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Dejittered Spike-Conditioned Stimulus Waveforms Yield
Improved Estimates of Neuronal Feature Selectivity and
Spike-Timing Precision of Sensory Interneurons
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Center for Computational Biology, Montana State University, Bozeman, Montana 59717

What is the meaning associated with a single action potential in a neural spike train? The answer depends on the way the question is
formulated. One general approach toward formulating this question involves estimating the average stimulus waveform preceding spikes
in a spike train. Many different algorithms have been used to obtain such estimates, ranging from spike-triggered averaging of stimuli to
correlation-based extraction of “stimulus-reconstruction” kernels or spatiotemporal receptive fields. We demonstrate that all of these
approaches miscalculate the stimulus feature selectivity of a neuron. Their errors arise from the manner in which the stimulus waveforms
are aligned to one another during the calculations. Specifically, the waveform segments are locked to the precise time of spike occurrence,
ignoring the intrinsic “jitter” in the stimulus-to-spike latency. We present an algorithm that takes this jitter into account. “Dejittered”
estimates of the feature selectivity of a neuron are more accurate (i.e., provide a better estimate of the mean waveform eliciting a spike)
and more precise (i.e., have smaller variance around that waveform) than estimates obtained using standard techniques. Moreover, this
approach yields an explicit measure of spike-timing precision. We applied this technique to study feature selectivity and spike-timing
precision in two types of sensory interneurons in the cricket cercal system. The dejittered estimates of the mean stimulus waveforms
preceding spikes were up to three times larger than estimates based on the standard techniques used in previous studies and had power
that extended into higher-frequency ranges. Spike timing precision was �5 ms.
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Introduction
Three questions often addressed in studies of neural coding in-
clude the following. What is the optimal stimulus waveform for
eliciting a spike in a neuron? What is the nature of the distribu-
tion of the waveforms around this “optimal feature” that can
elicit a spike? What is the temporal precision with which a spike is
linked to the occurrence of a stimulus feature? One general ap-
proach toward answering these questions involves presenting a
long-duration stimulus waveform capturing the “natural” stim-
ulus regime of the neuron under study, recording the train of
spikes elicited by that stimulus, and estimating the average stim-
ulus waveform that precedes each spike (or multiple-spike pat-
tern) in the elicited spike train. Many different algorithms have
been used to obtain such estimates, ranging from spike-triggered
averaging of stimuli to correlation-based extraction of “stimulus-
reconstruction” kernels (Bryant and Segundo, 1976) and spatio-
temporal receptive fields (STRFs) (Theunissen et al., 2001).
These approaches yield estimates that differ mainly in the manner

through which they are normalized and decorrelated from biases
in the stimulus set.

As we demonstrate here, these methods all lead to entangle-
ment of the three questions listed above and may result in signif-
icant errors with respect to each question. These errors arise from
the manner in which the stimulus waveforms are aligned to one
another during the averaging or cross-correlation operations.
Specifically, these algorithms register the waveform segments to
one another based on the precise time of spike occurrence. We
know, however, that the biophysical processes underlying sen-
sory transduction, synaptic integration, spike initiation, and syn-
aptic transmission are not perfectly deterministic, and some sig-
nificant degree of “jitter” in stimulus-to-spike latency is always
observable after repeated presentation of identical stimuli (Bry-
ant et al., 1973; Berry et al., 1997; Maršálek et al., 1997; Liu et al.,
2001; Zoccolan et al., 2002; Hsu et al., 2004; Uzzell and Chich-
ilnisky, 2004). By ignoring this “intrinsic” jitter, these analytical
algorithms all yield distorted estimates of the relevant stimulus
waveform and of the variance around that waveform.

We present an algorithm that takes this stimulus-to-spike la-
tency jitter into account and that enables the partial disentangle-
ment of the three questions listed above. The dejittered estimates
of the feature selectivity of a neuron provide better estimates of
the mean waveform eliciting a spike and have smaller variance
around that waveform than estimates obtained using the stan-
dard techniques. This procedure disambiguates the uncertainty
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about the time of occurrence of the stimulus feature from the
uncertainty about its waveform and also provides insight into the
intrinsic temporal precision with which information from a
nerve cell can be decoded.

We applied this technique to study feature selectivity and
spike-timing precision of two types of identified sensory inter-
neurons in the cricket cercal system, designated as IN10 –3 and
IN10 –2. The feature selectivity of these cell types was studied in
previous experiments using first-order Volterra kernel analysis
(Theunissen et al., 1996). Application of the dejittering proce-
dure yields significantly different estimates of the stimulus fea-
ture selectivity of these cells. Furthermore, calculations of the
lower bound of information encoding rates by these cells, using
the “direct method” (Strong et al., 1998) yielded values that were
substantially greater than those obtained through the previous
kernel-based estimates.

Materials and Methods
Preparation. Experiments were performed on 14 adult female crickets
(Acheta domestica) obtained from Bassett’s Cricket Ranch (Visalia, CA).
Each specimen was selected within 4 h after the final molt and anesthe-
tized on ice for 3–5 min. The legs, ovipositor, and wings were removed,
and a window was cut into the dorsal cuticle. Digestive, reproductive, and
fat tissues were removed. The abdominal cavity was filled with hypotonic
saline solution (O’Shea and Adams, 1981). The preparation was pinned
to a plate of silicone elastomer, and a stainless steel platform was inserted
beneath the terminal abdominal ganglion and elevated to provide ten-
sion on the cercal nerves to facilitate electrode penetration. The mounted
preparation was placed within a multidirectional air current stimulator.
The stimulator consisted of a central chamber linked to four sets of
loudspeakers through enclosed channels (Dimitrov et al., 2003). Move-
ments of the speakers were controlled by power-amplified, computer-
generated waveforms, such that the coordinated movement of the speak-
ers generated controlled movements of air across the preparation,
thereby stimulating the filiform mechanosensory hairs on the cerci.

Electrophysiology. Neural activity was monitored from the axon of each
interneuron in the abdominal nerve cord, near its exit from the terminal
abdominal ganglion, using a sharp intracellular microelectrode contain-
ing 3 M KCl. Activity was elicited by the presentation of Gaussian noise
(GN), air-current stimuli that were band-passed between 5 and 300 Hz
and had a root mean square (RMS) speed of 35 mm/s, as calibrated with
a low-velocity, air-current sensor (MicroFlown Technologies, Zevenaar,
The Netherlands). The stimulus waveforms and neural responses were
digitally sampled at 10 kHz (NI PCI-6070E, LabWindows-based propri-
etary data-logging system; National Instruments, Austin, TX) and stored
for subsequent analysis.

Calculation of a dejittered mean stimulus waveform. The algorithm used
to dejitter the mean waveform was as follows. First, we collected a set of
stimuli, x, from the stimulus–response data set, conditioned on isolated
spikes (i.e., spikes that were preceded by a period of �30 ms segments
devoid of any other spikes and followed by a spike-free interval of �30
ms.) Note that this restriction of the analysis to isolated spikes is not
essential in general but is done here for the sake of simplicity in illustrat-
ing the method. In fact, the procedure could be conditioned on any
arbitrary single- or multiple-spike pattern with any arbitrary bounding
intervals. Second, we calculated the mean mx0 of this stimulus set [i.e., the
spike-triggered average (STA) for isolated single spikes]. This became
our initial model for the mean stimulus waveform preceding a spike. In
any association between stimuli and spiking responses of single cells, the
STA is equivalent to the stimulus–response correlation. In the case dis-
cussed here, mx0 can be obtained from the STA by normalizing the latter
by the response power spectrum, which makes mx0 equivalent to the
first-order Volterra reconstruction kernel (Rieke et al., 1997). Third, we
assumed an initial model for the jitter, equivalent to a truncated Gaussian
distribution. The core assumption was that the latencies of the recorded
spikes had been jittered with respect to the time of the occurrence of the
stimulus feature that had elicited those spikes, according to a Gaussian

distribution with some variance, �t. Note that making this assumption is
equivalent to assuming that the temporal resolution of this particular
neural response is limited by this variance (i.e., that the time of occur-
rence of the stimulus feature eliciting a spike would not be resolvable
from the spike train of this cell with precision greater than �t). For the
particular cell under study, the initial value we assumed for this variance
(�t0) was 3 ms. (As shown below, the technique is robust under a fairly
wide range of initial assumed values for the temporal jitter, as long as the
value falls within the physiologically realistic range.) We also defined a
minimum stimulus–response latency, lmin. In the subsequent realign-
ment procedure, lmin served as a lower bound for shifting the stimuli with
respect to the mean. Shifts in time, which were more negative than lmin,
were assumed to violate causality in the sense that the spike occurrence
time would have occurred before the significant part of the stimulus
feature. Fourth, for each individual stimulus waveform sample in the set,
we formed all possible time shifts of that waveform in the range lmin to
3�t0; for each of the time-shift values for this waveform sample, we
calculated the distance between the time-shifted waveform and the mean
stimulus waveform calculated in the previous iteration. The distance
measure we used was the weighted squared difference between the shifted
waveform and the mean waveform, penalized by the weighted square of
the shift time (details are presented below). We chose the value of the
time shift for this waveform sample that yielded the smallest distance,
and we replaced the original waveform sample with this new time-shifted
sample. Fifth, after all stimulus waveforms in the set were shifted to
minimize their distance from the mean waveform, we calculated a new
mean mx1 of this time-shifted stimulus set. This became the seed value of
the mean for the next iteration of dejittering. Sixth, we assessed the
temporal variance of the output distribution as the SD of the shift times
across the entire data set. This value (�ti) became the penalty term for the
next iteration of dejittering. Finally, we looped to the fourth step and
repeated the subsequent processing steps until the convergence criterion
was attained (described in more detail below). The convergence condi-
tion results in a minimization of the variance of the dejittered stimulus
waveforms around their dejittered mean.

The final mean waveform (mxf) was assumed to be the best approxi-
mation of the dejittered mean waveform preceding a spike, and the dis-
tribution of the shift times was likewise taken as our best approximation
of the distribution of spike jitter times.

Calculation of shift times from a distance measure. The shift time, t, for
a stimulus segment during one iteration of the dejittering procedure was
calculated by minimization of a Gaussian distance, d, between that seg-
ment and the mean of all segments calculated from the previous iteration
as follows:

d �
1

2�xC�1x �
t2

�t
2� ,

where x is the residual between the stimulus segment sample and the
mean stimulus from the previous iteration, C is the covariance matrix of
the stimulus ensemble, �t is the assumed variance of the jitter distribu-
tion, and t is the specific shift time tested. This distance can be seen as the
negative log likelihood of a joint Gaussian model of stimulus and time
shifts. Here, for simplicity, we used a diagonal approximation of C, which
assumes that individual time samples are independent. This distance, d,
was calculated for a range of t values between lmin and �3�t at a sampling
resolution of 0.1 ms, and the value of t that minimized d was selected as
the shift time for that stimulus segment. A shift time was calculated for
each different stimulus sample independently, and all segments were
realigned according to these relative shift times. The mean of these re-
aligned segments was then calculated and used as the basis for calculating
the convergence criterion (see below, Convergence criteria) and, if con-
vergence was not achieved, for calculating the residuals x during the next
iteration cycle of the procedure. An additional simplification of the co-
variance matrix to a multiple of the identity matrix will turn the stimulus
distance into a Euclidean distance (sum of squares). Such distance and
the iterative re-estimation of features are typically used in standard clus-
tering algorithms, like the k-means (Duda et al., 2000).

Convergence criteria. Convergence of the dejittering procedure was
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achieved through the minimization of an error function Erri. The error
function corresponded to the percentage change in the square of the
residual of the dejittered mean waveforms (see Fig. 4 F) calculated be-
tween successive iterations as follows:

Erri �
�Var�stimi�1��� � �Var�stimi���

�Var�stimi�1���
,

where �.� denotes the average of the values of the sample waveforms at
each time point across all time points, Var(.) denotes the variance vector
at each time point across all time points in all samples, stim is the ensem-
ble of dejittered stimulus waveform samples, and i denotes the ith itera-
tion of the dejittering process. Iteration was stopped when Erri � 10 �6

(i.e., when the relative change between iterations fell to 	0.0001%). In
general, convergence was achieved in 10 –50 iterations.

Calculation of information rates. Estimates of information-encoding
rates were calculated from the stimulus–response measurements via two
different approaches. The first approach yielded a linear estimate, ob-
tained through the use of stimulus reconstruction techniques (Theunis-
sen et al., 1996; Rieke et al., 1997). The coherence between the air-current
stimulus waveform and the spike train response was calculated [Theunis-
sen et al. (1996), their Eq. 8]. Information per frequency was calculated as
the negative of the logarithm base 2 of (1 � coherence), and the total
information rate was then estimated as the integral of this quantity from
0 Hz up to the highest frequency at which there is significant power in the
stimulus [Theunissen et al. (1996), their Eq. 11].

A second estimate of information rate was obtained using the direct
method (Strong et al., 1998). Briefly, the unconditional and stimulus-
conditioned response probabilities were estimated from data for several
different word lengths. Debiased estimates of mutual information rates
between the stimuli and associated responses were then obtained using
Paninski’s “best upper-bound” estimator (Paninski, 2003) for each word
length. The best estimate for the information rate was obtained by ex-
trapolating to infinite word length. Note that by using debiased estimates
for the information rates, the problem of extrapolation becomes essen-
tially trivial, because rate estimate versus word length becomes essentially
a straight line (Kennel et al., 2005).

Results
Illustration of the problem using a thought experiment,
formulated as a simulation
Imagine that we are studying a sensory interneuron that is known
to operate as a feature detector, that the “optimal stimulus fea-
ture” for eliciting a spike has been determined, and that this
optimal feature has been presented repeatedly to the cell in the
absence of significant background noise (Fig. 1A). We know that
the biophysical processes of sensory transduction, synaptic inte-
gration, spike initiation, and synaptic transmission at all stages of
the nervous system providing input to this interneuron are not
perfectly deterministic (Berry et al., 1997; Maršálek et al., 1997;
Hsu et al., 2004), and thus we expect that the observed ensemble
of stimulus-to-spike latencies in our experiment will have some
observable variability around a mean latency. If we create a his-
togram of spike occurrence times relative to the repeated presen-
tation of a stimulus waveform (Fig. 1B), that distribution will not
be a perfect � function but will have some observable jitter
around the mean. Consider the error that will occur in our esti-
mation of the stimulus waveform that we presented, if we calcu-
late an STA of the stimulus waveforms preceding the spikes. The
procedure starts with the alignment of all instances of the pre-
sented waveforms relative to the time of occurrence of the spike
elicited by each waveform (Fig. 1C). The observed distribution of
spike times in Figure 1B is translated into a jittering of the actual
presented waveforms with respect to one another in C. The sub-
sequent averaging of the waveforms with this imposed jitter (Fig.
1C, bold trace) yields an estimated stimulus waveform that is

distorted with respect to the true waveform. Figure 1D shows a
comparison of this jittered mean (solid black trace) with the orig-
inal waveform (solid gray trace). This distortion is equivalent to a
blurring of the true waveform with a point-spread function iden-
tical to the actual spike train jitter distribution, similar to the
manner in which an image is blurred by the point-spread func-
tion of an optical system. We note that calculation of a Volterra or

Figure 1. A thought experiment to define the jitter problem using simulated recordings. A,
Top trace, A segment of simulated stimulus consisting of three identical optimal features pre-
sented at random intervals, with no background noise. Bottom trace, Three spikes elicited by
those stimulus features. B, Superposition of 500 examples of the stimulus waveform at an
expanded time scale, with a raster plot of the jittered occurrence times of spikes elicited by those
500 repetitions, and a histogram of those times immediately below. C, A total of 24 randomly
selected samples of the stimulus waveform of the total dataset of 500. These stimulus segments
have been shifted with respect to one another to bring all of their elicited spikes into alignment
(i.e., the vertical line to the lower right of the set of waveforms is the realigned spike raster). The
mean of all realigned waveforms (i.e., the STA) is shown with the solid line. D, Comparison of
the STA from C (solid line) with the actual stimulus waveform from B (gray line) and the
dejittered mean (dotted trace).
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Wiener stimulus-reconstruction kernel (Bryant and Segundo,
1976; Rieke et al., 1997), an STRF (Theunissen et al., 2001), or any
other method based on the cross-correlation between each spike
in the ensemble and the stimulus waveforms preceding those
spikes would also result in such a blurring of the estimated
waveform.

A much-improved estimate of the true mean stimulus wave-
form can be obtained by taking the spike-timing jitter into ac-
count. This dejittering is achieved by shifting the ensemble of
sample waveforms with respect to one another in a manner that
minimizes the variance around the subsequent mean while pe-
nalizing large shifts (see Materials and Methods). The application
of this procedure to the simulated data in Figure 1C yielded the
dotted black trace in Figure 1D, which is a much better estimate
of the actual waveform (solid gray trace) than the STA (solid
black trace).

We note that it is possible, in principle, to use an approach to
dejittering that is the inverse of the approach presented here (i.e.,
to shift spike train segments that code for the stimulus features in
a manner that maximizes the correlation between those spike
train segments). This would require different measures of close-
ness, specific to the response space of the neuron, such as the
metric space approach developed by Victor and Purpura (1996).

Time scale of the stimulus-to-spike latency jitter in a
sensory interneuron
We applied this algorithm to study the stimulus–response prop-
erties of two pairs of mirror-symmetric primary sensory inter-
neurons in the cercal sensory system of the cricket Acheta domes-
tica. This mechanosensory system mediates the detection and
analysis of low-velocity air currents and can be thought of as a
low-frequency, near-field extension of the animal’s auditory sys-
tem (Palka et al., 1977; Bacon and Murphey, 1984; Kämper and
Kleindienst, 1990; Miller et al., 1991; Theunissen et al., 1996). The
interneurons receive direct excitatory synaptic input from fili-
form mechanosensory hairs on the animal’s two antenna-like
cerci at the rear of the abdomen. The sensory stimuli we used to
drive the interneurons were dynamic air currents with velocity
waveforms characterized by GN, band-passed between 5 and 300
Hz. Figure 2 shows one typical segment from an experiment in
which a 10 s stimulus was repeated 100 times. Figure 2A3 shows
a 500 ms segment of this GN stimulus waveform, and A1 shows
the corresponding raster plot of the spike trains elicited by the 100
repeated presentations of that waveform segment. Figure 2A2 is
the histogram of these spike-occurrence times (peristimulus time
histogram). This segment of data demonstrates the wide range of
stimulus-to-spike latency distributions that are typically elicited
by GN stimuli. The three panels in Figure 2B show the central 60
ms segment of the data shown in Figure 2A at an expanded time
scale, which captures the sharpest distribution of spike times
from that segment.

Figure 2C illustrates the result of calculating the STA of the
stimulus waveform segments from the subset of data shown in
Figure 2B. Figure 2C1 is the raster plot of spikes after their re-
alignment into precise registration. Figure 2C2 is the histogram
of these spikes (i.e., all fall into a single bin), and the dashed trace
in C3 is the average of all 100 stimulus segments after their re-
alignment (i.e., the STA for these spikes). For comparison, the
solid line in that bottom panel is the actual stimulus waveform
that had been presented repeatedly to the animal (and was there-
fore the real mean waveform leading up to any spikes). It is clear
that the STA yields a distorted image of the true waveform.

Figure 2. An experiment to illustrate the jitter problem, using a mechanosensory interneu-
ron. A1, Raster of the spike times elicited by 100 repetitions of this waveform. A2, Histogram of
this raster plot using 1 ms time bins. A3, A 0.5 s segment of the Gaussian noise stimulus
waveform. B, The central 60 ms segment of the data shown in A at an expanded time scale. C1,
Spike-time raster plot after realignment of the spikes in the distribution shown in B. C3, Dashed
line, Mean of all stimulus segments realigned to the evoked spikes (i.e., the STA). C3, Solid line,
The actual stimulus waveform (as in B). Amp, Amplitude.
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Dejittering a sample of spike-conditioned
stimulus waveforms
Although the thought experiment (Fig. 1) and the demonstration
of spike jitter (Fig. 2) were based on repeated presentations of
identical stimulus waveforms for the sake of illustration, the de-
jittering protocol we introduce below does not require such re-
peated stimulus presentations nor does it require a priori knowl-
edge about the optimal stimulus. Rather, we used a single
nonrepeating, long-duration, band-passed, Gaussian noise
waveform. Figure 3A shows a 500 ms segment of the air current
stimulus waveform. The corresponding spike train response
(containing five spikes) elicited by this segment is shown directly
above the stimulus trace. The times of spike occurrence are indi-
cated on the stimulus waveform (Fig. 3A) with small colored
circles. Figure 3B shows the superposition of the stimulus wave-
form segments preceding all five spikes, aligned with respect to
the times of spike occurrence (defined as t 
 0; note that Fig.
3B–D are at an expanded time scale). The bold, dashed red curve
is the STA of all stimulus segments. Figure 3C shows the results of
shifting this set of stimulus segments with respect to one another
to recover an estimate of the stimulus waveform that minimizes
the distortion caused by spike-timing jitter. The extent to which
each of the five waveforms was shifted in time is indicated by the
small colored circles. The mean of the set of shifted waveforms is
shown as the bold blue curve. Figure 3D compares the preshifted
STA from B with the dejittered mean from C. The dejittered mean

clearly has larger amplitude than the standard STA, with the fre-
quency composition of the increased component biased toward
the higher-frequency range of the waveform.

The results of a complete analysis of this IN10 –3 stimulus–
response dataset are shown in Figure 4. All instances of isolated
single spikes (preceded and followed by spike-free intervals of
�30 ms) were extracted from a 33 min recording, yielding a

Figure 3. Illustration of the dejittering algorithm. A, A 500 ms segment of stimulus (bottom
trace) and corresponding intracellular membrane potential with five spikes elicited by that
stimulus (top trace). The time of spike occurrences are marked on the stimulus waveform with
colored circles. Stim amp, Stimulus amplitude. B, Five 35 ms segments of the stimulus wave-
forms preceding each of the five spikes in A, locked to the times of spike occurrence at t 
 0 ms.
The color of each stimulus waveform matches the colored markers in A. The mean (i.e., spike-
triggered average) waveform is shown with the dashed red line. C, The same five 35 ms seg-
ments, as shown in B, but now dejittered. The time-shifted spike times are shown by the
markers under the waveforms. The mean is shown with the dashed blue line. D, Comparison of
dejittered mean (blue dashed trace) with STA (red dashed trace) for the data.

Figure 4. Characteristics of a dejittered mean stimulus. A, Random representative subset of
100 sample segments of stimulus–response data aligned to time of spike occurrence. The
vertical black line at t 
 0 is the raster plot of spikes superimposed on the color-coded traces of
air-current velocity versus time. B, The same random subset of 100 segments of stimulus–
response data from A but now dejittered so that their alignment is based on minimal variance of
the stimuli. C, Shift times for all 13,600 samples (blue histogram) compared with a Gaussian
having an STD of 2.2 ms (red line). D, STA (red trace) and dejittered mean (blue trace). The RMS
amplitude of the stimulus is indicated with the dashed black line. E, Power spectra of the STA
(red trace) and dejittered mean stimulus (blue trace). F, Red trace, Mean-square residual be-
tween the STA and the original (orig) stimulus segments. Blue trace, Mean-square residual
between the dejittered (Dejit) mean and the original stimulus segments. Green trace, Mean-
square residual between the dejittered mean and the dejittered stimulus segments. The RMS
amplitude (amp) of the stimulus is indicated with the dashed black line. G, Power spectra of the
residuals, normalized by power spectra of stimulus segments. Colors and abbreviations are the
same as in F.
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sample size of �13,600 stimulus segments. Figure 4A shows ras-
ter plots of a random representative subset of 100 of the sample
segments of stimulus–response data. Each horizontal raster line is
color coded to indicate the stimulus velocity versus time, with
colors toward red indicating positive velocity and colors toward
blue representing negative velocity. The black dot at time 0 indi-
cates the time of occurrence of the spike elicited by the waveform
within that particular sample. All of the stimulus waveforms in
Figure 4A are locked in their alignment to the spike occurrence
times. Figure 4B shows the result of dejittering these waveforms,
assuming a value of 3 ms for �t0 during the procedure. The redis-
tribution of the stimulus–response raster lines resulting from this
dejittering procedure results in a visibly sharpened registration of
the stimulus waveforms across the raster set and a visibly scat-
tered deregistration of the spike occurrence times. The distribu-
tion of shift times to achieve the optimal dejittered mean had a �t

value of 2.2 ms (Fig. 4C). Figure 4D compares the uncorrected
spike-conditioned mean (i.e., the STA; red trace) with the dejit-
tered mean (blue trace) across all 13,600 samples in the dataset.
The dejittered mean stimulus had a peak amplitude 2.6 times
higher than that of the STA. The dejittered mean also had a
greater relative proportion of its power extending into the higher-
frequency range than did the STA, as can be seen from a compar-
ison of the power spectral densities of the STA and dejittered
mean waveforms (Fig. 4E). Note that, as discussed previously, the
STA is equivalent to the first-order Volterra kernel calculated
with the same data in this particular case, because the correlation
time of the mean was less than the interspike interval.

Functional significance of the dejittered mean waveforms
The dejittered mean waveform is visibly different from the STA.
However, it is somewhat problematic to assess the functional
significance of this difference. It is not meaningful, for instance,
to simply perform a stimulus reconstruction using the different
types of waveforms (e.g., dejittered mean and STA or Volterra
kernel), calculate the mean-squared error between the estimated
and actual stimulus in all cases, and compare the results. The STA
(equivalent to the Volterra kernel for this case) will always give a
lower mean-squared error than a dejittered mean, because the
Volterra kernel is derived precisely to minimize the mean-
squared error (without taking the jitter into account). The animal
could not, of course, take the jitter into account (i.e., it could not
perform the dejitter operation a priori), because it can’t recover
the precise times at which the dejittered estimates occurred be-
fore the spike. Within this context, the jitter �t can be interpreted
as the degree of uncertainty about the timing of the feature that
elicited the spike (i.e., the limiting temporal resolution of the
cell).

The experimentor can, however, perform an informative cal-
culation that takes jitter into account and illustrates how the use
of dejittered mean stimuli can help to disambiguate the uncer-
tainty about the time of occurrence of a stimulus feature from the
uncertainty about its waveform. The red trace in Figure 4F is the
SD between the stimulus and the STA at each time sample in the
experimental ensemble, with the STA and sample both aligned to
the time of spike occurrence. This residual reflects the combina-
tion of all factors that contribute to error in the estimation, in-
cluding temporal jitter of the spikes, coarseness in the tuning of
the cell to a distribution of suboptimal waveforms around the
optimal mean waveform, any correlation structure in the stimu-
lus set, and all other biological factors that contribute to “noisi-
ness” in the neural processing stream. The corresponding red
trace in Figure 4G is the power spectrum of that residual, normal-

ized by the power spectrum of the stimulus. This shows the frac-
tion of the power in the signal that is not explained by the STA
and is analogous to the mean-squared error of a reconstruction
(Roddey et al., 2000).

In contrast, the green traces in Figure 4, F and G, were calcu-
lated using the dejittered mean waveform and dejittered stimulus
segments. That is, before subtracting the dejittered mean wave-
form from each stimulus segment sample in the test ensemble,
that stimulus segment was time shifted to the alignment with
respect to the dejittered mean that had been determined to yield
the minimal residual for that specific segment. This procedure
specifically excluded the contribution of the temporal uncer-
tainty to the residual error, leaving only the uncertainty about the
stimulus waveform. The gap between the red and green traces in
both panels corresponds to the error introduced by the STA (or
Volterra kernel) in estimating the waveform of the mean stimu-
lus: the higher the red trace above the green, the greater is the
relative error of the STA compared with that of the dejittered
mean. It is clear that the dejittered mean yields a much lower
residual error than the STA over the most significant segment of
the stimulus waveform preceding the spikes. The spike jitter con-
tributed a significant amount of residual error to the STA-based
estimate of the stimulus waveform, and this error is biased to-
ward the high-frequency end of the sensitivity range of the cell.

Note that the red and green traces in Figure 4F are equivalent
to the SDs across all of the spike-locked and dejittered stimulus
traces, respectively. Consideration of these different estimates of
variance leads to substantially different interpretations of the fea-
ture selectivity and stimulus-response dynamics of the cell. The
variance across all of the dejittered stimulus signals around the
dejittered mean waveform (green trace) is lower than the signal
RMS throughout the entire duration of the segment shown here,
with the lowest point (i.e., the greatest significance) associated
with the period between 3 and 5 ms before the spike. The residual
decreases to nearly 0 at �4 ms before the spike, indicating an
extremely high degree of significance near this time point in the
stimulus waveform (i.e., a very high degree of stimulus waveform
selectivity).

Consideration of the variance around the STA (Fig. 4F, red
trace) is problematic: within the critical time segment leading up
to the spike, the variance across all stimulus signals around the
STA residual actually climbs to a maximum value that is larger
than the RMS signal amplitude itself, and would indicate that the
shape of the STA has no significance during that period. Inter-
pretation of that red curve would lead to the conclusion that the
significant part of the waveform was the segment between 10 and
20 ms preceding the spike, in which the amplitude of the STA is
negligible. Thus, interpretation of the feature selectivity and
stimulus-to-spike latency on the basis of an STA is problematic.
Here, again, a conventional Volterra kernel or STRF would also
yield the same problematic results.

The blue traces in Figure 4, F and G, were calculated by sub-
tracting the dejittered mean waveform directly from each of the
stimulus segments, locked to the spike time rather than shifting
the dejittered mean to the position yielding the smallest residual.
(This is equivalent to performing a stimulus reconstruction using
the dejittered mean instead of the Volterra kernel.) As expected,
the residual and its power spectrum are both greater (i.e., worse)
than those obtained with the STA. This is a corollary to the fact
that the STA was constructed to give the minimum least-squared
fit to the unshifted set of stimulus segments; although the dejit-
tered kernel is a more accurate and precise estimate of the actual
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mean waveform that elicited each spike, it results in a poorer
estimate of the stimulus if the jitter is not taken into account.

Sensitivity of the technique to the value of �t0 used for
the calculations
In general, the dejittering procedure is robust over a broad range
of values for the assumed spike jitter penalty term �t0, as long as
that value is kept within a physiologically reasonable range. Fig-
ure 5A is a surface plot comparing the dejittered mean waveforms
obtained from several independent dejittering procedures, run
on the same data set, using different values for �t0 ( y-axis). The
STA corresponds to the first horizontal color band at the top of
the plot (�t0 
 0). Each successive color band below that first one
was calculated with �t0 increased by 0.2 ms. Calculations initiated
with all values of �t0 converged to essentially identical estimates.
Figure 5B is a surface plot of the distributions of shift times for
each value of the penalty term �t0. Each horizontal color band
represents the output distribution of shift times for a different
value of the penalty term. The probability of a specific shift time is
shown by color, with blue colors indicating a low probability of
that shift time and red colors indicating a high probability. The
curve in Figure 5C shows SDs of the final shift distributions (�tf).
The SDs stop increasing for values of �t0 greater than �4 ms,
demonstrating that the dejittered mean is insensitive to variation
of the penalty term beyond that value.

Interanimal variability of the dejittered mean stimuli and �t

for this type of interneuron
The data presented in the preceding sections were recorded from
a single identified interneuron designated as a left IN10 –3 [the
10 –3 interneurons exist as mirror-symmetric pairs in the termi-
nal abdominal ganglion, with one right (R) IN10 –3 and one left
(L) IN10 –3]. To assess the interanimal and interpair variability in
the dynamic response characteristics of this cell type, we repeated
the experimental analysis and extracted dejittered mean stimuli
for a sample of seven R IN10 –3s and seven L IN10 –3s from
different animals. The results are shown in Figure 6. The uncor-
rected STAs are shown in Figure 6A, and the dejittered means are
shown in Figure 6B. The dejittered means were very similar to
one another in duration, amplitude, and waveform. Each dejit-
tered mean was significantly larger in amplitude than its corre-
sponding uncorrected STA by a factor ranging from 2 to 3. Figure

6C shows the jitter distributions for these
seven cells on an expanded time scale. The
mean �t for this sample of seven IN10 –3
cells was 2.08 � 0.26 ms.

Every terminal abdominal ganglion in
each cricket also contains another mirror-
symmetric pair of interneurons desig-
nated as right and left IN10 –2 (Jacobs and
Murphey, 1987). The four 10 –3 and 10 –2
INs comprise a functionally discrete sub-
unit of the cercal system: they have the
lowest stimulus threshold of all of the cer-
cal interneurons and are the only cells that
encode information about the direction of
air-current stimuli in the horizontal plane
in this low-stimulus velocity range (Miller
et al., 1991). Their directional sensitivities
are mutually orthogonal: each has a selec-
tivity for stimuli primarily originating
from within one quadrant, and their peak
directional selectivities are distributed at

90° intervals around the horizontal plane. Previous studies using
Volterra analysis suggested that the 10 –2 and 10 –3 cells have
indistinguishable dynamical sensitivities (Theunissen et al.,
1996). To assess the dynamic response characteristics of IN10 –2,
we repeated the experimental analysis and extracted dejittered
mean stimuli for a sample of seven R and L IN10 –2s from differ-
ent animals. The results are shown in Figure 7. The uncorrected
STAs are shown in Figure 7A, and the dejittered means are shown
in Figure 7B. The dejittered means were very similar to one an-
other in duration, amplitude, and waveform. Each dejittered
mean was significantly larger in amplitude than its corresponding
uncorrected STA by a factor ranging from 2 to 2.5. Figure 7C
shows the jitter distributions for these seven cells on an ex-
panded time scale. The mean �t for this sample of seven
IN10 –2 cells was 2.33 � 0.12 ms.

Figure 8 shows a comparison of the composite averages of the
dejittered mean stimulus waveforms for the IN10 –3 (solid black
trace) and IN10 –2 (dashed gray trace) sample sets. There is no
significant difference between the two composite means, nor was
there a significant difference between the two values for �t. This
indicates that all four cells have functionally equivalent dynamic
stimulus–response selectivities and characteristics within the
stimulus regime tested here.

Calculation of the information rate for IN10 –3 using a
direct method
In previous studies, the information-encoding rates for a sample
of 10 –2 and 10 –3 interneurons were calculated on the basis of a
Volterra kernel-based analysis (Theunissen et al., 1996). Consid-
ering the extent to which the Volterra kernels were shown above
to misrepresent the stimulus selectivities of these cells, we recal-
culated the encoding rate for an IN10 –3 using a method that was
independent of assumptions about stimulus selectivity (Buracas
et al., 1998; Borst and Theunissen, 1999). This was done using a
version of the direct method (Strong et al., 1998; Paninski, 2003).
The calculation was based on stimulus–response data from the
same IN10 –3 preparation used for Figures 2–5, within a regime
in which the mean spike rate was 10.8 spikes/s. The information
rate for this cell was calculated to be 27.2 � 0.4 bits/s using the
direct method. In contrast, the kernel-based calculation identical
to that used in our previous studies, applied to the same data,

Figure 5. Dependence of the dejittered mean shape and �tf on �t0. A, Mean output stimulus for each value of input penalty
term �t0. The top row (�t0 
 0) shows the original STA. B, Probability distributions of the output shift times at 1 ms resolution for
each value of the penalty term �t0. The top row (�t0 
 0) shows the spike times before dejittering. The color scale has been
truncated from a maximum value of p(shift time) 
 1 at �t0 
 0, shift time 
 0. C, STD of dejitter shift times (�tf) for each value
of input penalty term �t0.

Aldworth et al. • Dejittering Improves Feature Estimation J. Neurosci., June 1, 2005 • 25(22):5323–5332 • 5329



yielded a rate of 20.3 � 1.5 bits/s. This represents an upward
revision of the calculated encoding rate by a factor of 1.34.

Discussion
Jitter happens. Although spike jitter has been characterized and
considered in many studies (Bryant et al., 1973; Mainen and
Sejnowski, 1995; Victor and Purpura, 1996; Berry et al., 1997;
Maršálek et al., 1997; Reich et al., 1997; Reinagel and Reid, 2000;

Keat et al., 2001; Liu et al., 2001; Zoccolan et al., 2002; Hsu et al.,
2004; Uzzell and Chichilnisky, 2004), it is not taken into account
fully when analyzing feature selectivity with standard analysis
techniques. Conventional methods for the derivation of the STA,
STRF, or Volterra and Wiener kernels misrepresent the class of
stimulus waveforms that elicit spikes in a cell: those techniques
underestimate the amplitude and bandwidth of the mean stimu-
lus waveform and overestimate the variance of the waveforms
around that mean. Application of this dejittering algorithm to

Figure 6. Composite average stimulus waveforms for a sample of seven cells from class
10 –3. A, Standard STAs. B, Dejittered means. C, Histograms of the shift times for the seven
IN10 –3 cells at an expanded time scale, with color coding for the fraction of samples shifted by
the indicated time.

Figure 7. Composite average stimulus waveforms for a sample of seven cells from class
10 –2. A, Standard STAs. B, Dejittered means. C, Histograms of the shift times for the seven
IN10 –2 cells at an expanded time scale, with color coding for the fraction of samples shifted by
the indicated time.
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cercal sensory interneurons 10 –2 and 10 –3 yielded estimates of
the mean waveforms preceding isolated spikes that were up to
three times larger in amplitude than the STAs extracted from the
same data sets and also had greater relative power extending into
a higher-frequency range. In addition, the dejittered estimates of
the feature selectivity of IN10 –3 were more accurate and more
precise than estimates obtained using the STA: the variance of the
dejittered stimuli around the mean stimulus was substantially
lower than the variance around the STA.

Conventional techniques also obscure the statistical structure
of the stimulus–response latency relationship. Dejittered esti-
mates disambiguate the uncertainty about the time of occurrence
of the stimulus feature from the uncertainty about its waveform.
In addition, and perhaps more important, the variance �t of the
jitter distribution provides an explicit metric for assessing the
temporal precision with which a spike is linked to the occurrence
of a specific stimulus feature. An implicit assumption is that the
sensory system knows its own feature selectivity as well as its
intrinsic temporal uncertainty and does not need such tools to
obtain that information. The output of the cell provides informa-
tion about the stimulus waveform and its time of occurrence, but
that information has some irreducible degree of uncertainty.

It is important to emphasize that dejittering cannot violate the
data processing inequality. Information rates cannot be “im-
proved” by dejittering; rather, the model of stimulus selectivity is
improved, enabling a better estimation of stimulus–response
properties than other similar models that do not take explicit
account of uncertainties in spike timing and/or feature
waveform.

Implications for the assessment of temporal precision
A consideration of the magnitude of �t is informative with re-
spect to assessments of the time scale for neural coding. Many
analyses of neural coding require an explicit determination (or
assumption) of the intrinsic or natural time scale with which the
spike train of a cell must be decoded. The width of the jitter
distribution provides a rough estimate for the lower bound on
that precision, assuming a linear encoding scheme (Theunissen
and Miller, 1995). Regardless of the precision with which an up-
stream decoder could resolve the time of occurrence of a postsyn-

aptic potential from one of the interneurons we studied, the time
of occurrence of the stimulus event that triggered the corre-
sponding spike in that interneuron could not be resolved in time
with more precision than the jitter distribution we observed. In
the cells studied here, the temporal uncertainty of the occurrence
time for isolated spikes (calculated as �2 �t of the jitter distribu-
tion) was �5 ms, which was �20% of the duration of the signif-
icant portion of the dejittered waveform. This jitter in the
stimulus-to-spike latency therefore appears to impose a signifi-
cant constraint on the temporal accuracy of any linear decoding
operation that could be performed on the spike train from this
cell. However, that overall system-level temporal precision could
be improved beyond this limit at a subsequent stage, through
ensemble processing of the spike train of this cell along with spike
trains from additional cells carrying redundant and/or compli-
mentary information (Chichilnisky and Kalmar, 2003).

Note that information about other independent stimulus fea-
tures cannot, in principle, be extracted from the distribution of
spike latencies, even if latencies correlate with such features. This
is because the absolute latencies are not available to later stages of
the nervous system. However, additional information about fea-
ture identity is potentially obtainable from relative latencies in
population responses. In this case, the response of a single cell
should not be considered in isolation but as part of a multicell
response pattern.

Factors contributing to stimulus-to-spike timing jitter
Although the dejittered mean yields a more accurate estimate of
the feature and frequency selectivity of a cell, this approach still
cannot completely disambiguate the different intrinsic and ex-
trinsic factors that contribute to the observed spike-timing vari-
ance. The GN waveforms we used for our determination of the
dejittered means and �t values contained a broad range of stim-
ulus waveforms. As shown in Figure 2, some waveform segments
elicited spikes with relatively high-timing precision (i.e., low-
jitter �t). Such segments are very similar to the dejittered mean
waveforms, and we might surmise that these are near-optimal
stimuli. However, the long-duration GN stimuli also contained
many more segments that were significantly different from the
dejittered mean waveform but were still similar enough that they
elicited spikes. The inclusion of the responses from these subop-
timal stimulus segments in the dejittering procedure would be
expected to increase the value calculated for �t relative to the
value that would be derived for spikes elicited by near-optimal
stimuli. This is because the net blurring function can be concep-
tualized as a convolution of the “minimal jitter” distribution
(e.g., resulting from presentation of a truly optimal stimulus,
attributable to all lumped factors contributing to biophysical
noise) with the distribution emerging from the responsiveness of
the cell to a range of stimuli around the mean. Although the shape
of the dejittered mean will not necessarily be effected by the in-
clusion of these less-than-optimal stimulus–response samples
(i.e., if their deviation from the mean waveform is symmetric),
the estimated �t will depend on the specific dataset used for the
calculation and will always overestimate the minimal jitter result-
ing from biophysical noise alone.

Implications for kernel-based analyses of
information-encoding rates
To the extent that the time scale of spike jitter is significant with
respect to the correlation time of the mean waveform and to the
extent that the dejittered mean differs in shape from a kernel, we
lose confidence in the relevance of the stimulus-reconstruction

Figure 8. Comparison of the composite average dejittered mean stimulus waveforms for
seven examples of each of the cell classes 10 –3 (solid black curve) and 10 –2 (dashed gray
curve). Error bars on each curve represent 1 SD across the corresponding sample.
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approach and the measure of “gain” as a means for characterizing
information-coding rates. The use of a distorted kernel to gener-
ate an estimate of the stimulus waveform leads to a severely low-
passed underestimate of that stimulus. The subsequent use of this
distorted stimulus estimate to derive a lower bound to the encod-
ing rate results in a bound that is lower than we had imagined, to
a degree that is difficult to quantify. To borrow a term from the
realm of political science, we misunderestimate the true coding
rate (for discussion, see Hsu et al., 2004).

There are alternate approaches for estimating encoding rates
that make no explicit assumptions about details of stimulus rep-
resentation, such as the direct method (Strong et al., 1998; Pan-
inski, 2003). Although these methods provide no explicit infor-
mation about the feature selectivity of a cell, they can provide
accurate estimates of the total information available to potential
downstream decoders that are insensitive to spike jitter. Our ap-
plication of the direct method to stimulus–response data from
IN10 –3 yielded an estimate for the information encoding rate
that was a factor of 1.3 higher than the rate estimated using the
conventional kernel-based stimulus reconstruction method we
used in previous studies. Thus, even in the case of this IN10 –3,
which appears to be well approximated as having a nearly linear
encoding scheme, calculation of the lower bound on
information-encoding rate by integration under the gain curve
led to a substantial underestimate of its channel capacity.

Reappraisal of encoding by this four-cell group of cricket
cercal interneurons
Beyond this upward revision of the estimate of the coding capac-
ity by IN10 –3, the results of this analysis also led us to a refine-
ment of our understanding of the feature sensitivity of this set of
interneurons. These four interneurons appear to have much
higher feature selectivity than was realized previously, and the
mean stimulus waveform eliciting a spike differs significantly
from kernel-based estimates with respect to amplitude and fre-
quency composition. Previous estimates indicated a stimulus-
frequency selectivity limited to the range between 5 and 80 Hz,
with peak sensitivity at 15 Hz (Theunissen et al., 1996). The new
estimates, based on the dejittered means, indicate that stimulus
frequency selectivity extends to �200 Hz, with peak sensitivity
ranging between 100 and 150 Hz.

This range brackets the wing-beat frequencies of predatory
wasps (Gnatzy and Heusslein, 1986) and other signals of neuro-
ethological significance that had been considered previously as
undetectable by these cells. One possible role for this group of
low-threshold, directionally selective cells is as an “early warn-
ing” system for detecting the approach and direction of such
flying predators.

References
Bacon JP, Murphey RK (1984) Receptive fields of cricket (Acheta domesti-

cus) are determined by their dendritic structure. J Physiol (Lond)
352:601– 613.

Berry MJ, Warland DK, Meister M (1997) The structure and precision of
retinal spike trains. Proc Natl Acad Sci USA 94:5411–5416.

Borst A, Theunissen FE (1999) Information theory and neural coding. Nat
Neurosci 2:947–957.

Bryant HL, Segundo JP (1976) Spike initiation by transmembrane current: a
white-noise analysis. J Physiol (Lond) 260:279 –314.

Bryant HL, Marcos AR, Segundo JP (1973) Correlations of neuronal spike
discharges produced by monosynaptic connections and by common in-
puts. J Neurophysiol 36:205–225.

Buracas GT, Zador AM, DeWeese MR, Albright TD (1998) Efficient dis-
crimination of temporal patterns by motion-sensitive neurons in primate
visual cortex. Neuron 20:959 –969.

Chichilnisky EJ, Kalmar R (2003) Temporal resolution of ensemble visual
motion signals in primate retina. J Neurosci 23:6681– 6689.

Dimitrov AG, Miller JP, Gedeon T, Aldworth Z, Parker AE (2003) Analysis
of neural coding using quantization with an information-based distortion
measure. Network 14:151–176.

Duda RO, Hart PE, Stork DG (2000) Pattern classification, Chap 10, Ed 2.
New York: Wiley.

Gnatzy W, Heusslein R (1986) Digger wasp against crickets. I. Receptors
involved in the antipredator strategies of the prey. Naturwissenschaften
73:212–215.

Hsu A, Borst A, Theunissen FE (2004) Quantifying variability in neural re-
sponses and its application for the validation of model predictions. Net-
work 15:91–109.

Jacobs GA, Murphey RK (1987) Segmental origins of the cricket giant inter-
neuron system. J Comp Neurol 265:145–157.

Kämper G, Kleindienst H-U (1990) Oscillation of cricket sensory hairs in a
low-frequency sound field. J Comp Physiol [A] 167:193–200.

Keat J, Reinagel P, Reid RC, Meister M (2001) Predicting every spike: a
model for the responses of visual neurons. Neuron 30:803– 817.

Kennel M, Shlens J, Abarbanel HDI, Chichilnisky EJ (2005) Estimating en-
tropy rates with Bayesian confidence intervals. Neural Comp, in press.

Liu RC, Tzonev S, Rebrik S, Miller KD (2001) Variability and information in
a neural code of the cat lateral geniculate nucleus. J Neurophysiol
86:2789 –2806.

Mainen ZF, Sejnowski TJ (1995) Reliability of spike timing in neocortical
neurons. Science 268:1503–1506.
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