimulation (Muller et al.,
1999; Dragoi et al., 2002) and the current behavioral demands
(Moran and Desimone, 1985; McAdams and Maunsell, 1999,
2000; Treue and Martinez Trujillo, 1999), and they also change
during the course of training a perceptual task (Schoups et al.,
2001; Ghose et al., 2002; Yang and Maunsell, 2004). This raises
the question of why the representations of physically unchanged
stimuli in the adult visual cortex are so adaptive. Would it not be
sufficient for an animal to act successfully if one proper represen-
tation of the current “state” of the environment were computed
in the visual cortex and then forwarded to neuronal structures
responsible for planning and initiating actions?

Many previous theoretical works are based on “optimal cod-
ing hypotheses” to explain the observed changes. Paradiso
(1988), Seung and Sompolinsky (1993), Clifford et al. (2000),
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Nakahara et al. (2001), and Bethge et al. (2003), for example, used
descriptive models of tuning functions and assessed the quality of
the sensory representation as a function of the parameters of
tuning functions. In reality, however, neuronal response proper-
ties are computed in a recurrent cortical network in which archi-
tecture and plasticity mechanisms constrain the set of available
tuning functions and their possible changes. Hence, the changes
predicted by descriptive models may not be realizable. Teich and
Qian (2003) set up a physiologically plausible model to explain
the changes in orientation tuning functions in V1 during adap-
tation and perceptual learning. In this study, however, the synap-
tic changes were not derived from a functional principle; rather,
they were determined ad hoc to fit experimental data.

This motivated us to combine both approaches and to evalu-
ate an optimal coding principle for a physiologically realistic
model of a visual cortical hypercolumn. A recurrent neuronal
network encodes a stimulus (e.g., the orientation 6 of an oriented
grating) by the activity of its output neurons. The quality of this
representation can then be assessed using a hypothetical ideal
observer (“decoder” or “read-out”). Within such a setting (see
Fig. 1), we address the following two questions: (1) How do the
tuning functions and population responses change if the quality
of representation is optimally improved for a “relevant” set of
stimuli? (2) How are these changes affected, if plasticity is re-
stricted to one of the four “sites of plasticity”: maximum conduc-
tance of the afferent or recurrent synapses, gain of the excitatory
neurons, and strength of an additive (feedback) input current?

We find that optimal changes in response properties are dif-
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ferent for different sites of plasticity and a)
that specific changes can even go into op-

posite directions, and still improve coding =
quality. This finding stresses how impor- 2]
tant it is to consider physiological con-
straints when interpreting data in light of a
functional principle. We also find that
published experimental data on percep-
tual learning and on attentional modula-
tions of tuning functions in the visual cor-

predictions of the model if the recurrency
(for perceptual learning) or the values of
the neuronal gain (for attentional modu-
lation) are changed. This motivates the hy-
pothesis that seemingly unrelated phe-
nomena may be explained by one
functional principle and that diversity
emerges because different routes are taken
to calibrate cortical representations according to the same goal.

Materials and Methods

In the following section, we describe the hypercolumn model (Fig. 1b),
the single-cell model, the basic quality measure, and the two objective
functions used to measure coding quality. All parameter values refer to
the “unadapted” system and were adjusted such that the responses of the
model are consistent with neuronal responses from area V4 of the ma-
caque monkey (Yang and Maunsell, 2004). An encoder/decoder frame-
work (Fig. 1a) is used to construct a principled quality measure for the
neuronal representation, which is independent of a concrete neuronal
read-out. We do not claim that the encoder/decoder framework applies
one-to-one to the feedforward/feedback interactions between two con-
nected visual areas; rather, this framework is used to construct a princi-
pled measure of the quality of a neuronal code.

Mean-field network model of the cortical hypercolumn. The architecture
of the recurrent network model is shown in Figure 1b. Excitatory and
inhibitory neurons receive already tuned afferent inputs from a lower
visual area as well as additive and background (feedback) inputs. The
latter are not described explicitly, but their overall effects are summarized
by a fluctuating background conductance and an additive input current
(“feedback”). Parameterizations were chosen such that the model repro-
duced the “average response” of a V4 cell in the control trial of a percep-
tual learning experiment (Yang and Maunsell, 2004).

We used a simplified rate model with a biophysical interpretation
following Shriki et al. (2003). Consider a presynaptic neuron j making a
synapse to a postsynaptic neuron. Whenever neuron j fires a spike, the
postsynaptic conductance makes an instantaneous jump of magnitude
1/7; and then decays with the time constant 7; as described by 7;dg;/dt =

gJ + 2 (r— tk) where tkdenotes the tlme of the kth spike fired by
neuron j. Dependmg on the type of the synapse, we set 7, = 7, = 5 ms for
excitatory synapses and 7; = 7, = 10 ms for inhibitory synapses. Letf, =
F, (I;) denote the firing-rate response of neuron i to the input current I,
where f; is a state variable denoting the firing rate of neuron i and F, is the
current—frequency function of neuron i. Then one obtains the following
steady-state condition (Shriki et al., 2003):

Figure1.

fi=F( LT+ 14+ X Wi — A1i<g%>>,
j

where W;; = G;; (E; — E{' — V) is the “synaptic weight” for the connec-
tion between the neurons i and j. 2 and 4 are the afferent and additive
input currents, and E; is the reversal potential for the synaptic connec-
tions of (presynaptic) neuron j (E; = Eg = 0 mV for excitatory synapses
and E; = E; = —80 mV for inhibitory synapses). The current I{ and the
voltage Vi determine the shift AL(g ) = I + Vi g of the current—
frequency function toward higher or lower input currents (values for If
and V7§ are given below), and g and Er are the leak conductance and
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The hypercolumn model and the encoder/decoder framework for assessing the quality of sensory representations. a,
The encoder/decoder framework. An ideal observer computes a point estimate 6 of the stimulus 6 based on the neuronal
responses of the cortical hypercolumn. The variance of this estimate should be minimal; therefore, the Fisher information should
be maximized. b, Recurrent network model of a cortical hypercolumn of excitatory (filled circles) and inhibitory (open circles)
neurons. The thick arrows point to the sites of plasticity (dashed lines) considered in this report. add., Additive.

reversal potential of neuron i. The steady-state responses f; are computed
by integrating 7df,/dt = —f, + F/(I)).

This mean-field model describes steady states of large networks that do
not possess a high degree of synchrony. One of its key assumptions is that
changes in the input conductance of the cell lead to subtractive changes in
its current—frequency curve. This assumption is fulfilled by the model
neurons we use (see below, Single-cell model). Our model differs slightly
from the one used by Shriki et al. (2003). First, we used a different model
neuron. Second, we considered current—frequency functions in the pres-
ence of fluctuating balanced background inputs. The latter leads to
smaller effective membrane time constants so that the network dynamics
is likely to be dominated by the synaptic time constant.

Input currents. We separate the overall input current I; = Fff + [ +
I into an afferent, a recurrent, and an additive background compo-
nent. A large fraction of the latter is assumed to be a result of direct
feedback received from a downstream area. For excitatory and inhibitory
neurons, we initially set /% to 0.6 and 0.64 nA, respectively. This gives
rise to a background activity of 3.6 spikes/s (sp/s) for the excitatory and
inhibitory neurons. When a stimulus 6 is presented to the network, it
leads to an afferent input to neuron 7, which is calculated using a bell-
shaped input tuning function with a peak at 62"

I(0)=WTMexp(|cos(27d;0))—1|),
W= GI(B, — Ef — V).

d,(0) = min(|6 — 0P, 1 — |6 — 6F"]) is the circular distance between
stimulus 0 and the “afferent” preferred stimulus (PS) 6¥* = i/N of neuron
i, N is the number of excitatory or inhibitory neurons, depending on the
type of neuron i, and M = 2000 sp/s. For convenience, we consider
dimensionless one-dimensional “circular” stimuli with 0 =< 6 =< 1. To
obtain numerical values for stimulus domains such as “orientation” or
“direction,” 6 needs to be multiplied by 180 and 360°, respectively.

The recurrent input is a weighted sum of the output activities of the
neuron and is given by the following equations:

Il’eC 2 WTCC .
Wi =G (B~ Er = V§),
rec—Z exp(k;cos(2md;( GP')))

where k; (k; = k; = 1 for inhibitory neurons and k; = k; = 4 for
excitatory neurons) and Z; determines the specificity and the strength of
the recurrent connections. The strengths Z; are set so that ; G{** = 0.135
nS for the excitatory neurons and 0.2813 nS for the inhibitory neurons j.
The responses of the network with its initial parameterization and the
corresponding input currents are shown in Figure 2, g and c.

Single-cell model. The single-cell model is the Hodgkin—Huxley-type
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Figure 2.  Response properties and quality of representation of the model hypercolumn for the

choice of parameters given in Materials and Methods. @, Responses of excitatory (exc; solid line) and
inhibitory (inh; dotted line) neurons to a stimulus with 6 = 0.5. b, Contribution of the excitatory
neurons to the Fisher information of the network for & = 0.5 normalized (norm.) to the maximal
value. ¢, Input currents at the steady state for an excitatory neuron with PS = 0.5 as a function of the
PS of the presynaptic neuron. aff, Afferent. d, Fits to the current—frequency functions of the
conductance-based model neurons. exc neuron, Solid line; inh neuron, dashed line.

neuron described by Destexhe et al. (2001). The dynamics of the mem-
brane potential V; of neuron i is described by the following equation:

av;
C:ndt = - g}(‘/l - E}) - Elint - Ii>
int

where I, denotes intrinsic voltage-dependent currents, g and Er are the
leak conductances ( g- = gk= 22.74 nS for excitatory neurons and g- =
gr = 2gg for inhibitory neurons) and reversal potentials (E = E;; = Ey =
—80 mV), C" is the membrane capacitance (C" = C¢' = C{" = 0.5 nF),
and ¢ is the time. Each current I, is described by a Hodgkin—Huxley
equation:

L () =gm™ () RN (1) (V(D) = E),

where g is the peak conductance, E is the reversal potential, and m(t) and

h(t) are the activation and inactivation variables. Three voltage-

dependent currents are included: a fast Na ™ current and a delayed-

rectifier K™ current for the generation of action potentials and a slow

noninactivating K™ current responsible for spike-frequency adaptation.
For the Na ™ current, we used the following equations:

INa :gNam 3h( V_ENa)’

dm
E: am(V)(l - m) - Bm(V)m)

dh
E=ah(\/)(l — h) — Bh(V)h;

032V - Vy — 13)
T exp(— (V — Vp — 13)/4) — 1

0 0.28(V — Vi — 40)
B = (V= Ve — 40)5) — 1’
ay = 0.128exp( — (V — Vy — Vs — 17)/18),

4
Tltep( — (V- Vi — Vs — 40)/5)°

Bx
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with parameter values V. = =58 mV, Vg = —10 mV, g, = 17.87 uS,
and Ey, = 50 mV.

For the “delayed-rectifier” K* current, we used the following
equations:

d
=gV = B, = a0 = n) = BV,

0032V = Vg — 15)
O exp(— (V= Vp — 15)/5) — 1

Bn = 0.5exp( — (V. — Vi — 10)/40),

with parameter values Ex = —90 mV and gy4= 3.46 uS.
For the noninactivating K™ current, we used the following equations:

dn
IM=§M”(V - EK), Ez an(V)(l - ”) - Bn(V)”:

3 0.0001(V + 30)
1 — exp( — (V+30)/9)°

= 0.0001(V + 30)
T — exp((V + 30)/9)°

a,

with g, = 0.28 uS for excitatory neurons and g, = 0.028 uS for inhib-
itory neurons.

The model neurons additionally receive balanced excitatory and in-
hibitory synaptic background inputs. The corresponding conductances
are described by a stochastic process similar to an Ornstein—Uhlenbeck
process with the following update rule (Gillespie, 1996):

gbg(t+At)=ggg+ [gbg(t)—ggg]exp(—At/T) +AXN(0,1),

where ggg is the average conductance, 7 is a synaptic time constant, A is
the amplitude coefficient, and N(0,1) is a normally distributed random
number with zero mean and unit SD. The amplitude coefficient has the
following analytic expression:

Pl 2]

where D = 2027~ ! is the diffusion coefficient. Numerical values for the

background conductances are o = 3 nS and o = 6.6 nS for the variances
of the excitatory and inhibitory conductance, 7 = 2.7 ms for the excita-
tory time constant and 7 = 10.5 ms for the inhibitory time constant, and
gﬂg = 12.1 nS for the mean excitatory conductance and ;g = 57.3nS for
the mean inhibitory conductance. The reversal potentials were 0 and
—75 mV for the excitatory and inhibitory conductances.

We simulated the spike responses of this model neuron to current
injections for different values of the leak conductance in the presence of
the fluctuating background conductance. We considered only the al-
ready adapted responses, which were then best fitted with thresholded
polynomials. These fits were done by minimizing the mean-squared er-
ror between the simulated firing rate and the one predicted by the thresh-
olded polynomials. We obtained the following equations:

FE(I)=max(0,af(I-AI( g,)))
Fi(I)=max(0,a"(I-AI( g))+b"(I-AI( g;))?),

with af = 71.9 sp/s (nA) "', If, = 0.13 nA, and V§, = 15.2 mV for excita-
tory neurons and a; = 133 sp/s (nA) ~', b, = —28 sp/s (nA) ~%, I} = 0.02
nA, and Vi = 14.6 mV for inhibitory neurons (Fig. 2d).

The average output activity of the mean-field (rate) model is then
converted into a noisy spike output activity with Poisson statistics with
the spikes being conditionally independent given the stimulus. The prob-
ability to count # spikes fired by neuron i in a time interval of duration 7
is given by the following equation:

. io n
Pi(n; 0) = W@(P(—T X £(0)),
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where 6 is the presented stimulus and () is the steady-state response f;
of neuron i to the stimulus 0. We always used 7 = 1.

Fisher information. To quantify the quality of the representation of the
stimulus 6, we consider a hypothetical ideal observer whose task is to
provide the best possible estimate 6 of the stimulus given a set of spike
counts and knowledge of the probability distribution P;(#;6). In an esti-
mation, task the Fisher information is a useful quantity to measure the
quality of a representation, because (for a one-dimensional continuous
stimulus 6) the Fisher information J(6) provides, via 1/J(6), a lower
bound for the variance of any unbiased estimator of 6 (Kay, 1993). If
P,(n;0) is the probabilistic description of how the spike count 7 of neuron
i relates to the stimulus value 6, then no unbiased estimate of 6 based on
the spike count n can have a lower variance than 1/J(0).

For a population of N neurons with their “noise” being statistically
independent given the stimulus, the population Fisher information is
J(0) = 2i Ji(6), where

Ji(6) = E[(% log P{(n; 0)) ]Pi(n; 0).

The Fisher information is also monotonically related to the mutual in-
formation between the stimulus 6 and the whole vector n = (n;, n,, . . .,
ny) of the spike counts (Brunel and Nadal, 1998) as well as to the measure
d' often used in the psychophysics literature (Seung and Sompolinsky,
1993). For Poisson statistics of the spike response, one obtains the fol-
lowing equation:

10 =A%) .

Figure 2b shows J;(6 = 0.5) as a function of neuron i (normalized to the
maximum) for the initial network parameterization.

Note that here the Fisher information of a single neuron i, J;(6), is
proportional to [ £'(0)] */£.(0), where £,(0) and £’ (6) are the tuning func-
tion of that neuron and its derivative. To determine how much changes
in the absolute values of f;( 6) and the changes in the slopes £, (0) contrib-
uted to the total improvement of the Fisher information, we calculated
the quantities J,44(6) and J,(6). For ],44(6) we used the amplitudes f;(6)
after we changed the model parameters and the derivatives f;'(60) before
the reparameterization. For ]Slp( 0), we used the derivatives f;' () after the
reparameterization but the amplitudes f;(6) before the reparameteriza-
tion. Thus, an increase/decrease in the encoding accuracy only attribut-
able to changes in the slope is reflected by a large change in J;,(6),
whereas an increase/decrease only attributable to changes in the response
magnitude is reflected by a large change in ], 44(0).

Objective functions. A full optimization of the network is only a rea-
sonable approach if additional constraints on the plausible range of val-
ues of the network parameters are imposed. Because we want our results
to depend as little as possible on other constraints than the chosen net-
work architecture and the chosen site of plasticity, we consider how the
objective functions change as a function of an optimal but small change
in the values of the model parameters. Therefore, we slightly vary the
relevant model parameters along the gradient of the objective function,
similar to Nakahara et al. (2001), but without further constraints.

In this report, we consider the two objective functions, J(6 = 0.5) and
[J(6)d6. The first objective function quantifies how well the stimulus 6 =
0.5 is encoded. It is an example for the task to improve coding accuracy
for a small set of relevant orientations, which may happen, for example,
during a perceptual learning experiment. The second objective function
quantifies how well all stimuli are encoded. It is an example for the task to
improve coding accuracy overall, which may happen in a spatial atten-
tion experiment. The derivatives of J;(6) w. r. t., the conductance G;° at
the recurrent synapses, the conductance G** of the afferent synapses, the
gain aF of an excitatory neuron r, and the additive input I** are given in
the Appendix (available at www.jneurosci.org as supplemental material)
(Table 1).

Results
In this section, we report the changes in the four sets of network
parameters and the resulting changes in the neuronal responses
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Table 1. Summary of the vector notation used in the Appendix to derive
expressions for the gradients of the Fisher information objective function

Symbol Definition Symbol  Definition
f fi=afla6 F f = aflaL;
prt.r f?ff,r — ﬁfi/aG?ff poft.t F?ff,r — 82Fi/6G?ff8L
faff,r f?ff,r — aZfl/aG:tfao Frecrs Fircc, s azFl/aG::caIl
?re(, rs firec, s _ af,/aGiic qul,r F;nul,r — azFiléafﬁIi
frec,rs ]?irec,rs — (:)zfl/aG;:cao Fadd,r F?dd'r — azFi/aF:ddaIi
e fmile = He/9a8 i I, = o196
for o frhr=9floato0 T Iy = ar"10GY"
por fdr=oafsent § ;= 91110G"00
fadd.r fiadd,r — azfi/aliddae W h‘r =5,

'Jrs hrs = 6ri‘/rsg:c

h* h® = 8V, (0F/0L)(9f./96)

for an optimal increase in the quality of the representation. As a
measure of quality, we use the Fisher information for a particular
stimulus value as well as the integral of the Fisher information
terms over all stimulus values. The first case corresponds, for
example, to the task of improving the ability to judge orientations
close to a reference orientation (e.g., vertical). The second case
corresponds, for example, to the task of improving this ability for
all oriented stimuli such as at a particular visual field location. We
choose the initial parameterization of our network such that it
reproduced the “control” responses in area V4 of the macaque as
reported by Yang and Maunsell (2004). We checked whether the
reported response changes were different when the initial param-
eters were chosen differently (“Mexican-hat”-like recurrent con-
nections with weaker and stronger values for the maximum con-
ductances), but we found no qualitative differences.

Plasticity at afferent synapses

We first asked how to change the maximum conductances G of
the afferent synapses to excitatory and inhibitory neurons to in-
crease the Fisher information of the network specifically for 6 =
0.5. We computed the gradient of the corresponding objective
function w. r. t., the maximum conductances of the afferent syn-
apses, and changed their values by a small amount, AG:, pro-
portional to this gradient (see Materials and Methods). Figure 3a
shows the AG™™ normalized by the unadapted initial values
AGigre as a function of the PS of the postsynaptic neuron i. The
changes were strongest for neurons with the PS differing approx-
imately *=0.16 from 6 = 0.5. For excitatory neurons with these
preferred stimuli, the afferent synapses became stronger (thick
solid line), whereas the synapses to inhibitory neurons with these
preferred stimuli became weaker (thick dashed line). The afferent
synapses to excitatory neurons with the PS very close to 6 = 0.5
do not change, but inhibitory neurons with these preferred stim-
uli receive slightly more excitation via their afferents after the
adjustment. We also asked how to change the afferent synapses to
increase the Fisher information for all stimuli. The resulting
changes were uniform. All synapses to excitatory neurons became
stronger (thin solid line), and all synapses to inhibitory neurons
became weaker (thin dashed line). Figure 3b compares the pop-
ulation Fisher information before and after the adjustments and
demonstrates that for the stimulus-specific changes, the strongest
increase was for the stimulus 6 = 0.5 (solid line). However, the
performance also increased for stimuli close to 6 = 0.5, because
the neurons that increase their contribution to the encoding of
this stimulus also contribute to the encoding of the nearby stim-
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Figure 3.  Adjusting the afferent synapses. a, Predicted changes in the afferent synapses to excitatory (exc; solid line) and shape; only the location of the peak activity

inhibitory (inh; dashed line) neurons to optimally increase the objective functions J(6 = 0.5) (thick lines) and [J(6)d0 (thin lines)
(see Materials and Methods). These changes were computed by following the gradient with a step size = 10 —%. b, Relative
change in the Fisher information after having adjusted the afferent synapses for the J(6 = 0.5) and fJ(6)d6 objective functions
(solid and dotted lines). ¢, Population response before and after (thin and thick lines) having made the adjustment to increase
JJ(6)d6. Inthis case, the shape of the population response after the adjustment is the same as the shape of the tuning functions
of the individual neurons. The inset shows the ratio of the responses after the adjustment to the responses with the initial
parameterization (solid line; dotted line marks a ratio of 1). d, Tuning functions for two neurons with preferred stimuli of 0.25 and
0.5 (dashed and solid lines) before and after (thin and thick lines) optimizing J(0 = 0.5). e, Population response to the same two
stimuli, 6 = 0.25 and 6 = 0.5 (thin and thick lines), for the same adjustment. f; Fisher information of the individual neurons for
0 = 0.5 before and after (thin solid and thick dotted lines) optimizing J(6 = 0.5). The solid lines shows the Fisher information of
the reparameterized network if it were only attributable to the changes in the response magnitude [/, 44(6 = 0.5); thick dashed
line] and tuning function slopes [JS,p(G = (.5); thick solid line] at 6 = 0.5 (see Materials and Methods for details). The normal-

was dependent on the stimulus. However,
after the reparameterization, the shape of
the population activation depends on the
stimulus. For example, the activation pro-
file for 6 = 0.5 became bimodal, because
the tuning functions for neurons with a PS
close to 0.5 were not changed, whereas the
peak amplitudes of neurons with a PS dif-
fering by A# = *0.16 from 6 = 0.5 in-
creased. For 6 = 0.25, the profile was again
unimodal. The peak activity increased and

ization is w. r. t. the maximal Fisher information before the reparameterization.

uli. For the uniform change, the Fisher information was also
increased in a uniform manner (dotted line).

For both the stimulus-specific and the uniform changes in the
afferent synapses, the Fisher information increased, because the
tuning functions were changed. If the adjustment was uniform,
then the initially “symmetric” network parameterization (all
neurons and associated connections have equal values of their
model parameters) remained symmetric. For symmetric param-
eterizations, the population response to a stimulus has the same
shape as the tuning functions of the neurons. However, for
stimulus-specific adjustments, this is no longer the case. There-
fore, here as well as for the other three mechanisms, we report
only the population responses for uniform adjustments, but for
stimulus-specific adjustments, we show both the population re-
sponse and the tuning functions.

Figure 3¢ shows how the population response of the excitatory
neurons to the stimulus 6 = 0.5 (and hence the shape of all tuning
functions) changed after the uniform adjustment of the afferent
synapses. All excitatory neurons received more afferent excita-
tion, and all inhibitory neurons received less afferent excitation.
Without recurrent connections, this would have caused a multi-
plicative effect on all stimulus-driven activations, but because of

was slightly shifted toward 6 = 0.5.
Let us now analyze how the reparam-
eterized network achieved its increase in
the quality of the representation of the stimuli around 6 = 0.5.
Figure 3f (thin line) shows the contribution of every neuron to
the population Fisher information for the initial parameteriza-
tion (normalized to the maximal contribution) (compare Fig. 2b)
as well as the contribution after the reparameterization (dotted
line; relative to the normalization). Neurons with an initially high
contribution increased their Fisher information even more,
whereas the contribution of neurons with initially low Fisher
information for 6 remained low.

For conditionally independent Poisson spike trains, the Fisher
information of a single neuron i for a stimulus 6, J;(0), is propor-
tional to[f;’ (0)]%/£.(0), where £,(0) and f;' () are the tuning func-
tion of that neuron and its derivative (see Materials and Meth-
ods). Figure 3f shows how much of the overall improvement is
attributable to changes in the response magnitudes and the
slopes. For neurons with a high contribution to the population
Fisher information, the value J,44(0 = 0.5) after the change is
below the value /(6 = 0.5) before the change (thick dashed vs thin
solid line), whereas the value J,(6 = 0.5) after the change is
above the value J(6 = 0.5) before the change (thick solid vs dotted
lines). The increased response magnitudes would have caused a
decrease in the encoding accuracy, but this effect was compen-
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sated by the increase in the slopes at § =
0.5, and overall the encoding accuracy for
6 = 0.5 was increased.

Plasticity at recurrent synapses

Let us now consider the consequences of
only adjusting the conductances at the re-
current synapses. We first adjusted the
synapses to increase the population Fisher
information specifically for the stimulus
6 = 0.5 (see Materials and Methods). Fig-
ure 4a shows the values AG{" by which we
changed the synapses at the recurrent con- 0 0.5
nections between excitatory neurons as a PS [presyn.]
function of the presynaptic and postsyn-
aptic initial PS. For neurons with a PS dif-
ferent from 6 = 0.5, synaptic changes de-
pend on the PS of the postsynaptic neuron.
The excitation from presynaptic neurons
with a PS similar to the PS of the postsyn-
aptic neuron increased, and the increase
was strongest for postsynaptic neurons
with the PS differing approximately +0.16
from 6 = 0.5 (Fig. 44, inset). The excita-
tion from presynaptic neurons with a PS 0

PS [postsyn.]

Response [sp/s]
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neuron decreased, and the decrease was
also strongest for postsynaptic neurons
with the PS differing approximately +0.16
from 6 = 0.5. The changes for the other
three types of recurrent connections (EI,
IE, and II) are complementary to the
changes shown in Figure 4a. Where the excitation of excitatory
neurons increased, the inhibition of excitatory neurons de-
creased, the excitation of inhibitory neurons decreased, and the
inhibition of inhibitory neurons increased.

These adjustments caused changes in the tuning functions,
which in turn gave rise to the population Fisher information
shown in Figure 4b. For the objective function J(6 = 0.5), the
strongest increase was for stimuli around 6 = 0.5 (solid line),
whereas the increase was “uniform” for the uniform objective
function [J(60)d6 (dotted line). For the latter, the population re-
sponse to a stimulus with § = 0.5 is shown in Figure 4c. The
responses of all neurons in the reparameterized network were
lower compared with the responses with the initial parameteriza-
tion (thick vs thin line). The shape of the population activation
(and hence of the individual tuning functions) changed as well,
and overall the change was not strictly multiplicative (Fig. 4c,
inset). The reduced activity and the shape change resulted in an
increased encoding accuracy for all stimuli.

Figure 4, d and e, shows examples of tuning functions and
population responses after improving J(6 = 0.5). Figure 4d shows
the tuning functions for two neurons with PS 0.5 and 0.25 (solid
and dashed lines) before and after the reparameterization (thin
and thick lines). The peak activity of the first neuron decreased,
but the shape of its tuning function remained unchanged,
whereas the tuning function of the second neuron became
sharper and its peak activity increased. These tuning functions
explain the population responses of the reparameterized network
to the two stimuli § = 0.5 and 6 = 0.25 shown in Figure 4e. The
profile of the response to § = 0.5 was bimodal and below the
initial responses, whereas the response profile for 6 = 0.25 be-
came sharper and its peak activity increased. Figure 4f shows the

Figure4.

Stimulus 6

1 0 0.5 1 0 0.5 1
PS PS (after change)

Adjusting the recurrent synapses. a, Predicted changes in the recurrent excitatory synapses to excitatory neurons for
optimizing J(0 = 0.5). The inset shows the change in the self-excitation (the horizontal line indicates no change). These changes
were computed by following the gradient of the objective function with a step size ) = 3 X 10 ~. postsyn., Postsynaptic;
presyn., presynaptic. b—f, Same as in Figure 3b—f.

two “hypothetical” Fisher information terms J,44(6 = 0.5) and
Jap(6 = 0.5) (see Materials and Methods) before the reparam-
eterization as well as the Fisher information J(6 = 0.5) after the
reparameterization. In contrast to the simulations in which only
the afferent synapses were adjusted, the reparameterization of the
recurrency changed the tuning functions so that now the
Joaa(0 = 0.5) are above the initial J(6 = 0.5) (thick dashed vs
thin solid line). The J(6 = 0.5) for the reparameterized net-
work are above the ] (6 = 0.5) (thick dotted vs. thick solid
line), because now both the decreased response magnitudes
and the changes in the slopes contributed to increasing the
encoding accuracy for 6 = 0.5.

Figure 5a compares the shape of the tuning functions aver-
aged over all excitatory neurons before (thin line) and after (thick
line) the recurrency was adjusted. In addition to this sharpening,
the peak responses were modulated depending on the PS of the
neurons (Fig. 5b), and the preferred stimuli themselves were also
changed (Fig. 5¢). The underlying synaptic mechanisms for the
shifts of the PS are shown in Figure 5d for the two neurons with
maximal shifts of their PS toward and away from 6 = 0.5 (solid
and dotted lines). After the adjustment, the neuron that shifted its
PS toward 6 = 0.5 received more excitation from neurons with a
PS closer to 6 = 0.5 (Fig. 5d, left arrow). The neuron that shifted
its PS away from 6 = 0.5 received more excitation from neurons
with the PS differing even more from 6 = 0.5 (Fig. 5d, right
arrow) after the reparameterization.

Changing the gain of excitatory neurons

Another mechanism we considered is the adjustment of the gain
for the excitatory neurons. We first asked how to change the gains
ar (see Materials and Methods) to increase the Fisher informa-
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Figure 5.  Differential changes in tuning functions after having adjusted the recurrent syn-
apses to increase the Fisher information specifically for 6 = 0.5. a, All tuning functions, nor-
malized to their peak value and aligned so that their PSs coincide, were pooled and are shown
before (thin line) and after (thick line) the adjustment of the recurrent synapses. b, Change of
the peak response after the adjustment. Positive values correspond to an increase in the re-
sponse. ¢, Changesin the PS of the excitatory neurons. Positive values correspond to a shift away
from 0.5. d, Strength of the recurrent excitation of two excitatory neurons before (thin lines)
and after (thick lines) the adjustment. The first neuron (solid lines) had the maximal shift of its
PS toward 0.5, and the second neuron (dashed lines) had the maximal shift of its PS away from
0.5. Note that after the adjustments to the recurrency, the PS also changed. PS denotes the
optimal stimulus and not the afferent PS (see Materials and Methods) used to determine the
afferent input. Syn. cond., Synaptic conductance.

tion of the network specifically for the stimulus 6 = 0.5 (Fig. 64,
solid line). One possible realization of this gain modulation is to
change the variance of the balanced background inputs (Chance
et al., 2002), which could be realized rapidly by, for example,
adjusting top—down feedback inputs. Similar to the case of
changing the strength of afferent inputs to the excitatory neu-
rons, the gains were increased mainly for neurons with the PS
differing approximately +0.16 from 6 = 0.5. The encoding accu-
racy is enhanced around 6 = 0.5. The changes Aa!” necessary to
increase the Fisher information of the network for all stimuli were
again uniform (Fig. 64, dotted line, b).

In contrast to the previous two mechanisms, the uniform in-
crease in the gains for the objective function [J(6)d0 resulted in a
strictly multiplicative modulation of the population response to a
stimulus (0 = 0.5) (Fig. 6¢ and inset). If J(0) is optimized, the
individual tuning functions and population responses are simi-
lar, but not identical, to the changes induced when adjusting the
strength of the afferent synapses. The responses for the neuron
with PS = 0.25 (Fig. 6d, dashed lines) increased for all stimuli, but
the tuning function for the neuron with PS = 0.5 was unaffected
(solid lines). The population responses to a stimulus with 6 = 0.5
were also bimodal, and the peak activation of the responses to a
stimulus with 6 = 0.25 was increased and slightly shifted toward
0 = 0.5 (Fig. 6e). Figure 6f also parallels the twofold effects of the
changed tuning functions on the encoding accuracy (compare
Fig. 3f). For neurons with an already high contribution to the
population Fisher information, the values of J 44(6 = 0.5) are
below the values of J(6 = 0.5) for the initial parameterization,
whereas the values of J,(6 = 0.5) are higher than the initial
values of J(6 = 0.5). Thus, the increased slopes at § = 0.5 com-
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pensated the reduced Fisher information because of the increase
in activity, and encoding accuracy was enhanced for 6 = 0.5.

Changing the additive feedback inputs

The last mechanism we consider is the adjustment of the additive
input currents I} for both the excitatory and inhibitory neu-
rons, as given by the gradient of the objective function w. r. t. [},
Figure 7a shows how the input to the excitatory (solid lines) and
inhibitory (dashed lines) neurons were changed to increase the
population Fisher information specifically for 6 = 0.5 (thick
lines) as well as for all stimuli (thin lines), respectively. The addi-
tive input currents to all excitatory neurons were decreased,
whereas they were increased for inhibitory neurons. For the ob-
jective function J(0 = 0.5), the strongest reductions of the inputs
to excitatory neurons were for neurons with the PS differing ap-
proximately *£0.16 from 6 = 0.5. Inhibitory neurons with those
preferred stimuli had the strongest increase in their additive in-
puts. To increase the Fisher information for all stimuli, the addi-
tive inputs had to be changed in a uniform manner (thin lines).
These changes resulted in an increase in the encoding accuracy
around 0 and for all stimuli (Fig. 7b).

Because of the reduced excitation and increased inhibition,
the population response (and the tuning functions) shown in
Figure 7c was reduced. This reduction for the case of the objective
function [J(6)d6 was strictly subtractive. For the case of the ob-
jective function J(6 = 0.5), the tuning functions were also shifted
toward lower activation levels. These stimulus-specific changes
gave rise to the population responses to the two stimuli 6 = 0.5
and 6 = 0.25 as shown in Figure 7e. Because the reduction of
excitation and the increased inhibition were strongest for neu-
rons with the PS differing approximately *0.16 from 6 = 0.5, the
strongest reduction of the responses was observed for those stim-
uli. Changing the values of [} led to a change in the value of
Jaaa(0 = 0.5) but not of J,(6 = 0.5). Figure 7f shows that the
Jap(0 = 0.5) (after the reparameterization) and the J(6 = 0.5)
(before the reparameterization) are identical (the thin and thick
solid lines are superimposed). In other words, when adjusting
only the additive inputs, the improvement of the encoding accu-
racy around 6 = 0.5 is only attributable to the subtractive shifts of
the tuning functions.

Discussion

In this section, we first discuss the main finding of this report:
that an increased encoding accuracy for a continuous stimulus
variable can be achieved via different mechanisms which then
result in different changes in the stimulus tuning functions. Then
we relate our predicted changes in neuronal responses to exper-
imentally observed changes during attentional modulations and
perceptual learning. These two phenomena happen on distinct
time scales and lead to different kinds of tuning function changes.
We will show, however, that the observed changes are broadly
consistent with the hypotheses that visual attention and percep-
tual learning can be explained by the common principle of opti-
mally encoding sensory information and that the differences ob-
served are a result of different plasticity mechanisms being
operative. Finally, we discuss the limitations of our modeling
approach.

Tuning function changes and adaptation mechanisms

The Fisher information J(0) can be increased by an increase in the
slopes f;' (6) of the tuning functions and by a decrease in the activities
£.(0) for these stimuli, because the contribution of the ith neuron is
proportional to [£6)] */£,(0). Multiple strategies exist to adjust their
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values. For example, the slope for a particu-
lar value of 6 could be increased by a multi-
plicative scaling of the tuning function or by
shifting it toward lower or higher stimulus
values.

Interestingly, our model predicted that
not all mechanisms lead to optimal
changes in both the slopes and the activa-
tion levels simultaneously. In two cases,
the physiological constraints (the model
architecture) resulted in a “compromise.”
When changing the gain of the excitatory
neurons or the strength of the afferent syn-
apses, the increase in activity, which re-
sulted in a decreased encoding accuracy,
was compensated by an increase in the
slopes (compare Figs. 3f, 6f). However,
when adjusting the recurrent connections,
both increase in the slopes and decrease in
the activation levels contributed to the im-
provement of the Fisher information (Fig.
4f). In this case, the changes in the slopes
were achieved via shifting the PS, sharpen-
ing of the tuning functions, or differen-
tially adjusting the response amplitudes.
When the additive feedback inputs were
changed, the slopes remained unaffected,
but the activations of all neurons were re-
duced (Fig. 7c—f) to increase performance.

Model predictions and
perceptual learning
Schoups et al. (2001) investigated the
physiological correlate of perceptual
learning in V1. They found that after mon-
keys were trained on an orientation dis-
crimination task, the perceptual improve-
ments were specific for location and
orientation. The physiological correlate
was an activity reduction for cells with pre-
ferred orientations (POs) around the
learned orientation (Schoups et al., 1998)
and an increase in the slopes of the tuning
function at the learned orientation for
neurons with POs differing approximately
20° from that orientation. When optimiz-
ing performance as measured by the objec-
tive function J(0 = 0.5), our model pre-
dicts an activity reduction for neurons
with the PS close to the learned stimulus
when assuming the recurrent connections
or the additive (feedback) inputs as the lo-
cation of plasticity but not when adjusting
the afferent synapses or the neuronal
gains. Furthermore, our model predicts an
increase in the slopes of the tuning func-
tion for the learned stimulus when the af-
ferent synapses, the recurrent synapses, or
the single neuron gains were modified but
not when adjusting the additive inputs.
Another group performed a similar ex-
periment (Ghose et al., 2002) and found
that the perceptual improvements were
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orientation specific but transferred between retinotopic loca-
tions. Similar to Schoups et al. (2001), Ghose et al. (2002) re-
ported an activity reduction for neurons with POs close to the
learned orientation. However, no increase in the tuning function
slopes was found, but shifts of the POs were reported as predicted
by our model when adjusting the recurrent connections. The
reason for the discrepancy between the findings of the two groups
in not clear.

The same group performed a similar experiment while re-
cording neurons in area V4 (Yang and Maunsell, 2004). They
reported a sharpening of orientation tuning functions and an
orientation-dependent change in the response amplitude with
the largest increase in the responses for neurons with POs differ-
ing from the learned orientation but almost no increase for neu-
rons with a PO close to the learned orientation. When adjusting
the recurrent connections, our model predicts a stimulus-
dependent increase in the response amplitude for neurons with
the PS differing from the learned stimulus and an increase in the
slopes of the tuning functions, both of which are consistent with
the data. However, model results are not fully consistent with the
observed lack of change in activity at the learned orientation and
better fit with the V1 data of Schoups et al. (1998) and Ghose et al.
(2002).

Additionally, optimally changing the recurrent connections
predicts shifts of the PS. Unfortunately, shifts of the tuning func-
tions can be addressed experimentally only indirectly (e.g., by
investigating the histograms of the POs), because the time scale of
perceptual learning is too long for tracking response properties of
an individual neuron. The histograms of POs shown by Yang and
Maunsell (2004) are not uniform after learning, but as to whether
this change is statistically significant needs to be tested.

In summary, the reported physiological correlates of percep-
tual learning in the visual cortex are by themselves diverse and
seem to depend on the visual area. They are, however, mostly (but
not completely) consistent with the model predictions, if the re-
current connections are changed to improve performance.

Model predictions and attentional modulations

One of the most frequently reported physiological correlates of
attention in the visual cortex is an increase in the stimulus-driven
neuronal activity compared with control trials. As described by
Treue and Martinez Trujillo (1999), the effects of spatial and
feature-based attention in area MT were disentangled and were
shown to contribute independently to the observed increase in
activity. The effects of attention on the direction tuning curves of
neurons in area MT were reported to be approximately multipli-
cative. Such a separation into a spatial and a feature-based com-
ponent was also found in area V4 (McAdams and Maunsell,
2000), as well as an approximately multiplicative modulation of
the entire orientation tuning function, presumably mainly be-
cause of spatial attention (McAdams and Maunsell, 1999). In
none of these studies, a sharpening of stimulus tuning curves was
reported.

Our model predicted that, to increase the encoding accuracy
for all stimuli, strictly multiplicative changes in the tuning func-
tions and the population responses are to be expected only when
adjusting the neuronal gain (Fig. 6¢, inset). However, an approx-
imately multiplicative change would also be compatible with the
changes predicted when adjusting the afferents (Fig. 3¢, inset). Of
course, adjusting the afferent synapses during attentional modu-
lation via mechanisms such as long-term potentiation/long-term
depression is out of question, but a possible mechanism could be
an effective increase in the impact of feedforward inputs because
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of synchronous activity in a lower area. Adjusting the recurrent
connections or the additive (feedback) inputs disqualify as pos-
sible mechanisms, because they lead to a decrease in neuronal
activity.

So far, no study has directly tested for how attention to par-
ticular stimulus values, which would correspond to optimizing
an objective function like J(6 = 0.5), changes stimulus tuning
functions. The study that comes closest is the study by Treue and
Martinez Trujillo (1999). There, the monkey attended to a par-
ticular stimulus direction during a direction discrimination task.
The authors reported an increased activity, when attention was
allocated to the presented stimulus. When the afferent synapses
or the gains of the excitatory neurons are assumed as the site of
plasticity, our model predicts that activity increases but that this
increase is small compared with the strongest changes, which are
predicted for neurons with the PS differing approximately =0.16
from the currently relevant stimulus 0.5 (Figs. 3d, 4d, 6d, 7d,
dashed lines). Those changes, however, were not investigated by
Treue and Martinez Trujillo (1999). One reason for the discrep-
ancy could be that in our model the parameters were changed for
an increase in the Fisher information for only a single value. It is
conceivable that such a very specific modulation is not achievable
with the neuronal circuits in the visual cortex or that the range of
stimuli actually selected to be represented more accurately is
broader. Changes in the recurrent connections and the additive
inputs lead to a decrease in neuronal activity and are therefore
inconsistent with the data.

In summary, one prominent physiological correlate of atten-
tional modulations is an increase in activity for neurons respond-
ing to the attended stimulus. Approximately multiplicative mod-
ulations of tuning functions are consistent with our model
predictions derived from optimizing the objective function
JJ(6)d6, if the gain of the excitatory neurons or afferent synapses
are adjusted to improve performance. When optimizing the ob-
jective function J(6 = 0.5), for all the mechanisms we investi-
gated, we predict the strongest changes for neurons with a PS
different from 0.5, which so far has not been tested directly in
experiments.

Model limitations

In our contribution, we have considered changes in activity only
for the mechanisms at the “different sites of plasticity” being
operative individually. Because different mechanisms can lead to
opposing changes in activity but still improve performance, it is
conceivable that when considering the combined action of mul-
tiple mechanisms, some of the discrepancies between model pre-
dictions and experimental data, which were mentioned in the last
sections, can be resolved.

One limitation of the encoder/decoder framework used here
could be the fact, that Fisher information is not always the proper
quality measure of a neuronal representation. Bethge et al.
(2003), for example, demonstrated that the Fisher information as
a quality measure fails if the time window for decoding is very
short. For very short decoding time windows, however, the dy-
namics of the encoding process must be considered, and our
model, which was not intended to describe the activity dynamics,
is no longer applicable. Xie (2002) showed that optimal
maximum-likelihood decoding cannot be achieved if only a few
neurons are available for representation. However, given that
within the visual cortex larger populations of neurons are be-
lieved to encode visual information, this may not be a severe
limitation (Feldman, 1984). Finally, a neural system may not be
able to make optimal use of the information in its activity pat-
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terns, and neuronal structures may not be able to implement
every conceivable type of optimal decoding. However, it has been
shown that recurrent networks can implement maximum-
likelihood decoding procedures (Deneve et al., 1999) for the case
of continuous variables and several types of statistical models.

Our modeling framework applies to the case in which the
relevant property of the environment is a continuous variable
and its value has to be determined or to be discriminated from
another one. Assuming the validity of the optimal encoding hy-
pothesis, the model can then be used to disentangle the mecha-
nisms of perceptual learning, attention, and possibly other adap-
tation phenomena in the visual areas. Because the model is a
generic cortex model, our predictions may transfer to other con-
tinuous stimulus domains or even to the motor cortex, which is
also highly adaptive in the adult (Paz and Vaadia, 2004). When
discrete stimuli are considered for the perceptual tasks, however,
other optimality criteria (e.g., the classification error for particu-
lar classifiers or the mutual information between the stimuli and
the neuronal responses) need to be considered.
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