Control of Spontaneous Firing Patterns by the Selective Coupling of Calcium Currents to Calcium-Activated Potassium Currents in Striatal Cholinergic Interneurons

Joshua A. Goldberg and Charles J. Wilson
Department of Biology, University of Texas at San Antonio, San Antonio, Texas 78249

The spontaneous firing patterns of striatal cholinergic interneurons are sculpted by potassium currents that give rise to prominent afterhyperpolarizations (AHPs). Large-conductance calcium-activated potassium (BK) channel currents contribute to action potential (AP) repolarization; small-conductance calcium-activated potassium channel currents generate an apamin-sensitive medium AHP (mAHP) after each AP; and bursts of APs generate long-lasting slow AHPs (sAHPs) attributable to apamin-insensitive currents. Because all these currents are calcium dependent, we conducted voltage- and current-clamp whole-cell recordings while pharmacologically manipulating calcium channels of the plasma membrane and intracellular stores to determine what sources of calcium activate the currents underlying AP repolarization and the AHPs. The Ca_{2,2} (N-type) blocker ω-conotoxin GVIA (1 μm) was the only blocker that significantly reduced the mAHP, and it induced a transition to rhythmic bursting in one-third of the cells tested. Ca_{1,1} (L-type) blockers (10 μm dihydropyridines) were the only ones that significantly reduced the sAHP. When applied to cells induced to burst with apamin, dihydropyridines reduced the sAHPs and abolished bursting. Depletion of intracellular stores with 10 mM caffeine also significantly reduced the sAHP current and reversibly regularized firing. Application of 1 μM ω-conotoxin MVIIIC (a Ca_{2,1}/2,2 blocker) broadened APs but had a negligible effect on APs in cells in which BK channels were already blocked by submillimolar tetraethylammonium chloride, indicating that Ca_{2,1} (Q-type) channels provide the calcium to activate BK channels that repolarize the AP. Thus, calcium currents are selectively coupled to the calcium-dependent potassium currents underlying the AHPs, thereby creating mechanisms for control of the spontaneous firing patterns of these neurons.

Key words: tonically active neurons; high-voltage-activated calcium currents; basal ganglia; ongoing activity; potassium currents; afterhyperpolarization; calcium-induced calcium release; intracellular stores; ryanodine; xestospongin C

Received July 1, 2005; revised Sept. 12, 2005; accepted Sept. 30, 2005.

This work was supported by National Institutes of Health—National Institute of Neurological Disorders and Stroke Grants NS37760 and F32 NS050900. We thank Drs. R. Foehring and C. Paladini for their suggestions.

Correspondence should be addressed to Joshua A. Goldberg, Department of Biology, University of Texas at San Antonio, 6900 North Loop 1604 West, San Antonio, TX 78249. E-mail: joshua.goldberg@utsa.edu.
DOI:10.1523/JNEUROSCI.2734-05.2005

Behavioral/Systems/Cognitive
cium channels have been shown to contribute to barium currents recorded from dissociated cholinergic interneurons (Yan and Surmeier, 1996). One possible function for a diversity of calcium currents is the selective coupling of these channels to calcium-dependent potassium channels (Viana et al., 1993; Sah, 1995; Williams et al., 1997; Marrion and Tavalin, 1998; Pineda et al., 1998; Shah and Haylett, 2000; Vilchis et al., 2000; Cloues and Sather, 2003). Because the calcium currents in cholinergic interneurons are targets of neuromodulation (Yan and Surmeier, 1996; Yan et al., 1997; Song et al., 2000; Pisani et al., 2002), finding such a selective coupling would provide a possible mechanism by which the firing patterns and the cholinergic output of these neurons are controlled by neuromodulators. In this work, we combine voltage- and current-clamp recording in the whole-cell configuration with pharmacological manipulation of calcium channels (both of the plasma membrane and of intracellular stores) to study their coupling to the calcium-dependent potassium currents in cholinergic interneurons. The spontaneously firing cholinergic interneurons provide a unique opportunity to observe the effect of this coupling on their ongoing firing patterns.

Materials and Methods

Slice preparation. Sprague-Dawley rats of either sex, aged 14–23 d, were anesthetized deeply with ketamine-xylazine and perfused through the heart with 10–30 ml of ice-cold modified artificial CSF (ACSF), which had been bubbled with 95% O2 and 5% CO2 and contained the following (in mM): 2.5 KCl, 26 NaHCO3, 1.25 Na2HPO4, 0.5 CaCl2, 10 MgSO4, 230 sucrose, and 10 glucose. The brain was removed rapidly, blocked in the sagittal plane, glued to the stage of a VT1000S vibratome (Leica, Nussloch, Germany), and immersed in ice-cold modified ACSF. Three-hundred-micrometer-thick slices containing the neostriatum were then transferred to a holding chamber where they were submerged in ACSF, which had been bubbled continuously with 95% O2 and 5% CO2 and contained the following (in mM): 2.5 KCl, 126 NaCl, 26 NaHCO3, 1.25 Na2HPO4, 2 CaCl2, 2 MgSO4, and 10 glucose. In some experiments, we used a nominally calcium-free ACSF that contained the following (in mM): 2.5 KCl, 123 NaCl, 26 NaHACO3, 1.25 Na2HPO4, 1 EGTA, 3 MgSO4, and 10 glucose. Slices were held at room temperature in this chamber for at least 1 h before recording.

Visualized whole-cell recording. Individual slices were transferred to the recording chamber and were perfused continuously with oxygenated ACSF at 32–35°C. A 40× water-immersion objective (Axioskop; Zeiss, Oberkochen, Germany) was used to examine the slice using standard water-immersion objectives. Often, the intricate axonal arborization of the neuron was also visible (Bennett and Wilson, 1999).

Histochemical processing, data analysis, and statistics. At the end of recording, slices were fixed by immersion into 4% paraformaldehyde in 0.15 M phosphate buffer and refrigerated for a period of 7–12 d. Consequently, the filled cells were stained using the avidin–biotin complex (Vector Laboratories, Burlingame, CA). In some experiments, a 2 mM concentration of the fast calcium chelator BAPTA was added to the pipette solution.

Results

Firing patterns and afterhyperpolarizations of the striatal cholinergic interneurons

Cholinergic interneurons of the striatum discharge spontaneously in vitro displaying a variety of firing patterns. Most neurons discharged tonically in a single spiking mode, whereas others discharged in rhythmic bursts interrupted by large afterhyperpolariza-
Firing properties of striatal cholinergic interneurons in vitro. a, A 20 s trace depicting a spontaneous firing pattern of a cholinergic interneuron in vitro, which includes transitions from tonic to burst discharge. The bursts are followed by prominent hyperpolarizations. b, Action-potential waveform of a cholinergic interneuron. c, During spontaneous discharge, each action potential is followed by a medium AHP. d, A somatic current injection elicits a slow AHP after its termination.

The potassium current underlying the mAHP is coupled to Ca_{2.2} calcium currents
Because both the mAHP and the sAHP are generated by calcium-dependent potassium currents (Bennett et al., 2000; Wilson and Goldberg, 2005), we used voltage-clamp protocols to study each of these currents and its coupling to calcium currents. To evoke the outward current underlying the mAHP, we used a 10 ms pulse to -2 mV from a holding potential of -57 mV (values corrected for junction potential). This pulse elicits an unclamped action current that is followed by a 100–200 ms long outward tail current. This tail current is reversibly abolished in 25 nM apamin (Fig. 2a), indicating that it flows through SK channels. As expected for the calcium-activated SK channels, this outward current is reversibly abolished in a calcium-free bathing solution (Fig. 2b). In current clamp, the calcium-free bath reversibly reduced the mAHPs that follow each action potential during single-spike discharge, thereby dramatically increasing the spontaneous firing rate (Fig. 2b, inset) of the neuron. Hence, we will refer to the current evoked by the 10 ms pulse as the mAHP current.

In several cell types, BK and SK potassium channels are coupled selectively to the various calcium channels (Viana et al., 1993; Sah, 1995; Williams et al., 1997; Marrion and Tavalin, 1998; Pineda et al., 1998; Cloues and Sather, 2003). Therefore, we sought to identify which calcium channels were responsible for the influx needed to activate the mAHP current. To the extent that the cholinergic interneuron exhibits such selectivity, we wished to study how this selectivity could serve as a mechanism to modulate the mAHP. Because the cholinergic interneuron is spontaneously active in vitro, it provides an opportunity to study the direct effect of this selectivity on the ongoing firing patterns. To this end, we used pharmacological means to dissect the contribution of each calcium current to the mAHP current and studied the outcome of these treatments on the spontaneous and driven activity of these cells in current clamp.
GVIA reduced the current by 8–97% (mean, 35%; sAHP (Fig. 3a) each action potential. In contrast, this drug had no effect on the mAHP current induced by GVIA generated smaller mAHPs after the termination of the pulse.

In 10 cells tested, GVIA reduced the current by 8–97% (mean, 35%; sAHP (Fig. 3a) each action potential. In contrast, this drug had no effect on the mAHP current induced by GVIA generated smaller mAHPs after the termination of the pulse.

When subjecting the cell to calcium channel blockers, only 1 μM GVIA, which blocks Cav2.2 channels, reduces the mAHP current (gray trace) relative to control (black trace). Inset, The mean ± SEM value across cells of the mAHP current measured from a cell that was bathed sequentially in (1) a combination of 1 μM dihydropyridines (dihyd), which block Cav1 channels; 1 μM GVIA; 1 μM MVIC, which blocks Cav2.1/2.2 channels; and 100 nM SNX-482 (SNX), which blocks Cav2.3 channels. The current was measured 25 ms after the end of the pulse and averaged over five traces taken in a 20 s interval. Only the GVIA treatment elicited a significant reduction in the value of the mAHP current (*p < 0.001; two-tailed paired t test; values of n indicate the number of cells). In current clamp, application of 1 μM GVIA reduced the mAHP after a 60 pA, 1 s somatic current injection (gray trace) relative to control (black trace), without affecting the sAHP that followed the termination of the pulse. Mean ± SD (calculated from 5 trials conducted in a 20 s interval) of the mAHP current measured from a cell that was bathed sequentially in (1) a combination of 1 μM GVIA and 100 nM of the Cav2.1 blocker ω-agatoxin TK (CnTx + AgTx), (2) 10 μM nimodipine, and finally in (3) normal ACSF (Wash). Traces of the spontaneous discharge of a neuron in control and after bath application of 1 μM GVIA, which caused it to burst.

When subjecting the cell to calcium channel blockers, only 1 μM GVIA, which blocks Cav2.2 channels, had a significant effect on the mAHP current (Fig. 3a). In 10 cells tested, GVIA reduced the current by 8–97% (mean, 35%; p < 0.001; two-tailed paired t test). In current clamp, the reduction in the mAHP current induced by GVIA generated smaller mAHPs after each action potential. In contrast, this drug had no effect on the sAHP (Fig. 3b). Figure 3c shows the insensitivity of the mAHP current to blockade of calcium entry through Cav1 channels. Application of Cav2 blockers dramatically reduced the mAHP current, and it began to recover despite the presence of Cav1 blocker in the bathing solution. A similar segregation between the effects of these two channels on mAHPs has been described previously in rat hypoglossal motor neurons (Viana et al., 1993).

The incomplete mean block of the mAHP current by GVIA treatment was attributable in part to variability among neurons. It is possible that the brief voltage pulse used to assess the mAHP current was able to evoke some other outward spike aftercurrent, which could have contaminated the measurement. However, in one of the cells, the block was very nearly complete, and there was a strong correlation between the effectiveness of the mAHP current block seen in voltage clamp and changes in firing pattern seen in current clamp (see below).

Blockade of Cav2.2 channels can generate a transition to burst discharge

Bath application of 100 nM apamin induces a reduction of the mAHP and a rapid transition to burst firing in cholinergic interneurons (Bennett et al., 2000). Apamin application (25 ms) blocked the mAHP current (Fig. 2a) and caused most (6 of 10) neurons to switch to burst discharge (data not shown). Because the apamin-sensitive outward current is reduced by GVIA, we expected the latter drug to have similar effects. Of nine neurons in which spontaneous activity was studied in current clamp, all became more irregular after GVIA treatment, and three cells that exhibited >50% block of mAHP current in the voltage-clamp measurement exhibited rhythmic bursting discharge similar to that induced by apamin (Fig. 3d).

The sAHP current is activated by the influx of calcium through Cav1 channels

To study the current underlying the sAHP, we used an 800 ms pulse from −57 to −2 mV. This pulse evoked a large outward tail that lasted several seconds. The tail current was reversibly blocked in a calcium-free bath (Fig. 4a), attaining an average reduction of 81% (Wilson and Goldberg, 2005). At the onset of the tail current evoked by the long voltage pulse, it is contaminated by the mAHP current. Therefore, we measured the magnitude of this sAHP current as the outward current averaged over the interval from 975 to 1025 ms after the end of the pulse (Fig. 4a, arrow), a point at which the current is maximal (Wilson and Goldberg, 2005). We then measured the effect of specific calcium channel blockers on this current. In Figure 4b, the reversible effect of 10 μM nimodipine on the sAHP current is evident. Of all the blockers we used, only the dihyropyridines (10 μM), which are Cav1 channel blockers, had a significant effect on the sAHP current (Fig. 4b, inset). The dihyropyridines reduced the sAHP current by 25–52% in all eight cells (mean, 40%; p < 0.005; two-tailed paired t test). At this dose of dihyropyridines, an ~65% block of L-type channels is obtained in tissue culture in which the drug has complete access to the sites of action (Furukawa et al., 1999; Shen et al., 2000). Figure 4c shows an example recorded in current clamp of the reduction in the sAHP (elicited by a 1 s, 100 pA somatic current injection) induced by 10 μM nifedipine. In five other cells, we applied 20 μM nifedipine, which yielded a 52% average block of the sAHP current (p < 0.05; two-tailed paired t test). In Figure 4d, we depict as a function of time the value of the sAHP current measured from a neuron that was subjected sequentially to several calcium channel blockers. In this example, no reduction in the current was observed until 20 μM nifedipine was applied to the bathing solution, at which point the current produced a visible reduction.
the sAHP current. Application of 10 μM nimodipine alone to a bursting cell preincubated in apamin also reduced the hyperpolarizations and lead to irregular single-spiking discharge.

Ca.1 channels regulate burst discharge

The slow decay time course of the sAHP current causes it to accumulate in response to a train of action potentials elicited, for example, during burst discharge. This build-up leads in turn to the termination of the burst (Bennett et al., 2000). Because the dihydropyridines reduce the sAHP current, they should have a dramatic effect on the pattern of burst discharge of the neuron. Figure 5 depicts the effects of nimodipine treatment on the firing pattern of neurons that were induced to burst with apamin (left column) (Bennett et al., 2000). Because KIR channels can amplify the sAHP into a regenerative hyperpolarization (Wilson, 2005), we first applied 100 μM barium to block KIR channels. This reduced the amplitude and duration of the slow hyperpolarization observed between bursts but nevertheless preserved the sAHPS that separate them. Bath application of 10 μM nimodipine reduced the sAHPS that followed each burst, causing the bursts to become more irregular and less stereotyped (Fig. 5a). Application of nimodipine alone (without first applying barium) also reduced the spontaneous sAHPS and disrupts the apamin-induced bursting (Fig. 5b). We conclude that the sAHP current responsible for slow rhythmic bursting is triggered by calcium influx via Ca.1 channels.

The sAHP current is activated by calcium release from intracellular stores

A sensitivity of the sAHP current to Ca.1, but not to Ca.2, currents has been described in CA3 pyramidal neurons (Tanabe et al., 1998). In these neurons, as well as in others, the sAHP current is activated by calcium release from intracellular stores (Sah and McLachlan, 1991; Berridge, 1998; Pineda et al., 1999). We therefore tested the sensitivity of the sAHP to depletion of intracellular stores. Application of 10 mM caffeine rapidly and reversibly re-

which point the sAHP current decreased by 73% and consequently recovered after an extended washout of the drugs.

We used 100 nM SNX-482 to block Ca.2.3 channels. Because this drug does not consistently block all native R-type currents (i.e., resistant to N-, P/Q-, and L-type currents) in various CNS neurons in the rat (Newcomb et al., 1998), we also tested the effect of 50 μM Ni²⁺ on the sAHP current in six neurons. Nickel had no significant effect on the mean current (mean ± SEM, 255 ± 62 pA in control vs 240 ± 43 pA in Ni²⁺; two-tailed paired t test).
BK channels contributing to action potential repolarization are activated by calcium influx through Ca_{2,1} channels

Iberiotoxin or low concentrations of TEA (0.1–1 mM) have been reported to broaden the action potential of the cholinergic interneuron (data not shown), implicating BK calcium-dependent potassium channels as contributing to action potential repolarization (Bennett et al., 2000). Blocking calcium currents may prevent the opening of BK channels leading to an impaired repolarization process, culminating in a broader action potential. Bathing the slice in 1 mM ω-conotoxin MVIIIC (a Ca_{2,1}/2.2 channel blocker) significantly broadened the action potential in 10 of the 11 cells tested (p < 0.05; two-tailed Wilcoxon signed-ranks test) (Fig. 7a).

In three cells, the action potential was broadened by >75%. In contrast, bathing the cell in the other organic calcium channel blockers or in caffeine had no significant effect on the firing rate, which remained constant in all cases. The firing became tonic in a single spiking mode. In the example depicted here, the neuron initially fired irregularly displaying large hyperpolarizations. After reducing the sAHP current with caffeine, the cell was no longer able to trigger these large hyperpolarizations. After reducing the sAHP current by 66%, 36%, and 35%, respectively (*p < 0.05; two-tailed paired t test) (Fig. 6b). The effect of XeC was unique in that it reduced the long sAHP tail current during the initial 2 s without significantly reducing the later part of tail current relative to control (data not shown).
action potential width (Fig. 7a, inset). In two cells for which pretreatment with 1 mM TEA broadened the action potential by 54 and 43%, the subsequent addition of 1 µM MVIIIC either did not further broaden the action potential (Fig. 7b) or broadened it only by an additional 8%, respectively. These results suggest that MVIIIC delays action potential repolarization by reducing the calcium influx, through Ca,2.1 channels, that is needed for opening BK channels. At most 10% of calcium currents expressed in cholinergic interneurons are of the P type (Yan and Surmeier, 1996), suggesting that Q-type channels supply the calcium to activate BK channels. In two cells treated with a low dose (40 nM) of AgTx IVa, which should not appreciably affect Q-type currents but should block P-type channels, we found no change in action potential width (data not shown).

BK channels in hippocampal pyramidal cells are found within tens of nanometers of the calcium channels that provide them with the calcium needed for their activation (Marrion and Tavalin, 1998). One way to demonstrate the proximity of these channels to each other is to show the insensitivity of the function of the BK channels to fast calcium chelators (Velumian and Carlen, 1999). We therefore tested whether the addition of 2 mM BAPTA to the internal solution of the electrode would lead to a broadening of the width of the action potentials of the neurons, presumably by buffering the calcium needed to activate BK channels (Lancaster and Nicoll, 1987). The mean width of action potentials, which were at least 80 mV from threshold to peak, measured later than 12 min from the seal rupture, was 2.26 ± 0.11 ms (mean ± SEM; n = 6 cells), which was significantly narrower than in control conditions (two-sided Wilcoxon rank–sum test; p < 0.001). We conclude that BAPTA was incapable of suppressing repolarization of the action potential caused by the action of BK channels, suggesting that in cholinergic interneurons the BK and Ca,2.1 channels are in close proximity to each other, a distance that has been estimated at ~30 µm in other neuronal types (Gola and Crest, 1993; Naraghi and Neher, 1997; Marrion and Tavalin, 1998; Velumian and Carlen, 1999).

Discussion
Cholinergic interneurons express a variety of calcium channels with similar voltage sensitivities and kinetics (Yan and Surmeier, 1996), raising the question of the function of such a rich repertoire of calcium channels. We have shown that, as in many other neuron types, the calcium–dependent potassium currents that underlie the three AHPs exhibited by cholinergic interneurons are selectively coupled to specific calcium channels. The sAHP current is activated by calcium entry through Ca,1 (L-type) channels, the mAHP current through SK channels is activated by calcium entry through and Ca,2.2 (N-type) channels, and the contribution of the BK currents to spike repolarization is activated by calcium influx through Ca,2.1 channels (apparently of the Q type). Each of these examples of specific coupling can be found individually in other neurons (Viana et al., 1993; Tanabe et al., 1998), but the rules of preferential coupling of calcium channels to AHPs are, in general, diverse and cell-type specific (Viana et al., 1993; Sah, 1995; Williams et al., 1997; Marrion and Tavalin, 1998; Pineda et al., 1998; Shah and Haylett, 2000; Vilchis et al., 2000; Cloues and Sather, 2003). Studying this selectivity in cholinergic interneurons provides a unique opportunity to probe the context in which it is played out (i.e., in modulating the ongoing firing patterns exhibited by these neurons). We have seen two dramatic examples of this: (1) a reduction in Ca,2.2 currents can suppress SK currents enough to cause the neuron to burst (Fig. 3d) and (2) a reduction in Ca,1 currents suppresses the sAHP current that helps regularize the rhythmic bursting, thereby leading to irregular firing patterns (Fig. 5). Thus, in cholinergic interneurons, the coupling between calcium currents and calcium-dependent mechanisms apparently maps onto the complex variety of oscillatory mechanisms in these neurons, with each of the calcium currents preferentially participating in a different oscillatory mechanism.

Control of firing patterns by selective coupling of calcium currents to potassium currents
Cholinergic interneurons exhibit two rhythmic firing patterns when recorded in vitro, including: (1) tonic discharge in a single-spiking mode and (2) rhythmic bursting (Bennett and Wilson, 1999). SK channels play an important role in regulating the single-spiking mode. They hyperpolarize the cell after each action potential, thereby activating hyperpolarization-activated cation (HCN) currents, which depolarize the cell enough to engage the activation of persistent sodium current, which can drive the cell to the action potential threshold (Bennett et al., 2000). Because SK currents are activated by calcium influx through Ca,2.2 channels, the latter currents can control the amplitude of the mAHP, the level of depolarization, and the driven firing rate of the cell (Fig. 3b).

The sAHP has been studied traditionally in other neurons by eliciting trains of action potentials with somatic current injections (Hotson and Prince, 1980; Gustafsson and Wigstrom, 1983; Schwindt et al., 1988). In the context of the spontaneous activity of the cholinergic interneurons, we have proposed that the sAHP current contributes to burst termination and to the onset of the hyperpolarizations that follow each burst (Wilson and Goldberg, 2005). In the present study, we have shown that blocking Ca,1 calcium currents reduces the sAHP current, reduces the hyperpolarizations exhibited by the cell, and disrupts apamin-induced bursting (Fig. 5). Similarly, reduction of the sAHP current by depletion of intracellular stores eradicates hyperpolarizations and promotes tonic single-spiking discharge (Fig. 6).

The slow rhythmic bursting pattern of cholinergic interneurons relies primarily on the interaction between the sAHP current and two hyperpolarization–activated currents (Wilson and Goldberg, 2005). During rhythmic bursting, the mAHP current is insufficient to repolarize the cell after each action potential. This leads to a sustained depolarization with a twofold effect: (1) persistent sodium conductance is not sufficiently deactivated, resulting in more action potentials at a higher instantaneous rate, and (2) there is more activation of Ca,1 calcium currents. These two effects conspire to cause the sAHP current to accumulate, thereby terminating the burst and triggering the ensuing regenerative KIR-induced hyperpolarization (Wilson, 2005). Recovery from the deep hyperpolarization generated by the sAHP and KIR currents depends on the HCN currents. In cells lacking regenerative hyperpolarizations (e.g., after barium treatment, as in Fig. 5a), the sAHP current may sufficiently hyperpolarize the cell for HCN currents to be activated thereby initiating the depolarization toward the next burst.

Although similar in voltage sensitivity and kinetics, the result of their specific linkage to different calcium–dependent potassium currents causes Ca,1 and Ca,2.2 channels to have opponent influences on the spontaneous firing patterns of cholinergic interneurons. Ca,1 currents promote long hyperpolarizations and rhythmic bursting, whereas Ca,2.2 currents are responsible for mAHPs and sustained rhythmic single spiking. These two firing patterns are mutually exclusive. At any moment, a cholinergic interneuron may fire in only one of these patterns, and the rela-
tive strength of these two currents at any moment is pivotal in determining which oscillatory mechanism will dominate.

We have shown previously that BK currents shape the action potential waveform (Bennett et al., 2000). In the present study, we were interested in revealing the source of calcium that activates these channels. The current-clamp experiment we conducted in which we measured the width of the action potential was sufficient for this purpose. To study the dynamics of BK channels and their contribution to action-potential dynamics relative to other calcium-dependent and calcium-independent potassium channels will require additional voltage-clamp experiments such as those conducted on the SK and sAHP currents. However, these experiments would be more difficult, given the fast time scale of action-potential dynamics.

Selective coupling of calcium currents to potassium currents is a target for neuromodulation

Calcium currents are common targets of neuromodulation (Hille, 1994, 2001). In the striatum, dopamine and acetylcholine are the primary modulators. Ca,1 in spiny neurons are reduced by the activation of D2 dopamine receptors (Hernandez-Lopez et al., 2000) and are enhanced by the activation of D1 dopamine receptors at depolarized potentials (Surmeier et al., 1995; Hernandez-Lopez et al., 1997), leading to an increased mAHP (Hernandez-Lopez et al., 1996). Activation of D1 receptors also reduce Ca,2 currents (N and P types) in spiny neurons (Surmeier et al., 1995).

In cholinergic interneurons, activation of muscarinic M4 receptors reduces Ca,2 currents (of the N and P type), but Ca,1 currents are apparently not affected by muscarinic agonists (Yan and Surmeier, 1996). Ca,2,2 currents are also reduced by the activation of D2 receptors (Yan et al., 1997) and adenosine receptors (Song et al., 2000). Ca,1 currents are not affected by the D2 modulation (Yan et al., 1997).

These results suggest that the selective coupling of calcium currents to calcium-activated potassium channels may serve as a mechanism for neuromodulators to influence the firing patterns and spike waveforms of the cholinergic interneurons. Through the selective coupling of Ca,2,2 to SK channels, the release of either dopamine or acetylcholine can presumably reduce the SK current underlying the mAHP by reducing the calcium influx through Ca,2,2 channels. This modulation should promote the irregular and bursty patterns of cholinergic cell firing. Perhaps a different neuromodulator can control the action potential width by modulating Ca,2,1 channels that are linked to BK channels. In spiny neurons, Ca,2,1 are modulated by somatostatin (Vilchis et al., 2002). Because Ca,1 currents are insensitive to muscarinic agonists and D2 receptor activation, it is likely that their coupling to the sAHP current is not a mechanism for its modulation. However, in other neurons, the sAHP possesses many alternative mechanisms for direct neuromodulation (Vogalis et al., 2003), which may also be present in the cholinergic interneuron. The experimentally measured effects of neuromodulators on these calcium currents are modest, in the 20–30% range, which in a physiological context may not greatly alter the strength of calcium-activated potassium currents. However, in our experiments, reductions in calcium currents well under 100% produced substantial changes in firing patterns of cholinergic cells, suggesting that such moderate modulations of the currents may be physiologically significant.

Because a reduction in SK currents can lead to bursting, the proposed mechanism by which dopamine release causes a reduction in the SK currents (through the reduction Ca,2,2 currents that are coupled to them) can help illuminate a recent finding from cholinergic interneurons recorded in vivo (Reynolds et al., 2004). Reynolds et al. (2004) found that cholinergic interneurons switched to persistent bursting for several minutes after the termination of high-frequency stimulation in the substantia nigra. This stimulation presumably released large amounts of dopamine into the striatum. It is possible that the excessive amount of dopamine, through its action on D2 receptors, reduced Ca,2,2 currents, which in turn caused a reduction in the SK currents. As we have shown, this can lead to persistent bursting (Fig. 3d). In parkinsonism, dopamine depletion leads to an increased release of acetylcholine (Grewaal et al., 1974; DeBoer et al., 1993). Because M3 receptors also reduce Ca,2,2 currents, a similar mechanism may contribute to the onset of oscillatory discharge in the tonically active neurons of striatum, which are the cholinergic interneurons (Kimura et al., 1984; Wilson et al., 1990; Aosaki et al., 1995), in parkinsonian primates (Raz et al., 1996).

References

