Membrane Receptors Involved in Modulation of Responses of Spinal Dorsal Horn Interneurons Evoked by Feline Group II Muscle Afferents

Kimberly J. Dougherty, B. Anne Bannatyne, Elzbieta Jankowska, Piotr Krutki, and David J. Maxwell

1 Department of Physiology, Göteborg University, 405 30 Göteborg, Sweden, and 2 Spinal Cord Group, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom

Modulatory actions of a metabotropic 5-HT\textsubscript{1A/7} membrane receptor agonist and antagonist [(+/-)-8-hydroxy-2-(di-n-propylamino)tetralin; N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl) cyclohexane-carboxamide] and an ionotropic 5-HT\textsubscript{3} membrane receptor agonist and antagonist [2-methyl-serotonin (2-Me 5-HT); N-(1-azabicyclo[2.2.2]oct-3-yl)-6-chloro-4-methyl-3-oxo-3,4-dihydro-2H-1,4-benzoxazine-8-carboxamide hydrochloride] were investigated on dorsal horn interneurons mediating reflex actions of group II muscle afferents. All drugs were applied ionophoretically in deeply anesthetized cats. Effects of agonists were tested on extracellularly recorded responses of individual interneurons evoked by electrical stimulation of group II afferents in a muscle nerve. Effects of antagonists were tested against the depression of these responses after stimulation of raphe nuclei. The results show that both 5-HT\textsubscript{1A/7} and 5-HT\textsubscript{3} membrane receptors are involved in counteracting the activation of dorsal horn interneurons by group II afferents. Because only quantitative differences were found within the sample of the tested neurons, these results suggest that modulatory actions of 5-HT on excitatory and inhibitory interneurons might be similar. The relationship between 5-HT axons and axons immunoreactive for the 5-HT\textsubscript{1A} receptor subunit, which contact dorsal horn interneurons, was analyzed using immunofluorescence and confocal microscopy. Contacts from both types of axons were found on all interneurons, but their distribution and density varied, and there was no obvious relationship between them. In two of six interneurons, 5-HT\textsubscript{1A} immunoreactive axons formed ring-like arrangements around the cell bodies. In previous studies, axons possessing 5-HT\textsubscript{3} receptors were found to be excitatory, and as 2-Me 5-HT depressed transmission to dorsal horn interneurons, the results indicate that 5-HT operates at 5-HT\textsubscript{3} receptors presynaptic to these neurons to depress excitatory transmission.

Key words: spinal cord; dorsal horn interneurons; membrane receptors; serotonin; group II afferents; confocal microscopy

Introduction
Serotonin (5-HT) modifies the activity of both motoneurons and premotor spinal neurons (for review, see Barnes and Sharp, 1999; Hochman et al., 2001). The present study was undertaken to analyze its effects at the level of one particular population of spinal interneurons involved in coordinating motor responses: dorsal horn interneurons in pathways between group II muscle afferents and either ipsilateral or contralateral α motoneurons.

Previous studies have demonstrated that 5-HT is of critical importance for selecting one of two opposite patterns of responses evoked by group II muscle afferents, which involve either excitation or inhibition of contralateral extensor motoneurons (Aggelopoulos et al., 1996) rather than the stereotypical crossed extension characteristic of spinalized vertebrates (Sherrington, 1906). Dorsal horn interneurons do not contact contralateral motoneurons but may affect them via lamina VIII commissural interneurons, which directly excite or inhibit them (Edgley et al., 2003). The pathway from group II afferents via dorsal horn and commissural interneurons is thus trisynaptic and supplements the disynaptic pathway via commissural interneurons, as schematically indicated in Figure 1A. 5-HT could modulate crossed actions of group II afferents at the level of both of these interneurons. However, if modulatory actions of 5-HT on dorsal horn interneurons (at the level of the top arrow in Fig. 1A) contribute to the selection of either excitatory or inhibitory subpopulations of commissural interneurons, they should involve the same membrane receptors (5-HT\textsubscript{1A} and/or 5-HT\textsubscript{3}) that are implicated in the switching between the excitation and inhibition of contralateral motoneurons by the 5-HT\textsubscript{1A/7} receptor agonist (+/-)-8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) and the 5-HT\textsubscript{3} receptor antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl) cyclohexane-carboxamide (WAY 100635) (Aggelopoulos et al., 1996).

Therefore, the first aim of the study was to determine whether the effects of 5-HT on dorsal horn interneurons are evoked via 5-HT\textsubscript{1A} membrane receptors. This was investigated by analyzing...
effects of 8-OH-DPAT and WAY 100635 on responses of individual dorsal horn interneurons evoked by group II afferents. The second aim was to investigate whether the depression of activation of dorsal horn interneurons by 5-HT may only be mediated by G-protein-coupled receptors, represented by 5-HT_{1A} membrane receptors, or also by ligand-gated ion channels (i.e., the 5-HT₃ receptors). To answer this question, we analyzed effects of 2-methyl-serotonin (2-Me 5-HT), which is a highly selective 5-HT_{1A} receptor agonist. The third aim was to compare the effects of application of 5-HT agonists by ionophoresis with the effects of release of 5-HT from terminals of serotonergic fibers. To this end, these fibers were stimulated within the raphe nuclei, and a 5-HT_{1A} receptor antagonist (WAY 100635) (Alexander et al., 2004), a 5-HT₃ receptor antagonist [N-(1-azabicyclo[2.2.2]oct-3-yl)-6-chloro-4-methyl-3-oxo-2H-1,4-benzoxazine-8-carboxamide hydrochloride (Y-25130)] (Sato et al., 1992), and a GABA_A receptor antagonist (bicuculline) (Alexander et al., 2004) were applied locally to differentiate between effects attributable to 5-HT and GABAergic actions. The fourth aim was to examine the relationships between 5-HT and 5-HT₃-immunoreactive axon terminals and the dorsal horn interneurons.

Materials and Methods
Preparation. The electrophysiological experiments were performed on seven deeply anesthetized cats, weighing 2.1–2.4 kg. The anesthesia was induced with sodium pentobarbital (40–44 mg/kg, i.p.) and maintained with intermittent doses of a-<wbr/>chloralose (doses of 5 mg/kg administered every 1–2 h, up to 50 mg/kg, i.v.; Rhône-Poulenc Santé, Antony, France). During recording, neuromuscular transmission was blocked by pancuronium bromide (0.2 mg/kg/h i.v.; Pavulon, Organon, Askin, Sweden), and the animals were artificially ventilated. An additional dose of a-<wbr/>chloralose was given at the first sign of any increase in the continuously monitored blood pressure or heart rate or if the pupils dilated. The mean blood pressure was kept at 100–130 mmHg and the end-tidal concentration of CO₂ at ~4% by adjusting parameters of artificial ventilation and the rate of a continuous infusion of a bicarbonate buffer solution with 5% glucose (1–2 ml/h/kg). The core body temperature was kept at ~38° by servo-controlled infrared lamps. The experiments were terminated by a lethal dose of pentobarbital and a formalin perfusion. All experimental procedures were approved by the Göteborg Ethics Committee and followed National Institutes of Health and European Union guidelines for animal care.

A preliminary dissection exposed the third to seventh lumbar (L3-L7) segments of the spinal cord. Two nerves, quadriceps (Q) and sartorius (Sart), were mounted in subcutaneous cuff electrodes and one nerve, deep peroneal (DP), mounted on a pair of electrodes in a paraffin oil pool. For stimulation of raphe nuclei (in four experiments), the caudal part of the cerebellum was exposed by a craniotomy, and two tungsten electrodes 2 mm apart (impedance, 30–150 KΩ) were inserted at an angle of 30° (with the tip directed rostrally). The starting positions were at Horsley–Clarke coordinates posterior (P) 3 and 5 or P 5 and 7, lateral 0.2 (ipsilaterally), and horizontal 8, but the final positions were adjusted on the basis of effects of the stimuli on dorsal horn field potentials evoked by group II afferents taking advantage of the results of a previous study (Noga et al., 1992). The electrodes were left at locations from which the depression evoked by 100 μA stimuli was to at least 50% of the control response, and the depression evoked by 200 μA stimuli was to <30%. At the end of the experiments, these sites were marked by passing 0.4 mA constant current for 10 s. The location of the stimulation sites was subsequently verified on 100-μm-thick frontal sections of the brain stem cut in the plane of the insertion of the electrodes using a freezing microtome and counterstained with cresyl violet. These stimulation sites were at the level of the caudal part of the superior olive (Fig. 1 B), or ~1 mm caudal to it. They overlapped with the nucleus raphe pallidus or were within the border zone between this nucleus and nuclei raphe obscurus and magnus. They overlapped also with the areas from which strongest depression of synaptic actions of group II afferents was previously evoked (Jankowska et al., 1993, their Fig. 1; Riddell et al., 1993, their Fig. 2), although most were more ventral. The areas contain neurons synapsing with motoneurons, as shown by retrograde transynaptic labeling (Alstermark et al., 1987).

Stimulation and recording. Peripheral nerves were stimulated at intensities submaximal or near-maximal for group II muscle afferents [0.1 ms duration, 2.5–5 times threshold (T) for the most sensitive fibers in the nerve]. For activation of the descending raphespinal tract fibers, trains of six to eight constant current stimuli (0.2 ms, 75–200 μA, 400 Hz, 45–50 ms before nerve stimulation) were applied using a 0.5 mm electrolytically etched tungsten wire, insulated except for its tip as a cathode. Ascending tract neurons were stimulated at a low thoracic level by pairs of silver ball electrodes in contact with left and right lateral funiculi (transdurally) at intensities supramaximal for activation of dorsal spinocerebellar tract fibers (~0.5 mA; 0.2 ms).

Glass micropipettes (tip diameter, ~1.5 μm) filled with 2 M NaCl solution...
were used for extracellular recording of both field potentials and spike potentials of the analyzed interneurons and larger micropipettes (tip diameter, ~2–2.5 μm) filled with a solution of the investigated agents (see details below) for recording and for application of these agents.

A search was made for interneurons in the L4–L5 segments of the spinal cord, at dorsal horn locations at which the most distinct field potentials were evoked from group II afferents (Edgley and Jankowska, 1987a). They were differentiated from dorsal horn ascending tract neurons with the same input (Edgley and Jankowska, 1987b, 1988) by failure to activate them antidromically by stimuli applied to the left and right lateral funiculi at a low thoracic level. Interneurons responding to stimulation at thresholds of 2.5–5 T and at latencies 1.2–3.0 ms from afferent volleys of group I origin of Q or Sart and 2.0–4.0 ms of DP were classified as interneurons with monosynaptic input from group II afferents (Edgley and Jankowska, 1987a).

Ionophoresis. The compounds used were 5-HT (0.2 m; Sigma, St. Louis, MO), 8-OH-DPAT (0.05 m; Sigma), Y-25130 (0.2 m; Tocris Cookson, Ballwin, MO), 2-Me-5-HT (0.1 m; Sandoz, Basel, Switzerland), WAY-100635 (0.1 m; Wyeth Ayerst International, Cambridge, MA), and bicuculline (0.02 m; Sigma). They were applied in the immediate surrounding of the interneurons (within 10–50 μm of the tip of the recording electrode) by ionophoresis from a water solution at pH 4.5, using a double-headed micromanipulator with two separate micromanipulators through which the drug-containing pipette was moved. A 10 nA retaining current was used when the drug-containing pipette was advanced through the spinal cord to reduce the possibility of leakage through the tip of the drug-containing micropipette. Two series of control records of interneuronal responses were taken before the ionophoresis began: one before the insertion of the drug-containing pipette (control) and the other with the drug before the drug-containing micropipette. Two series of control records of interneuronal responses were taken before the ionophoresis began: one before the insertion of the drug-containing pipette (control) and the other with the drug before the drug-containing micropipette. The shape and the amplitude of a current pulse applied through the drug-containing pipette were monitored during the ionophoresis; if higher impedance electrodes (generally 8–20 MΩ) started to fail to pass currents exceeding 10 nA, the intensity of the current was reduced, and the time of ionophoresis was prolonged to 4 min or until a plateau of the effects had been reached. In contrast, when neuronal responses disappeared after 0.5 or 1 min, the ionophoresis stopped after 1.5 min to increase the probability of recovery within the fast set time limits of 25 min. After the termination of the ionophoresis, the drug-containing pipette was withdrawn from the spinal cord, and responses of the neurons were recorded every 5 min.

Analysis of effects of monoamines. Responses to 20 consecutive stimuli were sampled every 15 or 30 s for as long as the ionophoresis continued and thereafter every 5 min during the recovery period. Evaluation of the effect of the ionophoresed substances was made by comparing the number of responses evoked by nerve stimulation and any changes in the latency before, during, and after ionophoresis. Peristimulus time histograms and cumulative sums were created on-line and stored in parallel with the original data records. To restrict the data to responses evoked by monosynaptic actions, these were sampled within time windows of 0.8–2 ms (from the earliest responses at latencies compatible with a monosynaptic coupling) with the exception of the five weakest excited interneurons in which the time window was increased to 2.5 ms. Data are expressed as means ± SEM. Statistical significance was calculated using Student’s t test.

Intracellular labeling and immunocytochemistry. A sample of six intracellularly labeled dorsal horn interneurons was obtained from five deeply anesthetized adult cats to examine the relationship between them and immunoreactivity for 5-HT and 5-HT3A receptor subunits. Once the cells were identified according to electrophysiological criteria (see above), tetramethylrhodamine dextran (Molecular Probes, Eugene, OR) and/or Neurobiotin (Vector Laboratories, Peterborough, UK) were injected by passing a constant positive current of 3–5 nA through the micropipette for 6–10 min (total product, 20–45 nA × min). At the conclusion of experiments, animals were perfused via the descending aorta, initially with 0.9% NaCl in 0.1 m phosphate buffer, pH 7.4, and subsequently with 2 L of fixative containing 4% formaldehyde in 0.1 m phosphate buffer, pH 7.4 (Hammar et al., 2004). Spinal cord segments were dissected out and placed in the same fixative for 8 h. Vibratome sections were cut in the transverse plane, collected in strict serial order, and mounted on glass slides with Vectashield (Vector Laboratories). They were scanned with a fluorescence microscope to identify individual neurons.
Figure 4. Effects of 2-Me 5-HT. A, B, Time course and mean depression evoked by 2-Me 5-HT as in Figure 3, A and B. The plots are based on measurements from 15 sequences of stimuli on responses of 11 dorsal horn interneurons, four of which were activated by stimulation of both Q and Sart nerves. When spikes were abolished before 3 min (n = 5), data points for the remaining period before the onset of the recovery were interpolated (taken as 0). All data from current on (p < 0.05) and after (p < 0.01 for 30 s (and 15 min recovery), and p < 0.001 for the rest), with the exception of 20 min recovery, were significantly different from placement. C, D, Data for one of the interneurons with the same format as in Figure 3, C and D.

Figure 5. Examples of the effects of 5-HT1A and 5-HT3 receptor antagonists on the depression of activity of dorsal horn interneurons from raphe nuclei. Records from two interneurons (A–C and D–F) in two experiments are shown. A, D, Top traces, Extracellular records after stimulation of the Sart nerve. Dotted lines indicate the discrimination level for construction of peri-stimulus time histograms and cumulative sums. Bottom traces, Parallel records from the cord dorsum at a lumbar level. B, E, As in A and D but when the Sart nerve stimulation was preceded by raphe stimulation leading to the disappearance of responses of the interneurons or to a lower probability of their activation. C, F, Cumulative sums of responses evoked by 20 stimuli, each response lifting the curve by one step in real time (with the calibration at the bottom in the absence of raphe stimuli (test control, corresponding to A and D). Gray, Reduced number of responses evoked when raphe stimuli preceded stimulation of group II afferents (corresponding to B and E) before (conditioned control) and during ionophoresis of the antagonists (after the indicated periods of ionophoresis).

cells labeled with tetramethylrhodamine dextran. Short series of sections containing well-labeled cells were incubated in avidin–rhodamine (1:1000) for 3 h in phosphate buffer supplemented with Triton X-100 to reveal Neurobiotin. Sections containing cells were then incubated for 48 h with rat anti-5-HT antibodies (1:200; Affiniti Research Products, Nottingham, UK) and rabbit anti-5-HT3A subunit antibodies (1:200; Oncogene Research Products, Cambridge, MA). The presence of antibody–antigen complexes was identified by using secondary antibodies, which were raised against immunoglobulins of the species from which the primary antibodies were obtained. Immunoreactivity for 5-HT was visualized using an anti-rat secondary conjugated to cyanine 1.58 and for 5-HT3 with an anti-rabbit secondary conjugated to Alexa488. All secondary antibodies were used at dilutions of 1:100 for 3 h and were obtained from Jackson Immunoresearch (Luton, UK). The staining properties and specificity of the antibodies used have been described previously (Stewart and Maxwell, 2000; Maxwell et al., 2002). The cells were scanned using a three-color confocal microscope (Bio-Rad, Hemel Hempstead, UK), and the distribution of the immunoreactive terminals was analyzed using Neuro lucida for confocal software (Micro BrightField, Colchester, VT). Putative terminals were only considered to be in contact with labeled cells if they were immediately adjacent with no intervening black pixels (Bannatyn et al., 2003; Hammar et al., 2004).

Two of the neurons (labeled with a 2% rhodamine/2% neurobiotin mixture) were analyzed for the transmitter content of their terminals, as described by Bannatyn et al. (2003). Cell bodies and dendrites were scanned with a confocal microscope using a 20X lens at z intervals of 1 μm, and a preliminary reconstruction was made. Sections containing terminals were then incubated (for 48 h) in combinations of primary antibodies raised against the following molecules: either rabbit anti-glutamic acid decarboxylase (GAD65 and GAD67, 1:1000; to identify GABAergic terminals); and guinea pig antisynaptic glutamate transporter 2 (VGLUT2, 1:5000; to identify glutamatergic terminals); or with sheep antiglycine transporter 2 (GlyT2, 1:1000) or mouse antigephyrin (1:100; to identify glycinergic terminals) and guinea pig antisynaptic glutamate transporter 1 (VGLUT1, 1:5000; to identify glutamatergic terminals). Anti-guinea pig antibodies coupled to cyanine 1.58 (Cy-5) were used to detect gephyrin. All secondary antibodies were used at dilutions of 1:100 in incubations lasting 3 h and were obtained from Jackson Immunoresearch. After these incubations, the sections were remounted and scanned with the confocal microscope using a Fluor 40X oil immersion lens. Series of images of axonal swellings were gathered at zoom factors of 2–5X and at z intervals of 0.5 μm. Terminals were then examined in both single optical sections and merged images to determine which of the markers were present.

Results

Effects of a 5-HT1A,7 and a 5-HT3 receptor agonist on responses of dorsal horn interneurons

Effects of both 5-HT agonists on individual interneurons were tested using standard parameters of ionophoresis, which resulted in the depression of monosynaptic focal field potentials evoked by group II afferents in the dorsal horn to ~50% (within a time window of 0.7–1 ms from the onset). These are illustrated in Figure 2, A (for 8-OH DPAT) and B (for 2-Me 5-HT), where they can be compared with the depression evoked by 5-HT (C).

The effects of 8-OH DPAT were tested on 10 dorsal horn interneurons and in nine of these, a considerable depression of
activation by group II afferents was found. Figure 3, A and B, shows that during 3 min of ionophoresis, the mean number of responses evoked by 20 stimuli decreased from 15.0 ± 1.5 to 3.1 ± 1.0 spikes (26.7 ± 9.4% of control). When calculated, only for the nine cells in which it occurred, the depression was to 14.5 ± 4.9%. The mean recovery was to 8.0 ± 1.8 (47.7 ± 13.6%). The depression started within the first 0.5 min of ionophoresis and often continued to increase during the successive 5 min after the end of ionophoresis, as if the maximal depression required diffusion of 8-OH DPAT along the great part of the dendritic tree. The deepening of the depression after ionophoresis is also illustrated with changes in responses of an individual interneuron in Figure 3C. The recovery was rather slow, but its beginning was seen within 20–25 min after the end of the ionophoresis in all of the interneurons.

Effects of 2-Me 5-HT were tested on 11 dorsal horn interneurons and were shown to be similar to those of 8-OH DPAT. Mean numbers of responses to 20 stimuli went from 14.3 ± 1.6 to 3.2 ± 0.8 during ionophoresis and recovered to 10.7 ± 1.3. This depression was found in 10 of these cells (i.e., in a similar percentage as after 8-OH DPAT ionophoresis and to a similar degree, to 27.2 ± 5.7%, in the whole sample and to 22.6 ± 1.4% in those in which the depression occurred). In view of not quite comparable general conditions of ionophoresis (Krnjevic, 1971), the comparison of the time course of depression in Figures 3A and 4A may not be reliable, but it suggests a faster manifested effect of 2-Me 5-HT (just after placement and before the beginning of ionophoresis, i.e., most likely by diffusion). It also suggests a faster onset of the recovery, immediately after the end of the ionophoresis. The decreases in the number of spikes evoked by nerve stimulations were often associated with an increase in the latency of the earliest spikes, as illustrated in Figures 3C and 4C. At the end of the ionophoresis, the increase was >0.2 ms in 75% of the cells, with a mean increase of 0.75 ± 0.2 and 1.05 ± 0.2 ms by 8-OH DPAT and 2-Me 5-HT, respectively.

Effects of a 5-HT1A and a 5-HT3 receptor antagonist on responses of dorsal horn interneurons

Effects of 5-HT antagonists were tested against depression of synaptic actions of group II afferents after stimulation in raphe nuclei, using procedures that were used previously for investigating synaptic actions of 5-HT (Proudfit et al., 1980; Khasabov et al., 1998; Khasabov et al., 1999) would likely be greater from locations of group II afferents from the region of the raphe nuclei (Riddell et al., 1993). However, any contribution of GABAergic presynaptic inhibition mediated by GABAergic interneurons activated by coexcited reticulospinal fibers, as indicated by depolarization of terminals of group II afferents from the region of the raphe nuclei (Khasabov et al., 1999) would likely be greater from locations dorsal and lateral to the raphe nuclei (Noga et al., 1992, their Figs. 9, 10). For this reason, we selected the stimulation sites from which the depression of dorsal horn field potentials was maximal (Figs. 1B, 2F) but after having verified that no comparable depression was evoked from more dorsal sites (Fig. 2G) where reticulospinal rather than raphespinal tract fibers would be preferably stimulated. Intervals between the conditioning and testing stimuli were kept within the range of 45–60 ms at which effects of...
faster conducting reticulospinal fibers would considerably decline and should be long enough to allow effects of slower conducting raphespinal fibers to manifest themselves (Noga et al., 1992, 1995). As reported by Noga et al. (1995), the depression was not only attributable to the release of 5-HT but also to presynaptic inhibition via GABAAergic interneurons, effects of the GABA_A receptor antagonist bicuculline were tested on responses of five dorsal horn interneurons (in nine test series in which different peripheral stimuli were used to activate these neurons). As in the case of WAY 100635 and Y-25130, clear-cut (<i>n</i> = 4), weak (<i>n</i> = 4), and uncertain effects (<i>n</i> = 1) were found in the different test series. The overall effects of bicuculline (Fig. 6G,H) were at least as effective as those of 5-HT agonists and, in some cases, not only reduced the depression but caused excitation: from 13.6 ± 6.2% in control (in all cells, 8.1 ± 4.9% in cells with clear effect) to 120.0 ± 42.9% (in all cells, 185.6 ± 90.8% in cells with clear effect). These responses recovered almost completely within 15 min (21.2 ± 5.9% in all, 22.2 ± 7.5% in cells with clear effect). Considering that effects of stimuli applied in raphe nuclei were secondary to the release of both 5-HT and GABA, these observations may explain the lower effectiveness of the serotonergic antagonists than of agonists.

Receptor immunocytochemistry

The sample of labeled interneurons included six interneurons with EPSPs from group II afferents of Q and/or Sart. As shown in Figure 7, the earliest components of EPSPs evoked in these neurons were followed by EPSPs or IPSPs at 1–2 ms longer latencies; EPSPs with EPSPs from group II afferents of Q and/or Sart. As shown in Figure 7, the earliest components of EPSPs evoked in these neurons were at least as effective as those of 5-HT agonists and, in some cases, not only reduced the depression but caused excitation: from 13.6 ± 6.2% in control (in all cells, 8.1 ± 4.9% in cells with clear effect) to 120.0 ± 42.9% (in all cells, 185.6 ± 90.8% in cells with clear effect). These responses recovered almost completely within 15 min (21.2 ± 5.9% in all, 22.2 ± 7.5% in cells with clear effect). Considering that effects of stimuli applied in raphe nuclei were secondary to the release of both 5-HT and GABA, these observations may explain the lower effectiveness of the serotonergic antagonists than of agonists.
The distribution of 5-HT_{3A}-immunoreactive axons along the dendrites followed two patterns. First, two cells showed similar low-contact densities at different distances from the soma (Fig. 8D, left panel). Second, the contact density was higher on proximal than on distal dendrites (Fig. 8D, right panel). This latter type of distribution was also found in interneurons with ring-like immunoreactive varicosities (1/1 and 1/2).

Generally, 5-HT_{3A}-immunopositive axons were less numerous than 5-HT varicosities in apposition to the interneurons, and there was no obvious relationship between 5-HT axons and those possessing 5-HT_{3A} receptor subunits. This is illustrated by the separation of red and green symbols in Figure 8, A and B, and different locations of green and blue varicosities in Figure 9, A4 and B4. There was considerable variation in the total numbers of contacts for individual neurons, with numbers ranging from 30 to 229 for 5-HT and 6 to 78 for 5-HT_{3A} terminals per cell. The mean numbers of 5-HT_{3A}-immunoreactive axons was approximately half that of 5-HT axons, considering both the total numbers, and contact densities on the soma and dendrites. However, in two interneurons, with the ring-like arrangements of 5-HT_{3A} terminals, the number and the density of 5-HT_{3A}-immunoreactive terminals were higher for the soma (Table 1, rows 1/1, 1/2).

Discussion

The results show that 5-HT depresses the activity of dorsal horn interneurons in pathways from group II afferents via both metabotropic (5-HT_{1A}&_{2A}) and ionotropic (5-HT₃) membrane receptors. These results are consistent with the previously reported effects of 5-HT_{1A} and 5-HT₃ membrane receptor agonists on synaptic actions of group II afferents on unspecified dorsal horn neurons (Bras et al., 1990).

The same experimental procedures as in previous studies (Bras et al., 1990; Jankowska et al., 2000; Hammar et al., 2004) were used for agonist ionophoresis to allow us to rely on previous tests of the specificity of effects evoked under our experimental conditions. In contrast, the procedure of testing effects of ionophoresis of 5-HT antagonists against effects of raphe stimulation was new. The effects of these antagonists, in addition, were differentiated from any effects of GABA_A-receptor-mediated inhibition likely induced by coactivated reticulospinal tract neurons (Lovick, 1983; Riddell et al., 1993) by susceptibility to bicuculline.

Bicuculline counteracted the raphe stimulation-induced depression of dorsal horn neurons, suggesting that presynaptic GABA_Aergic inhibition did contribute to the depression. How-
ever, effects of bicuculline must be interpreted cautiously, because there are indications of interactions between GABA and 5-HT ligands and receptors. For instance, it has been demonstrated that certain GABAA receptor antagonists, including bicuculline, inhibit 5-HT3 receptors (Sun and Machu, 2000; Das et al., 2003), and certain 5-HT receptor ligands interact with GABA receptors (Kawamata et al., 2003) and glycine receptors (Maksay, 1998; Chesnoy-Marchais et al., 2000). Other complicating factors are that, in the presence of bicuculline, the depression was not only counteracted but replaced by excitation (possibly by unmasking an excitatory pathway) and that bicuculline might also reduce the test responses. The latter effect suggests that it might also interact with an excitatory receptor, such as the nicotinic acetylcholine receptor possibly found on primary afferents (Ninkovic and Hunt, 1983; Khan et al., 2003) and known to be blocked by bicuculline (Demuro et al., 2001).

8-OH-DPAT interacts with both 5-HT1A and 5-HT7 membrane receptors (Barnes and Sharp, 1999; Hochman et al., 2001; Hoyer et al., 2002; Alexander et al., 2004). However, the effect of WAY100635, an antagonist specific for the 5-HT1A receptor (Forster et al., 1995), in reversing the 5-HT-induced depression increases our confidence in the involvement of 5-HT1A receptors. 8-OH DPAT, like a number of other 5-HT agonists, could act postsynaptically and/or presynaptically at the level of presynaptic terminals of sensory fibers and other neurons (Pompeiano et al., 1992).

5-HT effects mediated by 5-HT3 receptors could be reasonably and reliably attributed to presynaptic actions (Proudfit et al., 1980; Singer and Berger, 1996; Singer et al., 1996; Khasabov et al., 1999), because 5-HT3 receptors are present on the axonal terminals of small primary afferent fibers (in particular, C, possibly Aβ fibers) and on excitatory interneurons and interneuron terminals in the dorsal horn (Kia et al., 1996; Zeitz et al., 2002; Maxwell et al., 2003). However, because 5-HT3A subunit immunoreactivity is not found on axons labeled with VGLUT1 or myelinated axons that transport CTb in laminae III–VI of rat dorsal horn (D. Conte, E. D. Legg, A. C. McCourt, E. Silajdzic, G. G. Nagy, and D. J. Maxwell, unpublished observations), it is unlikely

Table 1. The numbers and contact densities of 5-HT and 5-HT3 axon terminals in apposition to cell bodies and dendrites of dorsal horn interneurons

<table>
<thead>
<tr>
<th>Cat/Cell ID</th>
<th>Total number of contacts</th>
<th>Number of contacts</th>
<th>Contact density (n/100 µm²)</th>
<th>Total dendritic length (µm)</th>
<th>Number of contacts</th>
<th>Contact density (n/100 µm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5-HT 5-HT3</td>
<td>5-HT 5-HT3</td>
<td>Surface area (µm²)</td>
<td>5-HT 5-HT3</td>
<td>5-HT 5-HT3</td>
<td>Surface area (µm²)</td>
</tr>
<tr>
<td>1/1 nk</td>
<td>53 52</td>
<td>9 20</td>
<td>725.46</td>
<td>1.24 2.76</td>
<td>952.7</td>
<td>44 32</td>
</tr>
<tr>
<td>1/2 nk</td>
<td>229 78</td>
<td>23 32</td>
<td>1606.63</td>
<td>1.43 1.93</td>
<td>4081.5</td>
<td>206 46</td>
</tr>
<tr>
<td>2/1 nk</td>
<td>30 6</td>
<td>3 0</td>
<td>508.85</td>
<td>0.59 0</td>
<td>1766.7</td>
<td>27 6</td>
</tr>
<tr>
<td>3/1 Gly</td>
<td>66 39</td>
<td>0 5</td>
<td>678.52</td>
<td>0 0.74</td>
<td>5227.4</td>
<td>66 34</td>
</tr>
<tr>
<td>4/1 Glut</td>
<td>71 15</td>
<td>11 2</td>
<td>1400.61</td>
<td>0.86 0.14</td>
<td>3539.8</td>
<td>60 13</td>
</tr>
<tr>
<td>5/1 nk</td>
<td>60 19</td>
<td>14 4</td>
<td>3502.86</td>
<td>0.4 0.11</td>
<td>3349.7</td>
<td>46 15</td>
</tr>
</tbody>
</table>

NT, Nerve transmitter; Gly, terminals immunopositive for gephyrin; Glut, terminals immunopositive for VGLUT2; nk, transmitter unknown.
that the 5-HT3 receptors are on the terminals of group II muscle afferents themselves. It is much more likely that they are present on excitatory interneurons as they colocalize with the vesicular glutamate transporter 2, which is found mainly within terminals of spinal interneurons (Todd et al., 2003; Conte, Legg, McCourt, Silajdzic, Nagy, and Maxwell, unpublished observations). 5-HT-induced depression mediated by 5-HT3 receptors may thus occur as a consequence of reduction of actions of excitatory interneurons, which provide background input to dorsal horn interneurons or mediate their disynaptic or polysynaptic excitation from group II afferents.

Two series of present experiments dealt with involvement of 5-HT3 receptors. In one of these, the highly selective 5-HT3 receptor agonist 2-Me 5-HT (Hochman et al., 2001; Alexander et al., 2004) was found to depress responses of dorsal interneurons from group II afferents and the 5-HT3 receptor antagonist Y-25130 to reduce the depression evoked by stimuli applied in the raphe nuclei. In the other, axon terminals immunoreactive for 5-HT3A receptors were shown to surround the dorsal horn interneurons.

In pain pathways, 5-HT acting on 5-HT3 receptors has been reported to have both excitatory and inhibitory effects (Peng et al., 1996; Green et al., 2000; for review, see Hochman et al., 2001). In contrast, only inhibitory actions have been found to be evoked via 5-HT3 receptors on dorsal horn interneurons activated by group II afferents. In addition, no obvious differences occurred in effects of 2-Me 5-HT on the sample of the 10 of 11 cells tested, and the lack of effects on the 11th cell could be attributable to technical reasons. It is therefore of interest that subgroups of dorsal horn group interneurons showed a tendency to be targeted in a specific way by axons that possess 5-HT3A receptors on their terminals. If the data for interneurons 3/1 and 4/1 are representative, they would suggest that inhibitory neurons have cell bodies that are surrounded by axons that are immunoactive for the 5-HT3A subunit (Fig. 8), although this arrangement may be absent on excitatory cells.

Because there was no clear relationship between 5-HT axons and axons possessing 5-HT3A receptor subunits, we hypothesize that 5-HT depresses excitatory transmission to dorsal horn interneurons by acting on terminals of excitatory input cells via volume transmission, 5-HT3 receptors having a high affinity for 5-HT (mean Kᵢ = 160 nM in rat nervous system; PDSP database: http://kidb.cwru.edu/pdsp.php). Volume transmission could also be involved in actions mediated by 5-HT1A membrane receptors. Nevertheless, the higher density of the 5-HT3A than that of 5-HT-immunoreactive terminals in apposition to soma and proximal dendrites might explain differences in dynamics of effects of 5-HT3 and 5-HT1A receptor agonists and antagonists on dorsal horn interneurons if effects of 2-Me 5-HT and Y-25130 on 5-HT3 receptors would require a shorter time to diffuse from the iontophoretic electrode, which was always located close to the soma. This, along with faster ionotropic (5-HT3) versus metabotropic (5-HT1A) actions, could account for the lag in effect.

As for the consequences of the enhanced or weakened control of dorsal horn interneurons by 5-HT for the state-dependent actions of group II afferents on contralateral motoneurons, the results of the present study lead to the following conclusions. First, they show that effects of 5-HT are associated with the modulation of actions of group II afferents on dorsal horn interneurons both postsynaptically (via 5-HT1A membrane receptors) and presynaptically (via 5-HT3, possibly also 5-HT1A and/or other metabotropic 5-HT receptors). By acting presynaptically via metabotropic receptors, 5-HT may weaken transmission from group II afferents to dorsal horn interneurons and strengthen the effects of the GABAergic presynaptic inhibition. In both cases, when the raphespinal connections are interrupted, dorsal horn interneurons would be more effectively activated, and their actions on commissural interneurons would be enhanced. Systemically applied 5-HT3A membrane receptor agonists and antagonists (8-OH DPAT, WAY 100635) would change this situation and restore the postsynaptic, and possibly also presynaptic, depression of activation of dorsal horn interneurons.

Second, if postsynaptic actions of 5-HT on excitatory and inhibitory dorsal horn interneurons are similar, they may not be compatible with the major role of these actions for the funneling of nerve impulses from group II afferents to contralateral motoneurons (Aggelopoulos et al., 1996) via either excitatory or inhibitory commissural interneurons (Bannatyne et al., 2003; Butt and Kiehn, 2003). However, the presynaptic actions via 5-HT3 membrane receptors on dorsal horn interneurons appear to be more differentiated. If we hypothesize that these actions are stronger on inhibitory interneurons (see below), after damage to raphespinal connections, these interneurons might be relatively more released from the depressive actions of 5-HT, and inhibition of commissural interneurons by dorsal horn interneurons may become stronger than the excitation. This would not by itself explain stronger actions of excitatory commissural interneurons on contralateral motoneurons in the absence of 5-HT. However, one might putatively consider that actions of excitatory dorsal horn interneurons have greater impact on the excitatory commissural interneurons and actions of inhibitory dorsal horn interneurons on inhibitory commissural interneurons and, in addition, that the coupling between the excitatory commissural interneurons with contralateral motoneurons is stronger than the coupling of the inhibitory interneurons. Under these conditions, lack of 5-HT control of dorsal horn interneurons would contribute to the dominance of the crossed excitation.

5-HT might also act on interneurons that mediate disynaptic excitation or inhibition of dorsal horn interneurons and on synaptic transmission between them. It might also act on polysynaptic actions of commissural interneurons on contralateral motoneurons. There are indications that such interneurons are located in the ventral horn and in the intermediate zone at the same side as the contralateral motoneurons (Matsuyama and Mori, 1998; Bannatyne et al., 2003; Matsuyama et al., 2004). The choice between these putative explanations would require that we know more about properties of different functional categories of neurons in these networks.

References

Affiliations

