Cellular/Molecular

A Mechanism for Ca$^{2+}$/Calmodulin-Dependent Protein Kinase II Clustering at Synaptic and Nonsynaptic Sites Based on Self-Association

Andy Hudmon,¹ Eric LeBel,²,⁴ Hugo Roy,²,⁴ Attila Sik,³,⁴ Howard Schulman,¹ M. Neal Waxham,⁵* and Paul De Koninck¹,²,*

¹Department of Neurobiology, Stanford University, Stanford, California 94305, ²Département de Biochimie et de Microbiologie, Faculté des Sciences et de Génie, and ³Département de Psychiatrie, Faculté de Médecine, Université Laval, Québec, Canada G1K 7P4, ⁴Centre de Recherche Université Laval Robert-Giffard, Québec, Canada G1J 2G3, and ⁵Department of Neurobiology and Anatomy, University of Texas Health Science Center, Houston, Texas 77030

The activity of Ca$^{2+}$/calmodulin-dependent protein kinase II (CaMKII) plays an integral role in regulating synaptic development and plasticity. We designed a live-cell-imaging approach to monitor an activity-dependent clustering of green fluorescent protein (GFP)-CaMKII holoenzymes, termed self-association, a process that we hypothesize contributes to the translocation of CaMKII to synaptic and nonsynaptic sites in activated neurons. We show that GFP-CaMKII self-association in human embryonic kidney 293 (HEK293) cells requires a catalytic domain and multimeric structure, requires Ca$^{2+}$ stimulation and a functional Ca$^{2+}$/Cal-binding domain, is regulated by cellular pH and Thr286 autophosphorylation, and has variable rates of dissociation depending on Ca$^{2+}$ levels. Furthermore, we show that the same rules that govern CaMKII self-association in HEK293 cells apply for extrasynaptic and postsynaptic translocation of GFP-CaMKII in hippocampal neurons. Our data support a novel mechanism for targeting CaMKII to postsynaptic sites after neuronal activation. As such, CaMKII may form a scaffold that, in combination with other synaptic proteins, recruits and localizes additional proteins to the postsynaptic density. We discuss the potential function of CaMKII self-association as a tag of synaptic activity.

Key words: protein translocation; autophosphorylation; postsynaptic density; aggregation; calmodulin; synaptic tag

Introduction

Proposed mechanisms of long-term synaptic plasticity in the mammalian CNS have evolved to overcome a series of difficult engineering issues. For example, a single hippocampal neuron contains >10,000 excitatory synapses that are each isolated computational units that can be strengthened or weakened independently. Plasticity lasting more than a few hours is thought to involve upregulation of nuclear gene expression and subsequent protein translation in the soma and, as such, introduces a particularly unique problem. How can synapse-specific plasticity be maintained in the face of nuclear changes that should impact synapses cell wide? This could be achieved through synaptic “tags” (Frey and Morris, 1998; Martin, 2002; Martin and Kosik, 2002), which are laid down at specific synapses to somehow capture the necessary components from the cell wide supply.

Despite the importance of the concept of synaptic tagging, no specific molecule that underlies the process has been identified. Martin and Kosik (2002) proposed criteria that the tag should be spatially restricted, time-limited and reversible, and should interact with the cell-wide events that produce long-term synapse-specific strengthening, such as long-term potentiation (LTP). Additionally, Frey and Morris (1998) hypothesized that “an economical arrangement would be one in which the biochemical cascade responsible for early LTP included the phosphorylation of a protein that, in addition to its immediate effects on synaptic transmission, was also responsible for sequestering proteins later” (Frey and Morris, 1998).

Ca$^{2+}$/calmodulin-dependent protein kinase II (CaMKII) has well-documented functions in the induction of LTP (Lisman et al., 2002) and possesses structural and regulatory features that fulfill the criteria for a synaptic tag. First, CaMKII is a multisubunit complex (Kolodziej et al., 2000; Hoelz et al., 2003; Gaertner et al., 2004) with the catalytic domains extending out from the core, making them available to interact simultaneously with and
phosphorylate multiple substrates and anchoring proteins, including those associated with the postsynaptic density (PSD) (Bayer and Schulman, 2001; Soderling et al., 2001; Colbran, 2004). Second, the enzyme can rapidly translocate to postsynaptic regions after NMDA receptor activation and has variable rates of dissociation from individual synapses (Shen and Meyer, 1999; Shen et al., 2000; Gleason et al., 2003; Otmakhov et al., 2004). Third, electron microscopy (EM) studies of isolated PSDs revealed that CaMKII was not uniformly distributed and tended to form tower-like structures of variable height that extended away from the synaptic membrane (Peterson et al., 2003). Finally, CaMKII holoenzymes were shown to be capable of associating with one another (or self-associate) in response to Ca2+ stimulation (Hudmon et al., 1996, 2001), revealing that the enzyme has an inherent capacity to form higher-order complexes. Self-associated holoenzymes may in fact produce the tower-like PSD-associated CaMKII. As such, CaMKII self-association could be a mechanism to anchor the kinase at specific synapses and be involved with other associated postsynaptic molecules as a tag.

However, the process of CaMKII self-association, as demonstrated in vitro, has not been described in cells. In the present study, an imaging approach was developed to demonstrate and dissect the mechanism behind green fluorescent protein (GFP)-CaMKII self-association in living cells. Using this approach, we also show that the recruitment of activated CaMKII to synaptic sites is mechanistically consistent with GFP-CaMKII binding to other CaMKII holoenzymes in the PSD. The unique multimeric structure of the enzyme would thus provide a geometrically constrained scaffold onto which other synaptic proteins could be assembled, making CaMKII self-association an ideal synaptic tagging mechanism.

Materials and Methods

GFP-CaMKII constructs. In this study, we used three different GFP-CaMKII constructs, which were all made independently from Clontech (Mountain View, CA) enhanced GFP (eGFP) vectors. The first (gift from Tobias Meyer, Stanford University, Stanford, CA) contained the linker (LKSRAQANSAAVDTAGPSGSSAR) and was constructed by digesting the full-length rat cDNA encoding the α subunit of CaMKII from SRα with BamHI/Xbal and placing the insert into the BamHI/Xbal sites of eGFP-C1. The second contained the linker (RTQISSSSSSEFFPMAN) and was constructed by digesting the full-length rat cDNA encoding α-CaMKII from pGRT-α (Kolb et al., 1998) with EcoRI/Sall and placing the insert into the EcoRI/Sall sites of eGFP-C2. These two constructs were used in preliminary experiments, but because eGFP tends to dimerize, we made a third construct, termed mGFP-CaMKII, in which a mutation (A207K) in the eGFP was introduced to render GFP monomeric (Zaehner et al., 2000). We chose to use this construct for all of our remaining experiments to avoid GFP-dependent aggregation. For simplicity, we refer only to GFP-CaMKII throughout this study. The following various mutant forms of CaMKII were described previously: 286Ala (Meyer et al., 1992), 286Asp (Waldmann et al., 1990), 205Lys (Bayer et al., 2001), 302Arg (Shen and Meyer, 1999), 1–326 (Hanson et al., 1994), 315–478 (Kolb et al., 1998), 305–306/Ala-Ala (Hanson and Schulman, 1992), and 305–306/Asp-Asp (Rich and Schulman, 1998) except for 286–287/Asp-Asp and 286Asp–305–306/Ala-Ala, which were generated by mutagenesis and verified by sequence analysis. The various mutant forms of the kinase were subcloned into the wild-type (WT) GFP-CaMKII backbone using a PFlmi restriction insert.

Time-lapse imaging of transfected human embryonic kidney 293 cells. Human embryonic kidney 293 (HEK293) cells grown to 70–80% confluence in DMEM growth media supplemented with 10% fetal bovine serum and l-glutamine (Invitrogen, San Diego, CA) were transfected using Lipofectamine 2000 (Invitrogen) as described by the manufacturer. On the following day, transfected cells were plated onto poly-D-lysine-coated Aclar (22 C grade; ~120 μm thickness; Honeywell, Morristown, NJ) coverslips (13 mm in diameter) in 24-well tissue culture plates (Falcon, Franklin Lakes, NJ), and imaging experiments were performed 6–16 h later. Imaging solutions, made fresh, were either HBSS (plus 25 mM Hepes, pH 7.4, with 2 mM CaCl2) or a nigericin-based buffer, which was composed of 20 mM Hepes, 140 mM KCl, 2 mM CaCl2, 5 mM NaCl, 1 mg/ml glucose, at pH 7.5 or 6.5. Low Ca2+ (~150 mS) buffer was made using 15 mM EGTA and 1 mM CaCl2, pH 6.5, whereas 0 Ca2+ buffer was made by replacing CaCl2 with 5 mM BAPTA. Working solutions of nigericin were 10 μg/ml (1:1000 dilution of a methanol stock) and were 10 μM for ionomycin (1:1000 dilution of a methanol stock). Unless otherwise stated, the standard Ca2+/ionomycin-ph drop protocol was as follows: (1) to perfuse the coverslips with nigericin solution at pH 7.5 without ionomycin (Time-0 image), (2) to switch to the same solution with ionomycin/CaCl2 for 2 min, and (3) to switch to a nigericin solution at pH 6.5 with ionomycin/CaCl2. The cells were perfused (0.5–1 ml/min) using a custom-made stop flow multivalve perfusion system in a low-volume custom-made perfusion chamber constructed by Robert Schneevies (Department of Neurobiology, Stanford University, Stanford, CA). For time-lapse series, 12-bit images were taken with a CoolSnap-FX CCD (Roper Scientific, Duluth, GA) through a 40× oC illumination (1.4 numerical aperture (NA)) objective mounted on a Nikon (Tokyo, Japan) Diaphot microscope, controlled by MetaMorph software (Universal Imaging Corporation, West Chester, PA).

Immunocytochemistry of HEK293 cells. For immunostaining experiments, HEK293 cells were transfected as described above with GFP-αCaMKII or with pCDNA 3.1 expression vectors containing αCaMKII. After stimulation (2 min at pH 7.5 followed by 3 min at pH 6.5), the cells were immediately fixed in 4% paraformaldehyde (0.1 M phosphate buffer, pH 7.4) for 10 min and washed in PBS three times. For labeling with mouse monoclonal anti-αCaMKII antibody (CatNo: 1:5000), cells were permeabilized in methanol at ~20°C for 10 min, rehydrated in PBS, and incubated for 30 min in blocking solution (PBS, 2% normal goat serum). For labeling with rabbit anti-phospho-Thr286-CaMKII (1:1250; Promega, Madison, WI), cells were permeabilized for 30 min with 0.02% Triton X-100 at room temperature in blocking solution. Primary antibodies were incubated for 2 h at room temperature in blocking solution. After washes, secondary antibodies (goat anti-mouse or anti-rabbit Alexa 594, 1:1000; Molecular Probes, Eugene, OR) were incubated in blocking solution for 45 min at room temperature. Coverslips were mounted in Prolong Gold Antifade mounting media (Molecular Probes).

Thin-section immunogold labeling and electron microscopy. HEK293 cells, transfected or not transfected with GFP-CaMKII, were treated with ionomycin/nigericin (≥Ca2+) as above and were then fixed immediately in 4% paraformaldehyde. The coverslips were then immersed in 30% sucrose, freeze-thawed over liquid nitrogen, rinsed in phosphate-buffered solution (PB) and incubated with CBA2 (1:10,000). This was followed by washes in PBS and incubation with goat anti-mouse 1 nm gold-conjugated antibody (1:200; Aurion, Wageningen, The Netherlands). Both antibody incubations were for 8 h at 4°C, which was followed by silver intensification (SE-EM; Aurion, Conches, France). Cells were then treated with 1% osmium-tetroxide in 0.1 M PB, dehydrated in ethanol and propylene-oxide, and embedded in Durcupan ACM (Fluka, Buchs, Switzerland). During dehydration, the cells were stained with 1% uranyl acetate (Sigma-Aldrich, Deisenhofen, Germany) in 70% ethanol for 25 min. Selected immunoreactive profiles were reembedded for ultrathin (60 nm) sectioning using a Leica (Nussloch, Germany) Ultracut S. Electron micrographs were obtained using a Philips Tecnai 12 microscope equipped with Megaview II digital camera.

Rat hippocampal cultures. Rat hippocampi were dissected out of postnatal day 1 (P1) to P3 rats, and cells were dissociated enzymatically and mechanically (trituration through Pasteur pipette). The Papain solution (12 U/ml Worthington, Freehold, NJ) contained Ca2+/Mg2+/fetal bovine serum, HBSS, 0.42 mg/ml cysteine (Sigma), 250 U/ml DNase 1 (type IV; Sigma), 25 mM NaHCO3, penicillin (50 U/ml) streptomycin (50 μg/ml), 1 mM sodium pyruvate, and 1 mg/ml glucose (Invitrogen). After dissociation, the cells were washed and centrifuged in Neurobasal medium containing BSA (2 mg/ml and 20 mg/ml, respectively), Pen/Strep, glucose, pyruvate,
and DNase1 (as above) and then plated on poly-D-lysine-coated Aclar coverslips at high density (≈2000 cells/mm²). Growth media (1 ml/well) consisted of Neurobasal and B27, supplemented with penicillin/streptomycin (50 U/ml; 50 μg/ml), and 0.5 mM L-glutaminex (Invitrogen). Cyto-
sine β-β-arabinofuranoside (5 μM; Sigma) was added 24 h after plating to reduce the number of non-neuronal cells. After 4 d in culture and twice each week thereon, half of the growth medium was replaced with me-
dium without Ara-C.

Transfection, stimulation, and immunocytochemistry of neurons. Neu-
rons [14–18 d in vitro (DIV)] were transfected with GFP-CaMKII WT and mutants as described above, except that the DNA and Lipofectamine 2000 reagents were applied for 5 h only and then the coverslips were transferred to fresh growth media supplemented with 100 μM AP-5 (Cal-
biochem, La Jolla, CA). The following day, the cells were washed in HBSS (plus 10 mM HEPES, pH 7.4, 1.2 mM CaCl₂, 1 mM MgCl₂) and then stimulated with the same HBSS solution containing glutamate/glycine (100 μM/10 μM) for 1 or 5 min. Neurons were immediately fixed in 4% paraformaldehyde (0.1% MB, pH 7.4, 4% sucrose) for 10 min, washed in PBS three times, and incubated for 30 min in blocking solution with 0.05% Triton X-100. Cells were then incubated overnight at 4°C with various agents, Golden, CO) in blocking solution. Secondary antibody (goat-
anti-mouse Alexa 546; 1:1000) application and coverslip mounting were
done as described above. For the assessment of postynaptic transloca-
tion of GFP-CaMKII in neurons, independent cultures were fixed before and immediately after a 1 or 5 min glutamate/glycine treatment and then immunostained for PSD95.

Confocal imaging and quantification of GFP-CaMKII clustering. To
count the degree of self-association of different CaMKII mutants, HEK293 cells were fixed immediately after the Ca²⁺/pH drop protocol as
described above. Twelve-bit images (1024 × 1024) from randomly se-
lected cells (blind of the condition) were acquired on a Zeiss (Thor-
wood, NY) LSM510 META-Axioskop FS2 Plus confocal system, using a
63× oil immersion objective (1.4 NA), scanning a 0.5-μm-thick optical slice through the center of each cell. GFP was excited with an Argon laser line at 488 nm and detected through a long-pass filter (LP505 nm). The

described for the HEK293 cells, on one optical slice (0.7 μm) from the
center of the cell body. The number of pixels in the detected clusters
corresponded to a range of 0.04 – 0.32 μm². Second, we sampled by visual observation under the microscope a large number of transfected neurons (n > 100) and applied a semiquantitative score of GFP-CaMKII translocation (supplemental Fig. 2, available at www.jneurosci.org as supplemental material). Both methods of quantification yielded similar
conclusions.

Statistics. A one-way ANOVA was conducted to assess overall group
differences (F test; p < 0.001), with a subsequent Dunnett’s test to iden-
tify specific pairwise differences (p < 0.001) between the means. Analy-
ases were conducted using SPSS version 10.1.3 (SPSS, Chicago, IL). Addi-
tional statistical analyses were performed and described in supplemental Figure 2 (available at www.jneurosci.org as supplemental material).

Results

Glutamate receptor stimulation induces CaMKII translocation to synaptic and nonsynaptic sites

Endogenous CaMKII or transfected GFP-CaMKII were shown to translocate to synaptic sites in cultured hippocampal neurons stimulated by glutamate/glycine (Shen and Meyer, 1999; Shen et al., 2000; Dosemeci et al., 2001; Gleason et al., 2003). We con-
firmed this observation with GFP-CaMKII in hippocampal neu-
rons but observed that the enzyme also translocated to nonsyn-
aptic sites (Fig. 1). In unstimulated neurons, GFP-CaMKII was
distributed throughout the soma and neurites (Fig. 1A) and exhib-
ted a largely diffuse pattern of fluorescence. GFP-CaMKII did not significantly colocalize with PSD95, a marker of the postsyn-
aptic side of synapses in dendrites and the soma (Fig. 1A, middle,
right). Stimulation with glutamate/glycine led to a different pat-
tern of fluorescence (Fig. 1B). Discrete puncta of GFP-CaMKII
fluorescence appeared at synaptic (PSD95-positive) sites (Fig. 1B, middle), suggesting that the enzyme had been recruited to synapses (Shen and Meyer, 1999; Shen et al., 2000). However, in

Figure 1. Activity-dependent translocation of GFP-CaMKII to synaptic and nonsynaptic sites in neurons. Hippocampal neurons (18 DIV) transfected with GFP-CaMKII (green) were stimulated 24 h after transfection with glutamate/glycine (100 μM/10 μM) for 5 min. Neurons were immediately fixed, immunostained for PSD95 (red), and imaged with confocal microscopy. A, GFP-CaMKII fluorescence is primarily diffuse in the soma (right) and dendrites (middle) of nonsynaptized neurons, with occasional colocalization with PSD95 (synaptic sites) immunostaining. B, Glutamate/glycine stimulation caused a translocation of GFP-CaMKII into fluorescent puncta in both the soma and dendrites. GFP-CaMKII fluorescence in the distal dendrites (middle) appears localized primarily to PSD95-positive sites (synapses), whereas CaMKII fluorescence in the soma and initial segments of the dendrite do not (right). Images of the entire neuron (left) and cropped dendrites (middle) represent maximum projections from z-stacks, whereas those of cell bodies (right) represent a single optical slice (1.0 μm) from their center. Scale bars: (in B) left, 25 μm; (in A) middle, 3 μm; (in A) right, 5 μm.
these same neurons, we also observed discrete puncta of GFP-CaMKII in the soma, which did not overlap with PSD95-immunoreactive sites (Fig. 1B, right). The right panels in Figure 1 represent a 1-μm-thick optical slice through the center of the cell body, indicating that the somatic puncta were mostly intracellular. The appearance of these nonsynaptic GFP-CaMKII puncta in neurons has not been described previously. We hypothesized that the rapid relocation of GFP-CaMKII into synaptic and nonsynaptic intracellular clusters, after glutamate/glycine stimulation, involves a CaMKII self-association process (Hudmon et al., 1996, 2001). To investigate whether the formation of GFP-CaMKII clusters in cells can be explained by the self-association of GFP-CaMKII holoenzymes, we first used transfected HEK293 cells, which are essentially devoid of synaptic proteins.

Ca\(^{2+}\)-dependent translocation of GFP-CaMKII in HEK293 cells

Treatment of GFP-CaMKII transfected cells with ionomycin in the presence of external Ca\(^{2+}\) resulted in the formation of discrete GFP-CaMKII fluorescence puncta distributed throughout the cytosol (Fig. 2A). This effect is reminiscent of the GFP-CaMKII redistribution observed in glutamate/glycine-stimulated neurons (Fig. 1). Before stimulation, GFP-CaMKII exhibited a relatively uniform non-nuclear distribution in these cells as reported previously (Bayer et al., 2001) (Fig. 2A). Hence, Ca\(^{2+}\) elevation can induce GFP-CaMKII to form fluorescent puncta in the absence of other synaptic proteins. Previous studies showed that in HEK293 cells transfected with NMDA receptor subunit NR2B, ionomycin treatment caused the translocation of the fluorescence into puncta (Bayer et al., 2001). For comparison, we repeated this experiment and observed the appearance of elongated puncta (Fig. 2B, arrows), which formed an annular-like pattern of fluorescence that was morphologically distinct from that seen in HEK293 cells transfected with the GFP-CaMKII alone (Fig. 2B). This is consistent with GFP-CaMKII translocating to the perinuclear endoplasmic reticulum, where overexpressed NR2B is concentrated in the absence of NR1 (Bayer et al., 2001; Fukaya et al., 2003).

We also noted that the CaMKII puncta formed in the presence and absence of NR2B differed in their time course of appearance. In cotransfected (GFP-CaMKII plus NR2B) HEK293 cells, puncta appeared within 2–3 min of ionomycin exposure. In the absence of NR2B, GFP-CaMKII puncta first appeared at ~5 min of ionomycin stimulation. Also, once formed, the NR2B-bound GFP-CaMKII clusters appeared static, whereas those formed in the absence of NR2B were moving randomly within the cytoplasm. These features of CaMKII translocation can be best compared by looking at the complete time-lapse sequences provided as movies (supplemental Fig. 2-movie1.mov and Fig. 2-movie2.mov, available at www.jneurosci.org as supplemental material). The random-like movement of CaMKII puncta formed in the absence of the NR2B subunit suggests that they were not anchored to any stable intracellular structure. The more static appearance of the puncta formed in the presence of NR2B is consistent with the binding of the enzyme to NR2B embedded into cellular membranes.

pH influences the rate of CaMKII cluster formation in HEK293 cells

During the ionomycin treatment and preceding the formation of puncta in the HEK293 cells transfected with GFP-CaMKII, we observed that the fluorescence intensity decreased noticeably (20–30%). Because GFP fluorescence is sensitive to pH, it is likely that the reduction in GFP fluorescence was attributable to an ionomycin/Ca\(^{2+}\)-induced acidification of the cell cytoplasm as reported previously (Patterson et al., 1997; Llopis et al., 1998). A pH dependence to the formation of GFP-CaMKII puncta would be congruent with a self-association mechanism underlying this translocation (Hudmon et al., 1996, 2001).

To address the regulatory role of pH in the formation of these CaMKII fluorescent puncta, we used the monovalent ionophore nigericin to control the intracellular pH (pHi) (Thomas et al., 1979). We compared the extent of ionomycin-induced clustering of GFP-CaMKII at pH 7.5 versus pH 6.5. The lower pH value was chosen, in part, because brief NMDA receptor stimulation was shown to cause pHi to drop to 6.5 in cultured neurons (Hartley and Dubinsky, 1993; Irwin et al., 1994), and a pHi level of 6.5 enhances CaMKII self-association in vitro (Hudmon et al., 1996, 2001). At pHi 7.5, the fluorescent signal remained diffuse and homogenous after ionomycin/Ca\(^{2+}\) treatment for ~5 min (Fig. 3A). The pH clamping by nigericin eliminated the drop in the cell fluorescence intensity, which was observed above, after ionomycin stimulation. Reequilibrating these same cells in low Ca\(^{2+}\) and then lowering the pH to 6.5 also had no effect on GFP-CaMKII distribution (Fig. 3, compare left panels in A and B) but did cause a reduction in the cell fluorescence intensity (Fig. 3B, compare left and right panels). In contrast, lowering the pH to 6.5 in the presence of ionomycin/Ca\(^{2+}\) was rapidly (within 20 s) associated with the appearance of punctate GFP-CaMKII fluorescence throughout the cytosol (Fig. 3C). A time-lapse movie (supplemental Fig. 3-movie3.mov, available at www.jneurosci.org as supplemental material) illustrates the evolution of CaMKII self-association after Ca\(^{2+}\) elevation at pH 6.5. The formation of
CaMKII also translocates into clusters as revealed by immunocytochemistry for CaMKII fluorescence was imaged following sequential ionomycin treatments in nonstimulated cells (left) and are not associated with electron-dense material. Scale bars: (in A, D) 6 µm; F, 250 nm.

Figure 3. Ionomycin-induced GFP-CaMKII translocation in HEK293 cells is regulated by pH. GFP-CaMKII fluorescence was imaged following sequential ionomycin treatments in a nigericin-based extracellular buffer designed to clamp pH, at 7.5 or 6.5 as indicated. Ionomycin/Ca\(^{2+}\) treatment induced translocation of GFP-CaMKII at pH 6.5, as in C, but ionomycin treatment at pH 7.5 in the presence of Ca\(^{2+}\) (A) or at pH 6.5 in the absence of Ca\(^{2+}\) (B) did not induce translocation. In B and C (left), the cells were reequilibrated in nigericin/low-Ca\(^{2+}\)/pH 7.5 buffer for 5 min before the solution changes shown in the right panels. D, Non-GFP-tagged CaMKII also translocates into clusters as revealed by immunocytochemistry for αCaMKII (right). Scale bars, (in A, D) 6 µm; F, 250 nm.

Reversibility of CaMKII cluster formation
To test whether the Ca\(^{2+}\) and pH-dependent translocation of CaMKII can be reversed, we induced CaMKII cluster formation using the standard Ca\(^{2+}\)/ionomycin-PH drop protocol (Fig. 4, sequence a to c) (see Materials and Methods) and then removed extracellular Ca\(^{2+}\) with the Ca\(^{2+}\) chelator BAPTA and/or raised the pH back to 7.5. Within ~2 min of BAPTA perfusion, still at pH 6.5, the punctate fluorescence disappeared (Fig. 4A) (supplemental Fig. 4-movie4.mov, available at www.jneurosci.org as supplemental material), indicating that CaMKII clustering can be reversed by removing extracellular Ca\(^{2+}\) and thus is not caused by an irreversible aggregation of denatured kinase. Raising the pH to 7.5 in the continuous presence of Ca\(^{2+}\) did not reverse the clusters by 30 min (Fig. 4B), indicating that although their formation is initially pH regulated, elevated Ca\(^{2+}\) is both necessary and sufficient to maintain CaMKII in the clustered state. We next examined whether the kinase would fully dissociate under Ca\(^{2+}\)-containing solution by washing the cells with low (~150 mM) Ca\(^{2+}\)-containing solution. Under these conditions, we observed a partial dissociation by 30 min; at that time point, ~50% of the clusters formed in each cell (n = 11) were still present. These results indicate that the dissociation rate of GFP-CaMKII puncta is sensitive to Ca\(^{2+}\) levels and suggests that this clustered state can be relatively long-lasting in basal Ca\(^{2+}\) levels.

The reversibility of the clustering with the high/zero (BAPTA) Ca\(^{2+}\)-shift protocol afforded the opportunity to assess whether...
CaMKII puncta form in the same subcellular location during each high-Ca$^{2+}$/pH 7.5 and high-Ca$^{2+}$/pH 6.5, we observed that clusters did not repeatedly form in the same location (supplemental Fig. 1, available at www.jneurosci.org as supplemental material), suggesting that CaMKII clusters are produced at random sites throughout the cytosol, rather than at spatially fixed subcellular sites. Thus, this activity-dependent clustering of GFP-CaMKII in HEK293 cells requires Ca$^{2+}$, is regulated by pH, and does not appear to be associated with any subcellular structure, consistent with the self-association of CaMKII observed in vitro (Hudmon et al., 1996, 2001).

Structural features of CaMKII required for self-association
CaMKII is a multimer, with each holoenzyme composed of 12 catalytic/autoregulatory domains and potential sites of interaction with targeting proteins. If the clusters that were forming in HEK293 cells and neurons were attributable to CaMKII holoenzymes interacting with one another through multivalent interactions, then producing monomeric forms of the kinase should prevent cluster formation. As illustrated in a linear domain map of a single subunit of CaMKII, the catalytic domain is contiguous with an autoregulatory domain, composed of a pseudosubstrate-type sequence and a CaM-binding domain (Fig. 5A). In addition, each subunit also possesses a C-terminal association domain responsible for holoenzyme assembly. We fused GFP to the N terminus of a truncated catalytic domain composed of amino acids 1–326, lacking the association domain necessary for holoenzyme assembly. This GFP-1–326-CaMKII was diffusely distributed throughout the cytoplasm and the nucleus of transfected HEK293 cells (Fig. 5B, left) as described previously (Shen and Meyer, 1998). However, the monomeric GFP-CaMKII was resistant to the formation of puncta with the low-pH/high-Ca$^{2+}$ treatment (Figs. 5B, right, 7B). These data indicate that the multimeric structure of CaMKII is necessary for the Ca$^{2+}$-dependent cluster formation of GFP-CaMKII in HEK293 cells.

We also tested whether the oligomeric association domain lacking the catalytic domain was capable of forming clusters. Previous studies indicated that the construct containing amino acids 315–478 assembled into a dodecameric core of CaMKII (Kolodziej et al., 2000). The GFP-fusion protein of CaMKII that contains the C-terminal association domain (amino acids 315–478) diffused throughout the cytosol of transfected HEK293 cells but was excluded from the nucleus (Fig. 5C, left), consistent with the multimeric assembly of this construct (Shen and Meyer, 1998). As observed for the monomeric catalytic domain (Fig. 5B), the multimer of association domains was also resistant to cluster formation when HEK293 cells were stimulated with low-pH/high-Ca$^{2+}$ (Figs. 5C, right, 7B). Together, these data suggest that the binding site for the self-association reaction likely resides in the catalytic/autoregulatory portion of CaMKII and that the multivalent architecture of the holoenzyme is essential for the Ca$^{2+}$-dependent cluster formation.

CaM binding is necessary for CaMKII self-association
Self-association in vitro was demonstrated previously to require Ca$^{2+}$/CaM (Hudmon et al., 2001), and the GFP-CaMKII cluster formation revealed here (Figs. 3, 4) shows a strong dependence on elevated Ca$^{2+}$. We thus tested whether CaM binding to the enzyme was required in GFP-CaMKII cluster formation. A single-point mutation, Ala302Arg, within the CaM-binding domain was shown previously to both ablate CaM binding (Mukherji and Soderling, 1994) and disrupt the activity-dependent translocation of CaMKII to synaptic sites in neurons (Shen and Meyer, 1999). This mutant form of CaMKII did not form clusters in HEK293 cells subjected to the low-pH/high-Ca$^{2+}$ treatment (Figs. 6A, 7B). We observed similar results with another form of CaMKII that possesses a nonfunctional CaM-binding domain (Thr305Asp/Thr306Asp) (Elgersma et al., 2002) (Fig. 7B). This was in contrast to GFP-CaMKII harboring the Thr305Ala/Thr306Ala mutations, a construct that retains the ability to bind CaM (Hanson and Schulman, 1992), which formed clusters to the same extent as for WT-CaMKII (Fig. 7B). These results demonstrate that a functional CaM-binding domain is an essential component to Ca$^{2+}$-induced clusters of CaMKII holoenzymes and also support the notion that this process reflects CaMKII self-association, a Ca$^{2+}$/CaM-dependent reaction (Hudmon et al., 2001). One potential mechanism that can be inferred from these results is that the regions important for this reaction are not exposed or available on the inactive kinase. Because Ca$^{2+}$/CaM binding disrupts the intrasubunit interaction
CaMKII self-association requires both catalytic and association domains. A, Schematic diagram of \(\alpha \text{CaMKII} (1–478) \), with the catalytic (1–326) and association domains (315–478) illustrated. Cells were imaged using the standard Ca\(^{2+}\)/ionomycin-pH drop protocol (Fig. 4a–c), with example frames shown for 0 min (left) and 5 min (right). B, Cells transfected with GFP-1–326-CaMKII (catalytic/autoregulatory domain). C, Cells transfected with GFP-315–478-CaMKII (association domain). Note the absence of fluorescent clusters. Scale bar, (in B) 10 \(\mu \)m.

Figure 5. Self-association requires both catalytic and association domains. A, Schematic diagram of \(\alpha \text{CaMKII} (1–478) \), with the catalytic (1–326) and association domains (315–478) illustrated. Cells were imaged using the standard Ca\(^{2+}\)/ionomycin-pH drop protocol (Fig. 4a–c), with example frames shown for 0 min (left) and 5 min (right). B, Cells transfected with GFP-1–326-CaMKII (catalytic/autoregulatory domain). C, Cells transfected with GFP-315–478-CaMKII (association domain). Note the absence of fluorescent clusters. Scale bar, (in B) 10 \(\mu \)m.

between the catalytic and the autoinhibitory regions of the enzyme, thereby enabling kinase activity, we hypothesized that these same regions become available to interact with other exposed binding sites on CaM-bound subunits of neighboring holoenzymes to generate the self-associated state.

Determinants within the catalytic domain important for CaMKII self-association

We first tested whether the catalytic domain contains specific binding sites necessary for CaMKII holoenzymes to interact with one another after cell stimulation. We assayed the self-association potential of a CaMKII construct containing a point mutation in the anchoring protein-binding site in the catalytic domain (Ile205Lys), shown previously to prevent activity-dependent GFP-CaMKII binding to NR2B (Bayer et al., 2001). This GFP-Ile205Lys-CaMKII mutant did not undergo self-association in HEK293 cells subjected to the low-pH/high-Ca\(^{2+}\) treatment (Figs. 6B, 7B). These data lend additional support that the catalytic domain of CaMKII constitutes one of the sites of interaction that lead to self-association.

Role of Thr286 autophosphorylation in CaMKII self-association

A potential binding interaction that could underlie CaMKII self-association would involve the autoinhibitory region surrounding Thr286 on one subunit with the catalytic regions of another subunit from a separate holoenzyme. In the inactive state of the kinase, the catalytic domain, including the anchoring protein-binding site around Ile205, interacts with the autoinhibitory region surrounding the Thr286 residue of the same subunit. Ca\(^{2+}\)/CaM binds to the autoinhibitory domain and disrupts this interaction. Autophosphorylation of Thr286 in the autoinhibitory domain also disrupts this interaction by preventing reassociation of this domain with the catalytic domain (for review, see Hudmon and Schulman, 2002). The catalytic/autoinhibitory interaction hypothesis can be directly tested by mutating the Thr286 to mimic autophosphorylation (Thr286Asp), as we would predict that it would prevent self-association, by inhibiting the autoinhibitory and catalytic regions from interacting (Waldmann et al., 1990). Figures 6C and 7B show that mutating Thr286 to Asp strongly reduced self-association in our HEK293 cell translocation assay. In contrast, the GFP-Thr286Ala-CaMKII mutant exhibited more self-association than WT-CaMKII (Figs. 6D, 7B), suggesting that activation of WT-CaMKII was associated with sufficient Thr286 autophosphorylation to reduce the extent of self-association.

A possible mechanism underlying the reduction of self-association by Thr286Asp mutant is the autonomous phosphorylation of the neighboring Thr305/306, which would inhibit CaM binding, as was mimicked by the Thr305/306Asp mutant (Fig. 7B). To test this hypothesis, we assessed self-association of triple mutant Thr286Asp-Thr305/306AspAla. This mutant did not form more clusters than the Thr286Asp mutant (Fig. 7B), suggesting that Thr305/306 phosphorylation was not responsible for the reduced self-association by GFP-Thr286Asp-CaMKII.

These results favor the hypothesis that the negative charge of phosphorylated Thr286 (or Thr286Asp) has reduced interactions with the catalytic domains of other subunits involved in self-association, in a similar way that this phosphorylation allows for autonomous activity of the kinase. To further support this hypothesis, we made the region surrounding Thr286 more negatively charged by adding another mutation (Thr286Asp-Val287Asp), which exhibited even more autonomous activity in an in vitro kinase reaction (data not shown), consistent with a stronger repulsion of the autoinhibitory domain. This mutant was even more resistant to cluster formation following the low-pH/high-Ca\(^{2+}\) treatment (Figs. 6E, 7B), strengthening the notion that Thr286 autophosphorylation of CaMKII is a negative regulator of self-association, presumably via an analogous mechanism to the one underlying the generation of autonomous activity.

Thr286 autophosphorylation of self-associated CaMKII

The finding that Thr286Asp mutant exhibits poor self-association would seem to argue that autophosphorylation at Thr286 is incompatible with CaMKII self-association. However, our observation that GFP-Thr286Ala-CaMKII exhibited more self-association compared with GFP-WT-CaMKII (Fig. 7B) is consistent with the notion that the WT kinase did undergo at least partial autophosphorylation in stimulated HEK293 cells. To test this more directly, we immunostained GFP-CaMKII-transfected HEK293 cells with a phospho-Thr286-CaMKII-specific antibody. Figure 8A shows that clusters of GFP-WT-CaMKII are immunoreactive to this antibody, whereas GFP-WT-CaMKII in unstimulated cells (Fig. 8B) or GFP-Thr286Ala-CaMKII from stimulated cells are not (Fig. 8C). These results suggest that the multimeric nature of CaMKII allows for both self-association and Thr286 autophosphorylation reactions to follow Ca\(^{2+}\)/CaM activation.

CaMKII translocation in neurons

CaMKII self-association in HEK293 cells requires the oligomeric structure and Ca\(^{2+}\)/CaM binding and is regulated by Thr286
autophosphorylation, as revealed by using GFP-CaMKII mutants. If CaMKII self-association is contributing to either postsynaptic or nonsynaptic activity-dependent translocation in hippocampal neurons, we would expect that the rules governing

Figure 6. Self-association requires CaM binding, involves interactions between the autoregulatory and catalytic domains, and is regulated by Thr286 autophosphorylation. Cells were stimulated as described in Figure 4a–c, with example frames shown for 0 min (top) and 5 min (bottom) for Ala302Arg (A), Ile205Lys (B), Thr286Asp (C), Thr286Ala (D), and Thr286Val287/Asp286Asp287 (E). The arrow in C indicates a rare example of an HEK293 cell exhibiting clusters with Thr286Asp mutant. Scale bar, (in A) 10 μm.

Figure 7. Quantification of self-association capacity by CaMKII mutants. A. Examples of confocal images (0.5-μm-thick optical slice; top) from HEK293 cells fixed after stimulation as described in Figure 4. Scale bar, 10 μm. The bottom panels show the clusters detected by our morphometric analysis (see Materials and Methods). B. Quantification of the clustering from A (n = 40 for each construct). Clustering factor, Total fluorescence inside the clusters/total fluorescence inside the cell. The asterisk indicates one-way ANOVA (F test; p < 0.001), followed by a Dunnett’s test (p < 0.001) compared with control (stimulation without Ca2+). The plus sign indicates a significant difference (p < 0.001) from every condition.

Figure 8. Autophosphorylation of CaMKII during self-association. HEK293 cells, stimulated as in Figure 4a–c, were fixed and immunostained for phospho-Thr286-CaMKII. A. GFP-WT-CaMKII clusters are autophosphorylated at Thr286 (arrows). B. In the absence of Ca2+, GFP-WT-CaMKII is not autophosphorylated at Thr286. C. GFP-Thr286A-CaMKII clusters are not immunoreactive to the anti-phospho-Thr286 antibody, showing its specificity. Scale bar, (in C) 10 μm.

autophosphorylation, as revealed by using GFP-CaMKII mutants. If CaMKII self-association is contributing to either postsynaptic or nonsynaptic activity-dependent translocation in hippocampal neurons, we would expect that the rules governing
CaMKII self-association in HEK293 cell should apply in neurons. These features of CaMKII self-association were tested by quantifying the degree of postsynaptic (Fig. 9A) and nonsynaptic translocation (Fig. 9B) of GFP-CaMKII mutants after glutamate/glycine stimulation in dissociated neurons. In nonstimulated neurons, all of the CaMKII constructs transfected produced a uniformly distributed fluorescence as seen in Figure 1A. Figure 9 shows that a mutant form of CaMKII that cannot bind CaM (Thr305Asp/CaM binding exposes the catalytic domain as well as the targeting site, allowing self-association to occur through binding of this site to an autoregulatory domain on another subunit of a different holoenzyme. In addition, we show that self-association is regulated by Thr286 autophosphorylation and pH.

Self-association in situ and in vitro (Hudmon et al., 1996, 2001) is enhanced at acidic pH, possibly because protons (H+) stabilize the binding of subunits between holoenzymes or expose a binding site or conformation that permits activated holoenzymes to self-associate. Previous data support the latter mechanism, because autoregulatory interactions with the catalytic domain have been shown to be altered via the protonation state of His282 (Smith et al., 1992). This site is adjacent to Thr286 and could function as a pH-sensitive switch to regulate the exposure of the targeting site or the presentation of the autoregulatory domain itself.

We used a pH shift protocol from 7.5 to 6.5 that produced robust self-association, allowing us to study the molecular mechanisms of this process. However, the pH dependence of CaMKII self-association in vitro is in fact graded between pH 6.5 and 7.5 (Hudmon et al., 1996, 2001). The pH sensitivity of self-association may have biological relevance, because alterations in the pH of neurons have been associated with physiological and pathological signaling. Sustained elevation in [Ca2+]i after cerebral ischemia is also associated with intracellular acidification (Silver and Erecinska, 1992) and the appearance of nonsynaptic clusters of CaMKII (Dosemeci et al., 2000; Tao-Cheng et al., 2001, 2002), most likely related to the nonsynaptic GFP-CaMKII clusters observed here. In addition, ischemia-like conditions also promote the accumulation of CaMKII to the PSD (Suzuki et al., 1994; Aronowski and Grotta, 1996; Dosemeci et al., 2001; Tao-Cheng et al., 2002). Changes in pH, with physiological activity in neurons are not as robust as with pathological perturbations (e.g., ischemia); however, intracellular acidification is associated with Ca2+ signaling in neurons (Chesler and Kaila, 1992; Hartley and Dubinsky, 1993; Irwin et al., 1994; Koch and Barish, 1994). These changes are well within the range of where self-association is observed (Hudmon et al., 1996, 2001), particularly within neuronal microdomains and synapses (Schwiening and Willoughby, 2002; Willoughby and Schwiening, 2002).

The regulation of self-association by Thr286 autophosphorylation may result from a mechanism analogous to the generation of autonomous activity. The negative charges associated with phosphorylated Thr286 are thought to prevent the autoregulatory domain from reacquiring stable intramolecular contacts with the catalytic domain after CaM dissociation, thus permitting catalytic activity in the absence of Ca2+/CaM (Hudmon and Schulman, 2002). In a similar model, we hypothesize that the Thr286 phosphorylated autoregulatory domain is not able to participate in self-association, because it cannot establish contacts with the catalytic domain of a subunit from another holoenzyme. However, as shown in Figure 10, the catalytic site of a Thr286-phosphorylated subunit could presumably still associate with the autoregulatory domain of an activated, nonphosphorylated subunit. If so, we might expect the latter interaction to be prolonged by autophosphorylation-dependent CaM trapping (Meyer et al., 1992). This hypothesis is supported by experiments in which conditions that reduce dephosphorylation of postsynaptically targeted (Shen et al., 2000) or intracellularly clustered (Tao-Cheng et al., 2005) CaMKII lead to a slower detranslocation of the enzyme. A submaximal Thr286 phosphorylation associated with self-association (Fig. 8) is consistent with several studies performed in tissue or dissociated cells, where autonomous ac-
Figure 9. Role of CaMKII self-association in its activity-dependent translocation in hippocampal neurons. Hippocampal neurons (14 DIV) transfected with WT or mutated GFP-α-CaMKII were stimulated with glutamate/glycine (100 µM/10 µM) for 1 or 5 min and immediately fixed. A, Postsynaptic translocation of GFP-WT-CaMKII and mutants. The top panels show representative confocal images of dendrites from neurons expressing different GFP-CaMKII constructs (green; middle), which were treated for 1 min and immunostained for PSD95 (red; top). Arrowheads point to synapses. Scale bar, 3 µm. The histogram shows mean (±SEM; n = 40 synapses per construct) synaptic fluorescence intensities over the total intensity of the corresponding dendrite, relative to nonstimulated control (see Materials and Methods). Asterisks in A indicate a statistical difference (p < 0.001; one-way ANOVA followed by a Dunnett’s test; p < 0.001) compared with WT for each treatment (1 or 5 min). To sample from a larger set of neurons (n > 100), we also designed a semiquantitative analysis, which yielded similar conclusions (see supplemental Fig. 2, available at www.jneurosci.org as supplemental material).

B, Nonsynaptic translocation of GFP-WT-CaMKII and mutants. The top panels show confocal optical slices (0.7 µm) through the middle of neuronal cell bodies of stimulated (5 min) neurons. Scale bar, 5 µm. The histogram shows the mean (±SEM; n = 10 neurons per construct) degree of GFP-CaMKII clustering in stimulated neurons relative to nonstimulated controls (see Materials and Methods). Asterisks in B indicate a statistical difference (p < 0.001; one-way ANOVA followed by a Dunnett’s test; p < 0.001) compared with WT for each treatment (1 or 5 min). To sample from a larger set of neurons (n > 100), we also designed a semiquantitative analysis, which yielded similar conclusions (see supplemental Fig. 2, available at www.jneurosci.org as supplemental material).
CaMKII clusters in HEK293 cells (Fig. 4). However, under homeostatic level of synaptic transmission, with occasional Ca^{2+} spikes at the synapse, we might expect that a significant fraction of CaMKII holoenzymes would remain self-associated postsynaptically. Indeed, we found that the dissociation rate of CaMKII clusters was linked to the intracellular Ca^{2+}, and that in low Ca^{2+} (~150 nM), it was considerably prolonged. Interestingly, after chemical LTP induction in hippocampal slices, Otmakarov et al. (2004) reported persistent postsynaptic localization of GFP-CaMKII.

What function could an activity-dependent polymerization of CaMKII have in synaptic and non-synaptic sites? The unique multimeric structure of CaMKII and the local concentrating effect of self-association could serve to organize or stabilize the interaction of CaMKII with other proteins in the PSD, regulate substrate phosphorylation by subcellular and/or steric restrictions, and affect the structure of the spine (Matsuzaki et al., 2004). Indeed, CaMKII phosphorylates or anchors to several proteins within the PSD that are involved in synaptic signaling (e.g., NMDA and AMPA receptors and SynGAP) and synaptic structure (e.g., densin-180, α-actinin, actin, PSD95) (Bayer and Schulman, 2001; Colbran, 2004). The potential role of nonsynaptic CaMKII self-association is less clear, but one function, as previously postulated by Dosemeci and colleagues, may be to limit or restrict Ca^{2+}/CaM signaling during excessive or pathological Ca^{2+} signaling (Dosemeci et al., 2000; Tao-Cheng et al., 2001, 2002).

During development, the incorporation of the α-isoform of CaMKII into the PSD correlates with one of the most active periods of synapse formation (Kelly and Cotman, 1981; Scholz et al., 1988; Wu and Cline, 1998). The unique three-dimensional structure of CaMKII, with catalytic domains extending outward from a central core, may provide the kinase with a spatially organized set of binding sites that could play a scaffolding role in the organization of the PSD during development (Lisman et al., 2002) (supplemental Fig. 3, available at www.jneurosci.org as supplemental material). Finally, as local mRNA translation of α-CaMKII is central to synaptic plasticity (Steward, 2002; Steward and Worley, 2002), self-association would be an effective targeting mechanism to localize and concentrate this newly synthesized CaMKII in dendrites specifically to active synapses.

Our findings suggest that CaMKII self-association possesses many of the criteria postulated by Martin and Kosik (2002) for a molecular tag of synaptic activity. Indeed, the process of self-association ensures a relatively immobile pool of CaMKII in the context of intracellular diffusion providing a spatially restricted marker. Furthermore, self-association is reversible, but the time course of reversibility is influenced by the local level of Ca^{2+} or the degree of Thr286 phosphorylation. Finally, CaMKII is characterized as a multifunctional protein kinase attributable to the diversity, autoregulation, and catalysis of CaMKII.

Figure 10. Working model for CaMKII self-association. Top, Left, Illustration of one catalytic domain, the location of key amino acids (yellow circles), and the intramolecular contacts formed between the autoregulatory and the catalytic cleft in an inactive subunit of a CaMKII holoenzyme. Top, Right, The first step in the self-association reaction, as well as enzyme activation, is Ca^{2+}/CaM binding, which releases the autoregulatory domain to expose the catalytic domain, the substrate site, and presumably the targeting site. Middle, Left, Holoenzyme with a mix of inactive (white), Ca^{2+}/CaM activated (green), and Thr286 autophosphorylated (red) subunits. Middle, Self-association involves binding between activated subunits from two separate holoenzymes, under the regulation by intracellular pH, which is hypothesized to affect displacement of the autoinhibitory domain from the catalytic pocket (middle, right). Bottom panels (circles 1–4) represent hypothesized interactions that activated subunits undergo, depending on the various possible combinations of Thr286 phosphorylation (red circles). 1, 2, Autophosphorylated Thr286 cannot interact with the targeting site, preventing association. 3, 4, Thr286 region of activated subunits (but not phosphorylated) can interact with the targeting site of another subunit, whether (3) or not (4) the latter is phosphorylated. Those potential interactions are exemplified in the cluster of CaMKII (see 1–4 in the middle).
wide variety of substrates that it phosphorylates and thus is appropriately poised to interact with a multitude of signaling processes at synapses. We hypothesize that self-associated CaMKII, possibly intertwined with other molecules at the PSD or at the junction between the dendrite and the spine neck, could mark that particular spine for both short- and long-term synaptic modification. Future studies will be necessary to dissect the role of self-association in synaptic physiology and pathology.

References

