Antidepressants and Antipsychotic Drugs Colocalize with 5-HT₃ Receptors in Raft-Like Domains

Brigitte Eisensamer, Manfred Uhr, Sabrina Meyr, Gerald Gimpl, Tobias Deiml, Gerhard Rammes, Jeremy J. Lambert, Walter Ziegglänsberger, Florian Holsboer, and Rainer Rupprecht

Despite different chemical structure and pharmacodynamic signaling pathways, a variety of antidepressants and antipsychotics inhibit ion fluxes through 5-HT₃ receptors in a noncompetitive manner with the exception of the known competitive antagonists mirtazapine and clozapine. To further investigate the mechanisms underlying the noncompetitive inhibition of the serotonin-evoked cation current, we quantified the concentrations of different types of antidepressants and antipsychotics in fractions of sucrose flotation gradients isolated from HEK293 (human embryonic kidney 293) cells stably transfected with the 5-HT₃A receptor and of N1E-115 neuroblastoma cells in relation to the localization of the 5-HT₃ receptor protein within the cell membrane. Western blots revealed a localization of the 5-HT₃ receptor protein exclusively in the low buoyant density (LBD) fractions compatible with a localization within raft-like domains. Also, the antidepressants desipramine, fluoxetine, and reboxetine and the antipsychotics fluphenazine, haloperidol, and clozapine were markedly enriched in LBD fractions, whereas no accumulation occurs for mirtazapine, carbamazepine, moclobemide, and risperidone. The concentrations of psychopharmacological drugs within LBD fractions was strongly associated with their inhibitory potency against serotonin-induced cation currents. The noncompetitive antagonism of antidepressants at the 5-HT₃ receptor was not conferred by an enhancement of receptor internalization as shown by immunofluorescence studies, assessment of receptor density in clathrin-coated vesicles, and electrophysiological recordings after coexpression of a dominant-negative mutant of dynamin 1, which inhibits receptor internalization. In conclusion, enrichment of antidepressants and antipsychotics in raft-like domains within the cell membrane appears to be crucial for their antagonistic effects at ligand-gated ion channels such as 5-HT₃ receptors.

Key words: 5-HT₃ receptor; antidepressants; antipsychotics; lipid rafts; receptor internalization; ligand-gated ion channel

Introduction

In addition to the classical mechanisms of action of antidepressants and antipsychotics (Kinon and Lieberman, 1996; Blakely, 2001; Pacher et al., 2001), a variety of these psychopharmacological drugs may modulate neuronal excitability through interference with ligand-gated ion channels. Both an indirect modulation of ligand-gated ion channels, e.g., GABAₐ receptors, via endogenous neuroactive steroids (Uzunov et al., 1996; Romeo et al., 1998; Marx et al., 2003) and a direct modulation of members of this receptor family, e.g., the GABAₐ receptor (Korpi et al., 1995; Mozrzymas et al., 1999; Malatynska et al., 2000; Robinson et al., 2003) and the 5-HT₃ receptor (Fan, 1994; Breitinger et al., 2001; Eisensamer et al., 2003; Rammes et al., 2004), have been described. This inhibitory action at 5-HT₃ receptors has been observed for both antidepressants (Eisensamer et al., 2003) and antipsychotics (Rammes et al., 2004) independently of their chemical structure and pharmacodynamic properties. With the exception of the known competitive antagonists mirtazapine and clozapine, all of the other antidepressants (Eisensamer et al., 2003) and antipsychotics (Rammes et al., 2004) investigated thus far inhibit the serotonin-induced ion flux through 5-HT₃ receptors in a noncompetitive manner. However, the molecular mechanisms underlying this noncompetitive antagonism have not yet been elucidated. Although the localization of neurotransmitter receptors within the cell membrane is of major importance for receptor function, only few data are available concerning the lipid raft association of neurotransmitter receptors. In contrast to the metabotropic glutamate receptor type-1, the GABAₐ receptor (Becher et al., 2001), the α7 subunit of the nicotinic acetylcholine receptor (Bruses et al., 2001), and the AMPA receptor (Suzuki et al., 2001) have been found in lipid rafts.

Lipid rafts are membrane microdomains enriched with glycosphinoglycips and cholesterol that compartmentalize membrane proteins. Lipid rafts are thought to participate in a variety of signaling pathways, membrane trafficking, and other cellular functions (Brown and London, 1998; Tsui-Pierchala et al., 2002).
Biochemically, lipid rafts are characterized as detergent-resistant membranes (DRMs) that float at a light buoyant density (LBD) on sucrose gradients. Moreover, detergent-free methods have also been successfully used in isolating membrane fractions with similar biochemical characteristics (Smart et al., 1995; Song et al., 1996; Luria et al., 2002), so-called raft-like domains.

Thus far, it is not known whether the 5-HT3 receptor is located in such raft-like domains. Moreover, no data exist on the real concentrations of antidepressants and antipsychotics within such membrane-anchored domains and whether these psychopharmacological drugs and the receptor protein are indeed colocalized within the cell membrane. We therefore quantified the concentrations of different types of antidepressants and antipsychotics in cell fractions of human embryonic kidney 293 (HEK 293) cells stably transfected with the 5-HT3A receptor and of N1E-115 neuroblastoma cells in relation to the membrane localization of the 5-HT3 receptor protein. Because receptor internalization is a major principle of the downregulation of the GABA A receptor (Tehrani and Barnes, 1997; Connolly et al., 1999) that shares structural features with the 5-HT3 receptor, we investigated whether the antagonistic effects of antidepressants at the 5-HT3 receptor are also conferred via an enhancement of receptor internalization.

Materials and Methods

Chemicals and drugs

The following compounds were used: desipramine (DMI), carbamazepine, clozapine, haloperidol, risperidone, fluoxetine (a generous gift from NV Organon, Oss, The Netherlands), and moclobemide (DMI), carbamazepine, clozapine, haloperidol, risperidone, fluoxetine (a generous gift from Pfizer, New York, NY), mirtazapine (a generous gift from NV Organon, Oss, The Netherlands), and moclobemide (DMI), carbamazepine, clozapine, haloperidol, risperidone, fluoxetine (Roche Diagnostics (Mannheim, Germany) Diagnostic Kit number 139050).

DNA constructs

The human 5-HT3A receptor subunit cDNA was cloned into the mammalian expression vector pcDNA3 (Invitrogen). The tagged 5-HT3A receptor subunit [5-HT3A-hemagglutinin (HA)] was obtained by tagging the 5-HT3A receptor with the HA epitope (YPYDVPDYA) between amino acid 5 and 6 (T29-tag-T30) using site-directed mutagenesis (Boyd et al., 2002). The mutated cDNA was cloned into the expression vector pRK5. The dominant-negative acting mutant of dynamin I bearing a replacement of Lys(44) with alanine (K44A) was also cloned into the expression vector pRK5. The K44A mutant dynamin was generously provided by Dr. Christopher N. Connolly (Department of Pharmacology and Neuroscience, Ninewells Medical School, University of Dundee).

Cell cultures and transfection

HEK 293 cells purchased from the European collection of cell cultures (European Collection of Cell Cultures [ECACC], Salisbury, UK) and HEK 293 cells stably expressing the human 5-HT3 receptor (HEK-5-HT3A cells) (Lankiewicz et al., 1998) were cultured in minimum essential medium (MEM; Invitrogen, Karlsruhe, Germany) supplemented with 10% fetal calf serum (FCS; Invitrogen), 1% glutamine, nonessential amino acids and antibiotics (Invitrogen). Mouse N1E-115 neuroblastoma cells were purchased from the ECACC and nourished with MEM (Eagle; Invitrogen) supplemented with 15% FCS (Invitrogen). The medium of N1E-115 cells was exchanged completely daily. Once every 3 d, cells were reseduced onto fresh Petri dishes after treatment with trypsin-EDTA (1% in PBS), resuspension in MEM, and centrifugation at 200 × g for 4 min. Cells were incubated at 37°C, 5% CO2, and 95% humidity.

Exponentially growing HEK 293 cells (2 × 10^6 cells) were transfected with 10 µg of DNA (pCDMB, pRK5) by electroporation (Electro Cell Manipulator 600 Electroporation System; BTX, San Diego, CA). Cells were harvested 18–24 h after transfection.

Lipid extraction and analytical methods

Samples were extracted with chloroform–methanol according to the slightly modified method of Bligh and Dyer (1959). Briefly, a 150 µl fraction of the density gradient and 560 µl of chloroform–methanol (1:2, v/v) were vigorously mixed and centrifuged for 10 min at 14,000 × g. The supernatant was mixed with 190 µl of chloroform and 190 µl of water and centrifuged for 30 min at 14,000 × g. The bottom lipid phase was evaporated and then dissolved in isopropanol. The recovery of cholesterol was >90% as determined by a cholesterol standard.

Cholesterol was assayed spectrophotometrically using a commercially available kit [Roche Diagnostics (Mannheim, Germany) Diagnostic Kit K5110].

Protein was determined by the Bradford assay using bovine serum albumin as standard (Bio-Rad, Hercules, CA).

Extraction procedure for HPLC

Four hundred microliters of sucrose gradient fraction, 600 µl of water, and 0.1 ml of 2 µg/ml internal standard solution (Table 1) and 1 ml of 2 M sodium–hydrogen-carbonate buffer, adjusted to pH 10.5 with NaOH, or 0.2 ml of 6 M NaOH (Table 1) were vortexed. Five milliliters of n-hexane with various isooamylo-alcohol concentrations (Table 1) were added, and the samples were mixed for 20 min at room temperature. After centrifugation at room temperature for 15 min at 4000 × g, the organic layer was transferred to a tube containing 0.25 ml of 0.18 M phosphoric acid, mixed for 20 min, and centrifuged at 4000 × g for 10 min. The organic layer was then discarded, and an aliquot (20 µl) of the aqueous phase was injected for chromatographic separation. The extraction recoveries were >80%.

HPLC

A Beckman Coulter (Palo Alto, CA) 16 variable-wavelength UV detector, a Merck (Darmstadt, Germany) L-7480 fluorescence detector, and a Beckman Coulter gradient pump 126 Solvent Module equipped with a Beckman Coulter autosampler were used for the HPLC analysis. Separations were made on a Luna 5 µm C18(2) 250 × 4.6 mm column (Phenomenex, Torrance, CA). The mobile phases [A, 0.22% orthophosphoric acid, adjusted to pH 3.5 with NaOH (6 µl); B, acetonitrile] were degassed for 15 min in an ultrasonic bath immediately before use. The column temperature was 60°C, and the flow of the mobile phase was 1.0 ml/min. A mobile phase gradient was
used for the chromatographic analysis (Table 1). The substances and their metabolites were determined by UV absorption or fluorescence at the described wavelength (Table 1). The coefficient of variance was <15% for the different methods used.

Quantification of psychopharmacological drugs. Samples were calibrated by using spiked samples at different concentrations. The concentrations were in the measurement range of the respective substances. Quantification was performed by calculating the internal-standard peak/area ratio of the analyte, and a regression model was fitted to the peak/area ratio of each compound to internal standard versus concentration.

Sucrose gradient centrifugation and Western blotting. HEK-5-HT3A cells or N1E-115 cells of 10 or 17 confluent plates (diameter, 10 cm) were harvested, washed twice with PBS, and resuspended in plates with 10 μM concentrations of the respective drug diluted in PBS for 10 min at room temperature. Raft-like domains were prepared using a detergent-free method (Gimpl and Fahrenholz, 2000). All procedures were performed at 4°C. Cells were washed twice with ice-cold PBS and resuspended in 2 ml of high-salt HEPES buffer (20 mM HEPES, 5 mM EDTA, pH 7.4, 1 mM NaCl). The suspension was thoroughly homogenized and subsequently brought to 40% sucrose by 1:1 (v/v) dilution with an 80% (w/v) sucrose stock solution in high-salt HEPES buffer. This solution was applied to the bottom of a 14 × 89 mm centrifuge tube (Beckman Coulter) and overlayed with 3 ml of 35% (w/v) sucrose and subsequently with 3 ml of 5% (w/v) sucrose in 20 mM HEPES, 5 mM EDTA, pH 7.4, 0.5 mM NaCl. Samples were ultracentrifuged for 20 h at 200,000 g for 20 min at 4°C and fractionated (12 fractions with 800 μl each) from the top to the bottom of the gradient. From some experiments, we used 1% (w/v) 3-(2-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) as detergent, diluted in 20 mM HEPES, 5 mM EDTA, pH 7.4, 150 mM NaCl. This buffer was also used for the sucrose gradient; all other procedures were as described above. For Western blot analysis, aliquots of each fraction were adjusted by reducing sample buffer (10% SDS, 20% glycerin, 125 mM Tris, 1.0 mM EDTA, 0.002% bromphenol blue, and 10% β-mercaptoethanol), denatured by heating at 95°C for 5 min, loaded onto SDS-PAGE, and transferred to nitrocellulose transfer membrane (Protran; Schleicher & Schuell, Dassel, Germany) or polyvinylidene fluoride transfer membrane (Immobilon-P; Neolab, Heidelberg, Germany). Caveolin (rabbit anti-caveolin polyclonal antibody; BD Biosciences Clontech, Heidelberg, Germany), caveolin-1 (mouse anti-caveolin-1 monoclonal antibody; BD Biosciences, Lexington, KY), caveolin-2 (mouse anti-caveolin-2 monoclonal antibody; BD Biosciences Clontech), flotillin-1 (goat anti-flotillin-1 polyclonal antibody; Santa Cruz Biotechnology, Santa Cruz, CA), and 5-HT3 receptor subunits (rabbit anti-5-HT3 receptor polyclonal antibody; generous gift from Merck Sharp and Dohme, Essex, UK) on the blots were detected by specific antibodies, which were visualized by an enhanced chemiluminescence system (Amersham Biosciences, Freiburg, Germany) according to the protocols of the manufacturer.

Immunofluorescence. HEK-5-HT3A HA cells cultured on poly-l-lysine (10 μg/ml)-coated coverslips were incubated for 20 min in PBS containing 0.5% BSA and 10% FCS as a blocking solution. Subsequent antibody dilutions were performed in blocking solution; all other solutions were prepared with PBS. After incubation with primary mouse anti-HA antibody (1:100; Santa Cruz Biotechnology) for 1 h on ice, cells were incubated with 100 μM desipramine or fluoxetine for 15 min at room temperature and fixed in 3% paraformaldehyde for 15 min. Cells were washed in 50 mM NH4Cl for 10 min, blocked for 20 min, and incubated with secondary goat anti-mouse Alexa Fluor 488 (30 min, 10 μg/ml; Invitrogen, Paisley, UK) for detection of surface HA-5-HT3A receptors. Cells were permeabilized with 0.5% NP-40 during subsequent quenching and blocking, processed as described above, and incubated with secondary goat anti-mouse Alexa Fluor 568 (30 min, 10 μg/ml; Invitrogen) to detect internalized receptors. Coverslips were examined using a confocal microscope (LSM 510 META NLO; Zeiss, Oberkochen, Germany).

Preparation of clathrin-coated vesicles. HEK-5-HT3A cells of 40 confluent plates (diameter, 10 cm) were harvested, washed twice with PBS, and homogenized in 3 vol of isolation buffer (10 mM morpholinopropane sulfonic acid, pH 6.5, containing 100 mM KCl, 1 mM EDTA, 0.5 mM MgCl2). After centrifugation at 17,000 × g for 20 min, the supernatant was recentrifuged at 100,000 × g for 1 h. The resulting pellet was resuspended in 2 ml of isolation buffer and after mixing with 2 ml of 12.5% (w/v) Ficol and 2 ml of 12.5% (w/v) sucrose in isolation buffer, the sample was centrifuged at 42,000 × g for 40 min. The supernatant was mixed with 3 vol of 0.125% Triton X-100 in isolation buffer and incubated for 30 min on ice. After centrifugation (100,000 × g, 90 min), the pellet was resuspended in 50 mM Tris, 1 mM EDTA, pH 7.5. All procedures were performed at 4°C.

Binding assay. For ligand-binding experiments, clathrin-coated vesicles (CCV) samples were incubated in microtiter plates in a total volume of 250 μl at 37°C for 1 h with the indicated concentrations of [3H]GR65630 (75 Ci/mmol; PerkinElmer, Boston, MA). Bound ligand was separated from free ligand by washing with ice-cold assay buffer and rapid filtration through Whatman GF/B filters with a Titerette cell harvester (Nunc, Wiesbaden, Germany). Radioactivity was determined by liquid scintillation spectroscopy. Nonspecific binding was determined in the presence of 10 μM MDL 72222 (tropanyl, 3,5-dichlorobenzoate). Specific binding represented ~90% of the total binding. Binding data were analyzed with the EBDA and LIGAND programs (Munson and Rodbard, 1980), which provide a nonlinear, least-square regression analysis.

Electrophysiological recordings. 5-HT-induced inward Na+ currents were recorded from lifted HEK cells transiently transfected with the 5-HT3 receptor and the dynamin K44A mutant in the whole-cell voltage-clamp configuration under visual control using an inverted microscope (Zeiss) as described previously (Wetzel et al., 1998). Cells were kept in a bath solution containing (in mM) 140 NaCl, 2.8 KCl, and 10 HEPES, pH 7.2. Patch electrodes were pulled from borosilicate glass (Hilgenberg, Malsfeld, Germany) using a horizontal pipette puller (Zeits-Instruments, Augsburg, Germany) to yield pipettes with a resistance of 3–6 MΩ. Pipettes were filled with a solution containing (in mM) 130 CsCl, 2 MgCl2, 2 CaCl2, 2 ATP, 0.2 Tris-GTP, 10 glucose, 10 HEPES, and 10 EGTA, pH 7.2. After the whole-cell configuration was established, the cells were lifted from the glass substrate and 10 μM 5-HT and/or DMI (1 μM) was applied using a fast superfusion device. We applied these concentrations because 10 μM serotonin were used for the determination of the IC50 value for the inhibition of the serotonin response by DMI in our previous study (Eisensamer et al., 2003), which was in the low micromolar range.

For control experiments, a piezo translator-driven double-barreled application pipette was used to expose the lifted cell to either a 5-HT-free or 5-HT-containing solution. A 2 s 5-HT pulse was delivered every 60 s. Current signals were recorded at a holding potential of −50 mV with an EPC-9 amplifier (HEKA, Lambrecht, Germany) and were analyzed using the HEKA Pulsefit 8.5 and IgorPro version 4.5 (WaveMetrics, Lake Oswego, OR) software on a Power Macintosh G3 computer (Apple, Cupertino, CA).

Results

LBD fractions were isolated from recombinant HEK cells stably expressing the 5-HT3 receptor (HEK-5-HT3A cells) and from N1E-115 neuroblastoma cells. LBD fractions at the interface between the 5 and 35% sucrose layers (fractions 3–6) contained 4–8% of the total cellular proteins, whereas the bulk of proteins remained in the 40% sucrose layer at the bottom of the ultracentrifuge tube (Fig. 1a,b). In contrast, cholesterol was enriched in the LBD fractions with a specific concentration (micrograms of cholesterol per milligram protein) up to 900-fold higher than that of the high buoyant density (HBD) fractions (fractions 8–12) (Fig. 1a), indicating that LBD fractions are highly enriched in raft-like domains. LBD fractions of HEK-5-HT3A cells indeed represent raft-like domains, because caveolin-2 and flotillin-1 are preferentially located within the respective LBD fractions (Fig. 1d). To test whether LBD fractions contain caveolae, a subpopulation of raft-like domains, which are characterized by their invaginated morphology and the presence of the scaffolding protein caveolin-1 (Rotenberg et al. 1992; Fra et al., 1995; Murata et al., 1995), we probed the gradient fractions with a monoclonal anti-
body against caveolin-1. Neither HEK-5-HT$_{3A}$ cells nor N1E-115 neuroblastoma cells showed caveolin-1 immunoreactivity in our Western blot procedure (data not shown). Thus, both cell types apparently express only flat lipid rafts.

When the gradient fractions of HEK-5-HT$_{3A}$ and N1E-115 cells were probed with a polyclonal antibody against 5-HT$_{3}$ receptors, we found a strong immunoreactivity exclusively in the LBD fractions of whole-cell homogenates and also of plasma membranes as starting material (Fig. 1c). The same results were seen when 1% CHAPS was used as detergent (data not shown). These results suggest that 5-HT$_{3}$ receptors are associated with raft-like domains. The 5-HT$_{3}$ receptors of drug-treated cells were also exclusively localized in LBD fractions (data not shown). Moreover, drug incubation did not affect the concentration of cholesterol in LBD fractions (data not shown).

If 5-HT$_{3}$ receptors indeed are lipid raft associated, functional noncompetitive 5-HT$_{3}$ receptor antagonists such as antidepressants and antipsychotics might interact with the receptor within these membrane microdomains. To investigate whether antidepressant and antipsychotic drugs colocalize with the 5-HT$_{3}$ receptor in raft-like domains, we quantified the respective psychopharmacological drugs in relation to the localization of the 5-HT$_{3}$ receptor protein within the cell membrane. The drug concentration in each fraction was determined by HPLC. We found rather low specific concentrations (9–28 µmol/mg protein) (Fig. 2, Table 2) of DMI, fluoxetine, reboxetine, mirtazapine, fluphenazine, haloperidol, and risperidone in HBD fractions of HEK-5-HT$_{3}$ cells. Only clozapine was substantially enriched in HBD fractions (Table 2). However, this was attributable to an accumulation exclusively in fraction 8 (Fig. 2). Fluoxetine and fluphenazine were mainly

Figure 1. 5-HT$_{3}$ receptors were present in LBD fractions both of HEK-5-HT$_{3A}$ cells and N1E-115 neuroblastoma cells. Cells were solubilized by sonication in high-salt buffer, and extracts were fractionated by discontinuous density-gradient ultracentrifugation. Fractions (0.8 ml) were harvested from the top of the gradient (fraction 1, top of gradient; fraction 12, base of gradient).

a. Fractions of sucrose gradients obtained from HEK-5-HT$_{3A}$ cells (12 fractions with 0.8 ml each) were assayed for protein concentration (milligrams of protein per milliliter fraction) and cholesterol concentration (micrograms of cholesterol per milligram of protein).

b. Proteins obtained from HEK-5-HT$_{3A}$ cells were analyzed by reduced SDS-PAGE (10% gel, 25 µl aliquots per lane), followed by Ponceau staining; the position of molecular weight marker proteins is shown on the left.

c. Replicate gels were immunoblotted with a polyclonal antibody against caveolin, a monoclonal antibody against caveolin-2, and a polyclonal antibody against flotillin-1. The position of molecular weight marker proteins is shown on the left.

d. Replicate gels were immunoblotted with a polyclonal antibody against 5-HT$_{3}$ receptors. Native HEK 293 cells were used as negative control for 5-HT$_{3}$ receptor immunoreactivity. The position of molecular weight marker proteins is shown on the left.
enriched in LBD fractions, with their concentrations in LBD fractions being ~10 times higher than those in HBD fractions (Fig. 2, Table 2). Also, DMI, haloperidol, reboxetine, and clozapine were concentrated twofold to fourfold higher in LBD fractions than in HBD fractions. In contrast, mirtazapine and risperidone were not accumulated in LBD fractions (~10 μmol/mg protein). Carbamazepine and moclobemide were not found in neither LBD nor HBD fractions (<0.5 μmol/mg protein) (Fig. 2, Table 2). The concentrations of DMI, fluoxetine, reboxetine, fluphenazine, haloperidol, carbamazepine, moclobemide, and risperidone in the LBD fractions showed a highly significant association (Spearman correlation coefficient, −0.878; r = 0.004) with their antagonistic potencies expressed as IC50 values for their inhibition of the 5-HT3-evoked Na+ current through 5-HT3 receptors (Eisensamer et al., 2003). However, we found no such association with drug concentrations in the HBD fractions. These results indicate that the antagonistic effects of noncompetitive compounds, such as antidepressants or antipsychotics, at the 5-HT3 receptor depend on the drug concentration within the LBD fractions; i.e., higher concentrations exert more pronounced functional antagonistic effects at the 5-HT3 receptor.

Similar results were obtained with N1E-115 cells incubated with DMI, fluoxetine, carbamazepine, or moclobemide (data not shown).

To investigate putative mechanisms underlying the antagonistic action of antidepressants and antipsychotics at 5-HT3 receptors, we questioned whether these psychopharmacological drugs might induce receptor internalization.

First, we measured the effect of DMI at 5-HT-induced Na+ currents through HEK-5-HT3 cells coexpressing K44A dynamin, a dominant-negative acting mutant of dynamin I that blocks internalization. Our patch-clamp recordings showed that DMI markedly reduced the amplitude of the 5-HT-induced Na+ current, even in the presence of K44A dynamin (Fig. 3a), indicating that the antagonistic effect of DMI is not dependent on receptor internalization. Second, we performed immunofluorescence experiments with HA epitope-tagged recombinant 5-HT3 receptors expressed in HEK 293 cells (HEK-5-HT3-HA cells). The epitope tag added between amino acids 5 and 6 of the mature polypeptide appears to be silent (Boyd et al., 2002). The immunofluorescence patterns of DMI- or fluoxetine-treated cells...
Table 2. Concentration of antidepressant and antipsychotic drugs in LBD and HBD fractions of HEK-5-HT₃A cells

<table>
<thead>
<tr>
<th>Fractions</th>
<th>DMI</th>
<th>Fluoxetine</th>
<th>Reboxetine</th>
<th>Mirtazapine</th>
<th>Carbamazepine</th>
<th>Modocemide</th>
<th>Fluphenazine</th>
<th>Haloperidol</th>
<th>Clozapine</th>
<th>Risperidone</th>
</tr>
</thead>
<tbody>
<tr>
<td>LBD</td>
<td>68.63 ± 18.79</td>
<td>218.35 ± 33.45</td>
<td>29.17 ± 12.96</td>
<td>8.97 ± 2.29</td>
<td>0.28 ± 0.18</td>
<td>0.46 ± 0.43</td>
<td>205.41 ± 14.03</td>
<td>61.99 ± 7.71</td>
<td>110.07 ± 18.64</td>
<td>11.46 ± 3.08</td>
</tr>
<tr>
<td>HBD</td>
<td>16.05 ± 3.35</td>
<td>23.46 ± 2.87</td>
<td>9.41 ± 1.11</td>
<td>12.19 ± 1.96</td>
<td>0.08 ± 0.06</td>
<td>0.20 ± 0.16</td>
<td>15.53 ± 8.26</td>
<td>28.14 ± 9.58</td>
<td>47.45 ± 8.87</td>
<td>9.80 ± 3.96</td>
</tr>
</tbody>
</table>

Source: Sucrose density fractions were prepared as described in Materials and Methods. Drug concentrations were determined by HPLC. Results are expressed as specific concentrations (micromoles per milligram of protein) and represent the mean ± 50 of four independent experiments. Fractions 1–6 represent LBD fractions; Fractions 8–12 represent HBD fractions.

Discussion

In the present study, we investigated putative molecular mechanisms underlying the noncompetitive antagonistic effects of antidepressants and antipsychotics at the 5-HT₃ receptor.

One possibility might be that these antagonistic effects are mediated through an enhancement of receptor internalization. Receptor internalization is of major importance for receptor recycling and is an important determinant for the availability of functionally active membrane-bound receptors (Calkin and Barnes, 1994; Barnes, 1996; Miranda and Barnes, 1997). For example, chronic administration of benzodiazepines induces internalization of the GABAₐ receptor (Tehrani and Barnes, 1997). Moreover, antidepressants (Koshikawa et al., 1987; Burgi et al., 2003; Riad et al., 2004) and antipsychotic drugs (Williams et al., 1999) may enhance receptor internalization/downregulation of 5-HT₃ receptors, 5-HT₂ receptors, or β-adrenoceptors (βAR), which all are G-protein-coupled receptors. However, only chronic treatment with DMI, but not acute doses of DMI, may cause downregulation of βAR in vivo (Koshikawa et al., 1987; Burgi et al., 2003). In our study, the noncompetitive antagonism of antidepressants at the 5-HT₃ receptor could be observed after short time exposure to the respective drugs and obviously was not conferred by an enhancement of receptor internalization as shown by immunofluorescence studies, assessment of receptor density in clathrin-coated vesicles, and electrophysiological recordings after coexpression of dynamin K44A, a dominant-negative mutant of dynamin I, which inhibits receptor internalization. Thus, an enhancement of internalization does not explain the functional antagonistic effects of antidepressants at the 5-HT₃ receptor.

To investigate the concentrations of the respective psychopharmacological drugs in relation to the localization of the 5-HT₃ receptor within the cell membrane, we quantified the concentrations of different types of antidepressants and antipsychotics in fractions of sucrose-floating gradients isolated from HEK 293 cells stably transfected with the 5-HT₃ receptor and of NIE-115 neuroblastoma cells in relation to the localization of the 5-HT₃ receptor protein. Western blots revealed a localization of the 5-HT₃ receptor protein exclusively in the LBD fractions, which also contain caveolin-2 and flotillin-1. Thus, the LBD fractions indeed represent raft-like domains. This raft association of the 5-HT₃ receptor is consistent with the cluster distribution of the 5-HT₃ receptor observed in the plasma membrane of live HEK cells (Illegems et al., 2004).

Initially, lipid rafts have been characterized as DRMs with low buoyant density (Brown and Rose, 1992; Sargiacomo et al., 1993; Song et al., 1996). However, questions have been raised about to what extent DRMs reflect raft size and composition in vivo (for review, see Edidin, 2003; Munro, 2003). To avoid artifacts by the partitioning of detergent molecules into the lipid bilayer, detergent-free protocols have been developed and have subse-
sequently been used extensively to define the molecular composition of raft-like domains (Smart et al., 1995; Song et al., 1996). LBD fractions isolated in a detergent-free environment have been shown to exhibit many characteristics normally associated with DRM (Luria et al., 2002), although contamination by non-raft membrane fragments cannot be completely excluded (Schnitzer et al., 1995; Stan et al., 1997; Waugh et al., 1999). We also used a detergent-free protocol, because detergents might impair the inclusion and accumulation of the drugs into the cell membrane and might interfere further with the HPLC analysis. The contamination by non-raft membrane fragments in the LBD fraction was investigated by using plasma membranes as starting material. LBD fractions isolated from whole-cell homogenates and plasma membranes showed corresponding results. Thus, contamination by non-raft membrane fragments does not confound our results. Similar to the 5-HT$_3$ receptor, a variety of ion channels have been shown to be located in raft-like domains (for review, see Martens et al., 2004). Rafts are thought to have unique biophysical properties that directly affect channel function (Tillman and Cascio, 2003). Within the family of ligand-gated ion channels, GABA$_A$ receptors (Dalskov et al., 2005), the α7 subunit of the nicotinic acetylcholine receptor (Bruses et al., 2001), NMDA (Bessho et al., 2005), and AMPA receptors (Suzuki et al., 2001; Hering et al., 2003) have been detected in lipid rafts. Thus, the enrichment of antidepressants and antipsychotics within these membrane microdomains might also be important for the modulation of other ligand-gated ion channels in addition to the 5-HT$_3$ receptor. Moreover, rafts could serve as a platform to cluster distinct signaling molecules with ion channels (Anderson, 1998; Okamoto et al., 1998; Hooper, 1999; Kurczalia and Parton, 1999) and may play a role in the polarized sorting and/or trafficking of ion channels (Ledesma et al., 1998). However, the raft association of proteins can be highly variable (Smart et al., 1996; Mineo et al., 1999) (for review, see Pike, 2003). For example, treatment of cells with progesterone shifted the caveola-associated folate receptor to the bulk membrane fractions. Progesterone blocked cholesterol movement from the endoplasmic reticulum to caveolae, which are impaired by cholesterol depletion (Smart et al., 1996). In our study, we did not find any changes in the cholesterol concentration in the LBD fractions or in the raft association of the 5-HT$_3$ receptor after short-term treatment of the cells with antidepressant or antipsychotic drugs. Interestingly, also only chronic, but not acute, treatment of cells with antidepressants has been shown to result in a reduced amount of the G-protein $G_{\alpha i}$ in caveola-enriched membrane domains (Toki et al., 1999) and a redistribution of $G_{\alpha i}$ in the cell (Donati et al., 2001). Similar to the 5-HT$_3$ receptor, also the antidepressants desipramine, fluoxetine, and reboxetine and the antipsychotics fluphenazine, haloperidol, and clozapine were markedly enriched in LBD fractions, whereas no such accumulation could be shown for mirtazapine, carbamazepine, moclobemide, and risperidone. Only compounds that reach substantial concentrations within these membrane microdomains are capable of acting as noncompetitive functional antagonists at the 5-HT$_3$ receptor, whereas carbamazepine, moclobemide (Eisensamer et al., 2003), and risperidone (Rammes et al., 2004), which are not accumulated in these membrane fractions, are devoid of antagonistic properties at this ligand-gated ion channel. When considering the competitive antagonists mirtazapine and clozapine, only clozapine is enriched in LBD fraction, whereas mirtazapine is not. This would be compatible with the idea that mirtazapine acts solely as a competitive antagonist at the 5-HT$_3$ receptor, whereas clozapine, in view of its relatively low binding affinity (Hermann et al., 1996; Rammes et al., 2004), might act as a simultaneous competitive and noncompetitive antagonist. In addition, the concentrations of psychopharmacological drugs within LBD fractions were strongly associated with their inhibitory potency against serotonin-induced cation currents. In summary, our data indicate that an accumulation of antidepressants and antipsychotics might be important for the functional antagonistic effects of these drugs at the 5-HT$_3$ receptor. An enrichment of antidepressants and antipsychotics within LBD fractions of cell membranes has not been demonstrated thus far. Only clozapine has been shown to accumulate in the “very low-density lipoprotein” fraction of plasma samples with highly elevated lipoprotein levels, but no such accumulation occurred in standard plasma (Procyshyn et al., 2001). Generally, basic lipophilic compound such as antidepressants, e.g., fluoxetine and imipramine, may bind nonspecifically to membrane phospholipids (Bickel and Steele, 1974; Di Francesco and Bickel, 1977; Romer and Bickel, 1979). Thus, an accumulation of such drugs in phospholipid-rich membrane microdomains such as lipid rafts is highly probable. Because the respective concentrations are reached both in animal studies (Uhr et al., 2000; Weigmann et al., 2000) and in neuroimaging studies in patients treated with fluoxetine (Bolo et al., 2000; Henry et al., 2000), the accumulation of these psychopharmacological drugs in raft-like domains may occur also in vivo under therapeutic conditions.

In conclusion, enrichment of antidepressants and antipsychotics in raft-like domains within the cell membrane appears to be crucial for their antagonistic effects at ligand-gated ion channels, such as 5-HT$_3$ receptors, and may contribute to the understanding of essentially unknown mechanisms of action of these psychopharmacological drugs.

References
Brown DA, Rose JK (1992) Sorting of GPI-anchored proteins to glycolipid-
enriched membrane subdomains during transport to the apical cell sur-

Brues IJ, Chauvot H, Mauhar U (2001) Membrane lipid rafts are nec-
essary for the maintenance of the α7 nicotinic acetylcholine receptor in

switch of β1-adrenoceptor trafficking as a mechanism for drug action.

Calkin PA, Barnes EM (1994) Agonist-induced internalization and de-
gradation of γ-aminobutyric acid type A (GABA_A) receptor polypeptides

Connolly CN, Uren JM, Thomas P, Gorrie GH, Gibson A, Smart TG, Moss DJ
(1999) Subcellular localization and endocytosis of homoceric γ2 sub-
unit splice variants of γ-aminobutyric acid type A receptors. Mol Cell
Biol 19:4214–4220.

Dalakov SM, Immerdal L, Nielsen-Christiansen LL, Hansen GH, Schousboe A,
Danielsen EM (2005) Lipid raft localization of GABA_A receptor and
Na+, K+ ATPase in discrete microdomain clusters in rat cerebellar gran-

Davies PA, Pistoris M, Hanna MC, Peters JA, Lambert JJ, Hales TG, Kirkness EF
(1999) The 5-HT3a subunit is a major determinant of serotonin-receptor

Di Francesco C, Bickel MH (1977) Membrane lipids as intracellular binders

Donati RJ, Thukral C, Rasenick MM (2001) Chronic treatment of C6 gli-
oma cells with antidepressant drugs results in a redistribution of Gs. Mol

R (2003) Antidepressants are functional antagonists at the serotonin
receptor type 3 (5-HT3) receptor. Mol Psychiatry 8:994–1007.

Fan P (1999) Inhibition of a 5-HT3 receptor-mediated current by the selec-

receptor cDNA and its splice variants from Guinea Pig. Mol Pharmacol 53:202–212.

of protein–lipid complexes in axonal sorting. Proc Natl Acad Sci USA
95:3966–3971.

Luria A, Vegleye-Avery V, Stith B, Tsvetkova NM, Wolkers WE, Tablin F,
Nucitelli R (2002) Detergent-free domain isolated from Xenopus egg
plasma membrane with properties similar to those of detergent-resistant

Malatynska E, Crites GJ, Harrawood D, Goldenberg D, Matheson GK (2000)
Antidepressant effects on GABA-stimulated 36 Cl– influx in rat cerebral
cortex are altered after treatment with GABA(A) receptor antisense oli-

to membrane microdomains: localization of K+ channels to lipid rafts.

Inhibition of a 5-HT3 receptor and clozapine increase the GABAergic nervous system

Mineo C, Gill GN, Anderson RGW (1999) Regulated migration of epider-

Miranda JD, Barnes EM (1997) Repression of γ-aminobutyric acid type A
receptor α1 polypeptide biosynthesis requires chronic agonist exposure.

Mozzynska JW, Barberis A, Michalak K, Cherubini E (1999) Chlorpro-
azine inhibits miniature GABAergic currents by reducing the binding and
by increasing the unbinding rate of GABA_A receptors. J Neurosci
19:2474–2488.

Munson PJ, Robard D (1980) LIGAND: a versatile computerized ap-
proach for characterization of ligand-binding systems. Anal Biochem
107:263–270.

Murata M, Peranen J, Schreiner R, Wieland F, Kurzchalia TV, Simons K
(1995) VIP21/caveolin is a cholesterol-binding protein. Proc Natl Acad
Sci USA 92:10339–10343.

of scaffolding proteins for organizing “preassembled signaling com-

receptor currents in a noncompetitive manner. Mol Psychiatry
9:846–858.

Acute treatment with the antidepressant fluoxetine internalizes 5-HT_A
autoreceptors and reduces the in vivo binding of the PET radioligand
[18F]MPPF in the nucleus raphe dorsalis of rat. J Neurosci
24:5420–5426.

Robinson RT, Drafts BC, Fisher JL (2003) Fluoxetine increases GABA_A
receptor activity through a novel modulatory site. J Pharmacol Exp Ther
304:978–984.

Romeo E, Strohle A, Spalletta G, di Michele F, Hermann B, Holzboer F, Pasini
A, Rupprecht R (1998) Effects of antidepressant treatment on neuroac-

Romner B, Bickel MH (1979) Interactions of chlorpromazine and imipra-
mine with artificial membranes investigated by equilibrium dialysis, dual-
wavelength photometry, and fluorometry. Biochem Pharmacol

Rothberg KG, Heuser JE, Donzell WC, Ying YS, Glenney JR, Anderson RG
68:673–682.

molecules and glycosyl-phosphatidylinositol-linked proteins from a

caveolae from associated microdomains of GPI-anchored proteins. Sci-
ence 269:1435–1439.

method for purifying caveole membrane from tissue culture cells. Proc
Natl Acad Sci USA 92:10104–10108.

