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Learning Cross-Modal Spatial Transformations through
Spike Timing-Dependent Plasticity

Andrew P. Davison and Yves Frégnac

Unité de Neurosciences Intégratives et Computationnelles, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France

A common problem in tasks involving the integration of spatial information from multiple senses, or in sensorimotor coordination, is
that different modalities represent space in different frames of reference. Coordinate transformations between different reference frames
are therefore required. One way to achieve this relies on the encoding of spatial information with population codes. The set of network
responses to stimuli in different locations (tuning curves) constitutes a set of basis functions that can be combined linearly through
weighted synaptic connections to approximate nonlinear transformations of the input variables. The question then arises: how is the
appropriate synaptic connectivity obtained? Here we show that a network of spiking neurons can learn the coordinate transformation
from one frame of reference to another, with connectivity that develops continuously in an unsupervised manner, based only on the
correlations available in the environment and with a biologically realistic plasticity mechanism (spike timing-dependent plasticity).
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Introduction

To integrate information from different senses and to perform
sensory-guided motor tasks, the brain must perform transforma-
tions between different frames of reference. In general, these
transformations must be learned and remain plastic, to some
degree, in adult life.

A biologically plausible approach to performing such compu-
tations is to use basis functions (Salinas and Abbott, 1995; Pouget
and Sejnowski, 1997; Pouget and Snyder, 2000), a general
method for approximating nonlinear functions. In a neuronal
context, the population response patterns for different stimulus
locations serve as a set of basis functions. The desired transfor-
mation function can be approximated by taking a weighted sum
of basis functions, i.e., by connecting the population representing
the input variable to a population representing the transformed
variable, with appropriate synaptic weights. Basis function net-
works have been used to model both sensorimotor transforma-
tions (Salinas and Abbott, 1995; Pouget and Sejnowski, 1997) and
cross-modal integration (Deneve et al., 2001) with predictions
that are in good agreement with experimental results.

For basis function networks to be a viable candidate for the
actual mechanism of spatial transformations in biological ner-
vous systems, we must show that the appropriate pattern of
weights can be learned based only on interactions with the envi-
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ronment and using biologically realistic learning rules. These cri-
teria are not met by existing models of basis function networks, for
which synaptic weights are set by hand (Pouget and Sejnowski, 1994;
Deneve et al., 2001; van Rossum and Renart, 2004), learned with a
supervised learning rule (Pouget and Sejnowski, 1997) or, with a
Hebbian-like rule, learned during a separate training phase, in which
the outputs are not driven by the inputs but are set to the desired
values (Salinas and Abbott, 1995).

We hypothesized that spike timing-dependent synaptic plas-
ticity (STDP) (for review, see Dan and Poo, 2004) could form the
substrate for learning spatial transformations in a basis function
network. In a spiking network model with population coding of
stimulus location and with STDP, the interaction of input corre-
lations and lateral connections imposes structure on the connec-
tivity pattern so as to form cortical maps (Song and Abbott,
2001), i.e., the simple topographic mapping x — x. It occurred to
us that if a different structure could be imposed, then more com-
plex transformations, x — f (x), could be learned.

Because potentiation—depression is favored by correlated—
uncorrelated inputs, respectively (Song et al., 2000), the appro-
priate pattern of weights may be achieved by imposing an appro-
priate pattern of correlations. For learning cross-modal or
sensorimotor spatial transformations, an obvious source for
these correlations is the input from the other modality or mea-
surement of the motor outcome. An output population having a
preexisting, simple topographic mapping from one modality may
learn to perform a more complex transformation from a different
modality, because connections from input neurons selective for x
to those output neurons being activated by a “training” input f (x)
(through the preexisting topographic connections) will be poten-
tiated, whereas other connections will be depressed. Ultimately,
an input x will elicit an output f (x), even in the absence of the
training input.
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Here we show that such a system is indeed able to learn coor-
dinate transformations without an external supervisor. We ex-
plore the conditions for successful learning and make specific
predictions, for example, of interactions between the temporal
scales of STDP and of the learning environment and of the trans-
formation accuracy as a function of stimulus location.

Materials and Methods

Model description. For functions of one variable, the network consists of
three populations, each consisting of a one-dimensional array of cells, of
size N (see Fig. 1). The “input population” makes all-to-all excitatory
connections to the “output population.” The strength of these connec-
tions is modifiable by STDP, with a maximum synaptic weight of w ..
Connections from the “training population” to the output population
are topographic and local, in the sense that neurons in the middle of the
presynaptic population project only to neurons in the middle of the
postsynaptic population, etc.:
Tr __ pl'rwmax 1f|d1]‘ = Oy
Wij _{ 0 if |dy| > o, (1)

where W,g’ is the connection weight between presynaptic neuron i and
postsynaptic neuron j (see text after Eq. 4), d;; is the shortest distance
between i and j given the periodic boundary conditions (0 = i,j < N), oy,
is the range of connections, and p, is the ratio of training—output to
input—output maximum weights. (All parameter values are given in sup-
plemental Table 1, available at www.jneurosci.org as supplemental ma-
terial). In the standard model, the strength of these connections is fixed.
We also consider the case in which these connections are modified by
STDP. In this case, we also add local excitatory and global (all-to-all)
inhibitory connections within the output population. Specification of
excitatory connections follows Equation 1, but with p, and o, replaced
with pp and oy, respectively. The strength of the global inhibitory con-
nections is given by p;, Wp.- We use periodic boundary conditions, i.e.,
aneuron in the training population at position N will make connections
to the neuron at position 1 as well as that at position N—1. It is possible to
learn multiple functions of a given input variable simultaneously: for
each function, one training and one output population is required. For
functions of two variables, the input population is a two-dimensional
array of size NX N. The synaptic time delays are zero for the connections
from the input and training populations to the output population and for
inhibitory connections within the output population, and 2 ms for exci-
tatory connections within the output population. Each cell in the output
population receives excitatory, “background” Poisson input at 1000 Hz
through a synapse with weight wy,. This single high-frequency input is
equivalent to the combined inputs of a large number of lower-frequency
afferents.

Because the input and training populations do not themselves receive
any input, they are modeled simply as spike sources. The output popu-
lation cells are modeled as integrate-and-fire neurons. The membrane
potential of neuron j, V; obeys the following:

d\/f — syn
To gy —Vi(t) + RnI?", (2)
where 7, is the membrane time constant, R , is the membrane resistance
and

D=1 + 2 (@20 + I9(0) + I¥(0) — I2°(0)), (3)

where I}’ is the background noise synaptic current and If-j-(t) (k = {In, Tr,
R, Inh}) are the synaptic currents from the input, training, recurrent
excitatory, and recurrent inhibitory connections. Note that the recurrent
connections are only used for the subset of simulations in which the
training—output connections are not fixed but are subject to plasticity
(see Fig. 9), in which case recurrent connections are necessary for correct
weight-pattern formation. The cell fires an action potential when V;
reaches a threshold value of 1 and is then reset to 0. There is no refractory
period. Excitatory synaptic inputs are modeled as a step change in the
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synaptic current followed by exponential decay, i.e., the excitatory cur-
rents Ifj(t)(k: {In,Tr,Rc}) obey the following:

I~
Texc dt] = - IZ(t) (4)

IZ(t) is incremented by an amount WZ-I;XC after each spike, where W,kj is the

synaptic weight and the value of I is calculated such that a single pre-
synaptic spike with W;‘j = 1 will bring the membrane potential from rest
(zero) precisely to spike threshold (1). This normalization means that the
precise value of R, is unimportant. The background noise current
evolves similarly. Inhibitory synaptic currents follow an a-function-like
time course. The inhibitory current I:j‘h(t) obeys the following:

inh

TinhT’i = _Ii';h(f) + &;(1), (5)

T¢ dft = _gij(t)- (6)

&;jis incremented by an amount W™ by every spike. The value of I™ is
calculated such that a single presynaptic spike with w;, = 1 will bring the
membrane potential from rest (zero) precisely to a membrane potential
of —1.

Use of a direct change in synaptic current rather than a change in
conductance for the synaptic inputs is somewhat less realistic but has the
advantage that the times of threshold crossings can be obtained by suc-
cessive approximations that converge to the true value (Hines and
Carnevale, 2004) rather than by integrating the differential equations.
The former method is much faster than the latter. To test that this sim-
plification did not appreciably affect our conclusions, we repeated some
simulations with conductance-based (excitatory) synapses [the model
described by Song and Abbott (2001)]; we found no qualitative differ-
ence in the formation of the weight pattern. The default value of w,,
used in our simulations was chosen to match approximately the peak
conductance parameter g, used by Song and Abbott (2001). From the
resting membrane potential, their default value of g, .. = 0.02 (in units of
the leakage conductance) produces a depolarization of amplitude 0.233
mV, or 1.2% of the difference between rest and firing threshold. This
amplitude would be somewhat smaller near threshold, because the driv-
ing force would be reduced from 74 to 54 mV. In our model, the default
value of w, . = 0.02 produces a depolarization the amplitude of which is
2% of the difference between rest and threshold. Thus, the current-based
and conductance-based models are comparable, although not identical.

STDP models. In most of our simulations we use the mechanism for
STDP proposed by Song et al. (2000). This takes into account multiple
spike interactions and not just the most recent spikes, with two functions,
P(t) and M(t), for each synapse. P(¢) starts at zero and is incremented an
amount A, by each presynaptic spike. M(#) starts at zero and is decre-
mented an amount A_ by each postsynaptic spike. Between increments—
decrements, P(t) and M(t) decay exponentially toward zero with time
constants 7, and 7_, respectively. When a presynaptic spike occurs, the
synaptic weight is modified according to w —w + w,,, M(t), where w, .
is the maximum possible synaptic weight (for brevity, we henceforth use
w to represent any of the connection weights w,k]) Because M(1) is zero or
negative, this amounts to a depression of the weight. If this would take w
below zero, w is set to zero. When a postsynaptic spike occurs, the syn-
aptic weight is potentiated according to w —w + w, .. P(t). If this would
make w > w,,.., wis set to w,,.. For a single pair of spikes, a presynaptic
spike at time 7,,,, and a postsynaptic spike at time ¢, with no recent
preceding activity, the change in synaptic weight is given by the following
(supplemental Fig. 1A, available at www.jneurosci.org as supplemental
material):

|

The values of A | that we used, 0.01 and 0.001, were in the region of the
value (0.005) determined previously (Song et al., 2000) from experimen-
tal measurements by dividing the amount of potentiation caused by mul-

if tpre < tpost

WmaxA+ exp[(tpre - tpost)/7+] (7)
= tpos( ’

- WmaxA* exp[(tpost - tpre)/T*] lf tpre
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tiple spike pairs by the number of pairs. The ratio A_7_/A T, was taken
as 1.06, as in Song and Abbott (2001), although the precise value of this
ratio is not critical (see supplemental note and supplemental Fig. 6, avail-
able at www.jneurosci.org as supplemental material).

We also consider a model with soft bounds for the synaptic weights,
rather than the hard bounds at zero and w,,,. In this case, w — w +
wM(t) for depression and w — w + (w,,,, — w)P(t) for potentiation,
giving, for a single pair of spikes, the following:

if fre < tpout
lf tpre = tpost ’

AW — {(Wmax - W)A+ exp[(tpre - tposl)/T+]

— WA_ exp[(tyoq — tpre)/T—] ®)

In some simulations, we consider an STDP mechanism that is symmetric,
i.e., whether the change is positive or negative does not depend on the
sign of the interval At between presynaptic and postsynaptic spikes but
only on its magnitude. For short intervals, we have potentiation; for long
intervals, we have depression (supplemental Fig. 1 B, available at www.
jneurosci.org as supplemental material). This rule does not use the P(t)
and M(#) functions, and so only interactions between nearest-neighbor
spikes are considered, as follows:

Ar\?
AW = WapAymn| 1= (] Jexp(=[Ad/m), 9)

where At = 1, = b, Agymm controls the step size for synaptic change,
and 7, and 7, are parameters that control the shape of the weight-change
function f(At) (supplemental Fig. 1 B, available at www.jneurosci.org as
supplemental material). 7, is the interval at which f{At) crosses from
positive to negative, and 7, controls the range of intervals within which
STDP occurs and is analogous to 7, and 7_ in the Song—Miller—Abbott
model (Song et al., 2000). Such a symmetric form for STDP has been
found at GABAergic synapses in hippocampal neurons (Woodin et al.,
2003). The values for 7, and 7, were determined by approximate fitting of
the weight pattern to that obtained with the symmetric rule (supplemen-
tal Fig. 2, available at www.jneurosci.org as supplemental material).

In the Song—Miller-Abbott model (Song et al., 2000), the balance of
potentiation and depression is controlled by theratio A, 7, /A_7_.Inthe
symmetric STDP model, the balance is controlled by the ratio 7/, Ifthis
ratio is greater than \/2, the integral of f(Af) from zero to infinity is
positive, and so potentiation will dominate.

Learning procedure. The input and training neurons generate spikes
according to a Poisson process with a time-varying mean firing rate. The
following procedure is identical to that of Song and Abbott (2001), but
with a different spatial distribution of firing rates. An interval T'is chosen
from an exponential distribution with mean interval 7. A random
location 6 in the input reference frame is chosen from a uniform distri-
bution between 0 and 2. From this, a location f(6) in the training/
desired output reference frame is calculated, where f(+) is the function
that we wish the network to learn, and mapped onto the range 0 to 2.
The mean firing rate for a cell with a tuning curve that is centered at
location O is then the following:

(10)
where
o — { 0 for the input populati(?n ' (1)
f(6) for the training population
Thus R = R, at ® = §. Note that R(*) is a periodic function, i.e., a

neuron with a receptive field centered at one end of the input range will
respond also to inputs at the opposite end of the range. Use of such
periodic boundary conditions avoids the problem of edge effects,
whereby locations at the edge of the input range would be encoded by a
smaller population than locations in the center, although checks showed
that the choice of periodic boundary conditions was not critical for the
model (supplemental Fig. 7, available at www.jneurosci.org as supple-
mental material). The cells fire with rates determined by R(6, ©) for a
time T, and then another interval and a new location are chosen and the
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process is repeated. Spike arrival times may be delayed by a constant
latency. For our default case, the latency was chosen to be the same for the
input and training populations, but the effect of non-zero differences in
latency was investigated (see Results).

For the two-dimensional case, the mean firing rate for an input pop-
ulation neuron at location (0, ®) is as follows:

R(0, &, O, @) = (Rpax — Ruin)exp([cos(8) = 11/07) + Ruyins
(12)
where
§=[(0-0)+ (¢ —P)]" (13)

For the training population neurons, the tuning curve is the same as for
the one-dimensional case.

Position estimation from population spiking activity. The question of
how nervous systems can optimally read out a population code (in our
case, estimate the stimulus location) is the subject of much study (Seung
and Sompolinsky, 1993; Lewis and Kristan, 1998; Deneve et al., 1999).
Because this is not the subject of our current investigation, we chose to
use a simple, non-neural-based method as follows: each spike train was
convolved with a Gaussian kernel with SD 100 ms and area I, to give a
smooth measure of mean firing rate over time. The mean location, y, was
calculated at 10 ms intervals by summing the neuron indices weighted by
the firing rate of that neuron at that time and dividing by the sum of the
firing rates across the population (Georgopoulos et al., 1986), as follows:

N

N
7= Riil 2R, (14)
i=1

i=1

where R; is the firing rate of the neuron and N is the population size. The
periodic boundary conditions introduced a little complexity into this
method, because a peak could be split, one part at one end of the array
and one at the other. The method was therefore modified as follows. For
E=N/2:

o1 N N
y=| X Reit+ > RG-N|/ DR, (15
i=1 1:§+g i=1
whereas for & > N/2:
N
N &5 N
y=| > R-i+ D RGE+N) |/ DR, (16)
N . .
i=g-5+1 i=1 =1

where & is the nearest integer to y. To determine &, every i was tested as a
value of & and the i that gave both the smallest difference | € — i | and the
smallest variance for y was used for &.

Numerical methods. The model was implemented in the NEURON
simulation environment in an event-based framework (Hines and
Carnevale, 2004), with the CVODE integration method and an absolute
tolerance parameter of 0.001. The NEURON code for the model is avail-
able from the SenseLab ModelDB database (http://senselab.med.yale.
edu/SenseLab/ModelDB).

Results
For clarity, we consider a specific example of a coordinate trans-
formation: calculating the position in visual, Cartesian coordi-
nates of the hand on an arm with one or two degrees of freedom,
based on the joint angle(s) obtained from proprioception. The
arm is highly simplified, with two segments of equal length with
free rotation in a plane about each of two joints.

During random arm movement, the network receives input
from both sensory systems and learns the correlations between
these signals at different points in space. After sufficient time, the
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Input Layer
e.g. proprioception

Training Layer
e.g.vision

L 0 L

Horizontal location, x

Firing Rate

0 180 360
Armangle, 1 (degrees)

plastic, aII-to-aII\ ﬁj, topographic

Output Layer
-L 0 L
Predicted location, X’

Figure 1. Network model for approximating functions of one variable. Spatial locations are
represented with a population code. As an example, we consider moving an arm with 1 df and
calculating the position of the end of the arm, in a vision-centered frame of reference, based on
the angle at the joint. Connections are initially all-to-all from the input to output populations,
and the strength of the connections is subject to modification by STDP. Connections from the
training population to the output population are topographic and local in the sense that neu-
rons in the middle of the presynaptic population project only to neurons in the middle of the
postsynaptic population, etc. The strength of these connections is fixed. The inset shows an arm
with 2 df. The one-dimensional case corresponds to ¢» = 0.

visual input is no longer necessary, and the network can calculate
the position of the hand in visual coordinates based only on the
proprioceptive information. The network is shown in Figure 1. It
consists of one population of cells for each input modality and
one for the network output. Each population represents a spatial
variable or location using a population code. The pattern of con-
nections from the visual population to the output population is
fixed and is assumed to have been developed at an earlier stage.
The strengths of connections from the proprioceptive population
to the output population are initially random and subject to
change according to STDP. Full details are given in Materials and
Methods.

Although we focus on a particular example, the network is
capable, in principle, of learning any single-valued function of
one variable. For generality, therefore, we label the three popula-
tions as the training (here vision), input (here proprioception)
and output populations.

Learning spatial transformations

We consider first a one-dimensional coordinate transformation,
which corresponds to an arm with one joint fixed. The function
to be learned is f{6) = sin(0). After <1000 s, an “S”-shaped band
becomes visible in the matrix of synaptic weights (Fig. 2A). As the
training proceeds, connections within this band (henceforth de-
scribed as the S-band) are potentiated, whereas those outside are
depressed. The process converges by ~20,000 s (Fig. 2B). The
final distribution of weights is strongly bimodal, in accord with
the findings of Song et al. (2000). The mean firing rate across the
population changes little over the course of the learning: from 7.0
Hz during the first 10 s to 8.4 Hz after 50,000 s. Despite the small
change in mean firing rate across the population and a reduction
in the total weight of all synapses onto a given cell during the
course of training, there is a large increase in the incidence of
small interspike intervals (ISIs) (Fig. 2C). This is in accord with
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previous findings that STDP tends to reduce spike latency (Song
et al., 2000; Guyonneau et al., 2005).

To test whether this S-shaped pattern of weights does indeed
cause the network to perform the transformation sin(6) (i.e.,
enable the system to predict the location of the hand based only
on proprioceptive information, with no visual input), the train-
inginput was removed (“eyes closed”), the STDP mechanism was
inactivated, and then 6 was swept over the entire range. The
output population does indeed produce a good approximation to
sin(6) (Fig. 2D), although it tends to underestimate near the
extremes (sin(f) = *1). The reasons for this underestimation
were investigated further (see below, Influence of population
tuning curve shape and Fig. 6).

The mechanism for the formation of the bands of potentiated
weights is the potentiation of correlated inputs shown by Song et
al. (2000). Only weights that are activated simultaneously by both
the input population and the training population are potentiated.
Because of competition between synapses (Song et al., 2000),
connections outside the bands are depressed. The center of each
band is defined by those connections that are activated simulta-
neously by the peak of both input and training tuning curves. The
distribution of postsynaptic—presynaptic pair intervals is plotted
in Figure 3 as a function of the distance from the center of the
S-band. Close to the mid-band line, we see an excess of small
intervals between postsynaptic and presynaptic spikes and an ex-
cess of positive-over-negative intervals (Fig. 3, left panel). In the
region of near-zero weight connections, we see the reverse effect:
adeficit of short intervals in general and of short positive intervals
in particular (Fig. 3, right panel). It is the location-dependent
excess—deficit of positive intervals that leads to the formation of
the weight patterns with the asymmetric STDP rule; however, the
even greater relative excess—deficit of short intervals in general
suggests that a symmetric STDP rule would give the same pattern
with a shorter learning time. This proves to be the case, although
the outcome is strongly dependent on the size of the time window
for plasticity, because this controls the balance of potentiation—
depression (supplemental Fig. 2, available at www.jneurosci.org
as supplemental material).

Figure 4 illustrates some of the other functions that can be
learned by the network. For linear functions, the function ap-
proximation is equally accurate for all input values, although the
accuracy decreases as the number of input values that give the
same output value increases. For nonlinear functions, the accu-
racy is poor near the extremes of the output range, particularly for
trigonometric functions. The higher the order of the trigonomet-
ric function, the poorer the accuracy. This is the same phenom-
enon as the underestimation noted two paragraphs previously.

The network performs equally well for coordinate transfor-
mations in two dimensions (Fig. 5), although the time required
for learning to converge is increased.

Influence of population tuning curve shape

We hypothesized that the poorer accuracy of trigonometric func-
tion approximation near the extremes of the function range,
noted above, is attributable to the width of the tuning curves. Our
hypothesis was that for functions that have multiple input values
giving a single output value, the input values compete with one
another, because each is correlated with the training input. The
degree of competition is larger the larger the width of the tuning
curve. The winning input is the one that has the most neighbors,
i.e., the one in the widest part of the band at a given output
neuron index. This can be seen in Figure 6 A. For high values of
Og, the peaks of the S-band are “stunted” (i.e., the peak amplitude
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is smaller and the peak is flatter) compared
with the small-o7, cases. The effect of this is
that the network response at the extremes
of the range has a bias toward the center
(Fig. 6 B). The effect is also larger the closer
together are the weight bands; hence the
deterioration of approximation accuracy
in the series of functions sin(n6) as n in-
creases, seen in Figure 4. For linear func-
tions, competition also exists, but the
width of the weight band is constant across
the function range, and so the effect on
function accuracy is not systematic, al-
though it may increase the noise in the ap-
proximation. This effect is in accordance
with standard results from traditional ra-
dial basis function networks: too large a
basis function width leads to over-
smoothed output functions and too nar-
row a width leads to under-smoothed out-
put functions (Bishop, 1995).

Thus, in general, the smaller the width
of the population tuning curve, the better
the function approximation for nonlinear,
many-to-one functions such as the trigo-
nometric functions. The narrower the tun-
ing curve, however, the higher the input
firing rates required, and there is clearly
a lower limit at the point where the tun-
ing curve is so narrow that it activates
only a single cell. Close to this limit, the
approximation becomes noisy (see the
graphs for o, = 0.01 in Fig. 6A,B and
the plot of approximation error against
oy in Fig. 6C).

Turning from the width to the height of
the tuning curve, the network is robust to
changes in the peak input firing rate (we
tested 15 Hz =< R,,, = 240 Hz) when the
asymmetric STDP rule is used, but it is
much less robust with the symmetric rule
(supplemental Fig. 3, available at www.
jneurosci.org as supplemental material).
The lower limit for R

considerable.

The learning procedure is also robust to differences between
the peak firing rates of the input and training populations. For a
ratio of RIMI8/RIPU j1y the range 0.6 to 1.4, there is almost no

max 18 hard to determine because of the low
rate of learning when there are few spikes. At 5 Hz, a faint S-band
very slowly becomes visible, but the off-band synapses do not
become depressed, so the noise in the transformation would be
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Figure2. Learning to calculate {6) = sin(6). A, Color-scale plot of the matrix of synaptic weights from input population neurons to

output population neurons. Each population consists of 100 neurons. An input of  activates the input population with a peak of activity at
the neuron with index closest to 1006 /2. The training population is activated simultaneously with a peak of activity at the neuron with
array index closest to 100(sin(6) + 1)/2. Initially, the synaptic weights are distributed uniformly and randomly between 0 and w,,. A
training proceeds, the distribution of weights becomes bimodal, with the high-valued weights forming an S-shaped pattem. The pattern
converges by ~20,000 s. Note that the patterns wrap around because of the periodic boundary conditions. B, Color-scale plot of the
development in time of the histogram of synaptic weights, illustrating the formation of a bimodal distribution and confirming the con-
vergence of the distribution. C, 19 distribution in the output population at the beginning and end of the training period. Spikes were
recorded fora 10 s period. ISIs from all cells were pooled. Although the sum of the synaptic weights has been reduced during the training,
there is an increase in the number of small ISIs (high instantaneous firing rate). D, Response of the network to an input that is swept twice
across the entire input range. The grayscale plots show the firing rate (calculated as described in Materials and Methods) of each cell as a
function of time. The red lines show the estimated position calculated from the population activity. The green line is the function sin(6).
Before training, the response of the output population has no dependence on the input. After training, the position estimated from the
population activity closely matches the desired function, although with a small degree of underestimation at the extremes (nearsin(6) =
#1). The reasons for this underestimation are discussed in Results (see Influence of population tuning curve shape).
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discernible change in the weight pattern, and the pattern remains

identifiable, although degraded, for ratios as small as 0.1: a peak
training firing rate of only 6 Hz for the default input R, of 60
Hz. With no activity in the training population, the preferred
input location for a given output neuron is randomly located, as
shown in Song and Abbott (2001), their Figure 2.

The effect of having a non-location-specific baseline input
firing rate, i.e., non-zero R, ;,, is similar to the effect of in-
creasing the background activity in the output population and
is discussed below (see below, Influence of network activity

and connectivity).

Figure 3.  Distribution of intervals At = t,, — t,,. as a function of the distance d of the
postsynaptic—presynaptic pair from the center of the S-band. For a presynaptic neuron with
preferred input location 6;and a postsynaptic neuron representing outputlocationy; (— 1=y,
<1),d =| y; — sin (6,)] /2. The gray line shows the distribution during the first 10 s of
training; the black line shows the distribution between 50,000 and 50,010 s of training. Connections
with small d (those that become potentiated during training) show an excess of intervals with small
At and an excess of positive-over-negative intervals that becomes more pronounced as a result of
training. Connections with large d show a deficit of intervals with small At that again becomes more
pronounced with training, with the deficit being largest for positive At [although initially there is a
small excess at very small (<< 5ms), positive At]. All spike pairs, notjust nearest neighbors, were used
to calculate intervals. The histograms were normalized by the mean number of intervals per bin in the
range At = 1000 ms, summed over all values of d.
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Figure4. Learning to approximate various functions. The left column shows the converged

weight patterns, and the right column shows the position estimates (solid line) compared with
the actual position (dashed line) for a single sweep of the input position across its range of
values. For each function, the range and domain must be mapped onto the range of cell indices
(here from 1 to 100). Note that because of the periodic boundary conditions, the functions
f(x) = nxareactually f{(x) = nxmodulo 1. For functions that can have the same output value for
multiple inputs [such as f{x) = nx, f{6) = sin(n6)], interference between the bands degrades
the pattern as n gets larger. For nonlinear functions, for which the distance between those
inputs that give the same output is not constant, this leads to a significant degradation where
the input values are close together (e.g., at sin(n6) = £1).

Influence of the spatiotemporal structure of learning
The procedure that we use for generating correlated activity
[taken from Song and Abbott (2001)] has a number of drawbacks
as a biologically realistic training—learning procedure. First, it
assumes that all points in the input space are visited with equal
frequency; second, it requires dwell times (i.e., the time that an
input stays in a particular location) that are approximately the
same as the STDP time constants (~20 ms with our default pa-
rameters); and third, it ignores travel time between input loca-
tions. The second and third assumptions may be reasonable for
saccades but not for arm movements, our principal example here.
To test the first point, whether all input points must be visited
with equal frequency, we performed simulations in which the
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Figure 5.  Generalization to two dimensions: training a network to calculate the position of
the end of an arm in Cartesian (“visual”) coordinates based on joint-angle (“proprioceptive”)
inputs. The geometry of the arm is shown in Figure 1, inset. The functions to be learned are x =
Lcos(0) + Lcos(0 + ¢p)andy = Lsin(6) + Lsin(6 + b). A, Grayscale plots showing slices
through the three-dimensional weight tensor. Each slice shows the pattern of synaptic weights
from the two-dimensional input population (representing & and ¢ coordinates) to a neuron in
one of the output populations [representing x (left) or y (right) coordinates]. B, Testing the
two-dimensional network by drawing a square. The square is drawn in a clockwise direction
starting in the top left corner. The four graphs on the left are plots of joint angles, 6 and ¢, and
visual coordinates x and y against time. Dashed lines represent the input values, and solid lines
represent the position estimated from the population activity in the output populations (see
Materials and Methods). The graph on the right is a plot of y- against x-coordinate. The dashed
line represents the theoretical position, and the solid line represents the estimated position.

input angle 6 was chosen from a normal distribution (mean,
180°; SD, 72°). The S-band forms first for synapses from neurons
encoding locations that were most often visited and only slowly
forms for rarely visited locations; however, by ~40,000 s the
entire pattern has formed and stabilized, as for uniform coverage.
In contrast, when the coverage is uniform except for a region that
is never visited (of width 72°), a horizontal band of synapses
retains their original weights, and the output population is un-
able to respond to inputs at that location.

Concerning the second point, the requirement for short dwell
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Figure 6.  Increasing the width of the input tuning curve (the size of the receptive field) by
increasing the parameter o, allows lower peak firing rates but leads to inaccuracies near the
limits of f{ 0). Note that when o, was increased, R,,,,, was decreased proportionally to maintain
the total input constant. 4, Grayscale plots show converged synaptic weight patterns for differ-
ent value of a,. B, Position estimates based on the population activity (solid lines; cf. Fig. 2 D)
compared with the actual position (dashed lines). €, Root mean squared (r.m.s.) difference
between the estimated and actual positions over the two cycles shown in B as a function of .
Note that the worsening of the response when o, is very small is because connections distant
from the S-band are inactivated too infrequently to be depressed by the STDP mechanism. This
worsening could be reduced by increasing the level of background noise in the output
population.

times, Song and Abbott (2001) found that there was a fall-off in
the correlation-induced potentiation as the correlation time (the
mean dwell-time), 7., increased, but that this fall-off was re-
duced considerably by increasing the time constant of synaptic
depression, 7_. We tested how this fall-off affects the formation
of weight patterns and found, as expected from the result of Song
and Abbott (2001), that increasing 7., degrades the pattern se-
verely and ultimately degrades the pattern completely; however,
if a longer time constant (Feldman, 2000), on the same order as
the correlation time, is used for STDP, or if a symmetric STDP
rule is used, the pattern formation is preserved (Fig. 7). The sym-
metric STDP rule is more robust because in those regions where
the input and training inputs are not strongly correlated, the
deficits of both positive and negative small postsynaptic—presyn-
aptic intervals (compare Fig. 3, right panel) contribute to the
dominance of depression, whereas with the asymmetric rule, the
deficit of positive intervals must outweigh the deficit of negative

Davison and Frégnac ¢ Learning Spatial Transformations through STDP

A Asymmetric Symmetric
T.=20ms T =T, T.=20ms
100 |
56 ‘
Teorr =200ms 25
=

Output 100

neuron

Normalised

spike pair count
o o o o
» o @

’bON

200-200 0 200-200 0 200

tpost - tpre (ms)

00 0

Figure7. Learningis sensitive to the decay time constant of the input— output correlations
(the correlation time, ), unless the time constant of the negative arm of the STDP curve
(7_) is changed to match 7. With a symmetric STDP rule, the sensitivity is much less. 4,
Grayscale plots show the converged weight patterns for different values of 7., and _ and for
asymmetricand symmetric STDP rules. The ability of the network to learn the required function
is degraded when the correlation time is increased from 20 to 200 ms and is lost entirely when
the correlation time is increased to 500 ms. This degradation is dependent on the value of 7_,
however, and is much less pronounced for the symmetric STDP rule. B, Distribution of t,,,, —
tore With 7o, = 500msfor 7_ = 20 ms (blackline) or _ = 500 ms (gray line). Theimportant
difference between the two cases is the excess of intervals with small positive values for those
connections withd > 0.2 (seeFig. 3 legend for a definition of d), when 7_ = 20 ms. This excess
isresponsible for the large amplitude synaptic weights outside the S-band seenin A, left panels.

intervals, which is only the case when 7., is small. The shape of
the distribution of dwell times and the individual spike train
statistics do not appreciably affect the weight pattern (for details,
see supplemental note, available at www.jneurosci.org as supple-
mental material).

To address the third point, the instantaneous movement be-
tween input locations, we trained the network with input loca-
tions that were changing smoothly and continuously rather than
jumping from point to point. The input location moved alter-
nately clockwise and counterclockwise, with a constant speed, for
random time periods drawn from a uniform distribution be-
tween 100 and 1100 ms. This input pattern results in successful
training, provided the speed of motion is sufficiently fast. For
7_ = 20 ms, the speed must be =2°/ms; for 7 = 100 ms, a speed
of 0.2°/ms is sufficient. The latter value is similar to the maximum
joint speeds seen in infants during spontaneous arm movements
(Thelen et al., 1993), although more typical values are in the
region of 0.05°/ms (Bhat et al., 2005). For slower movements,
regions in which the rates are correlated but low are potentiated
in addition to the usual S-band of connections with correlated,
high firing rates. The requirement for high speeds is related to
that for short dwell times in the standard, saltatory input move-
ment: inputs must fire together to produce potentiation but then
quickly stop firing to avoid depression. With further tuning of
parameters, it is probable that slower, smooth movement could
give results comparable to saltatory movement; this is a subject
for future study.
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Figure 8. Learning is robust to differences in signal latency between the input and training

signals, provided the difference in latency, A ,,, lies within a band whose upper limit is approx-
imately determined by the correlation time 7, and whose lower limit is determined by both
T,or aNd the negative STDP time constant _ (positive values of A, indicate that the input
signal precedes the training signal). 4, Grayscale plots show the converged weight patterns for
different values of A,,; and for different values of 7_ and 7, (7., = 7_ in all the plots
shown). When the training signal precedes the input signal by a large enough amount, the
inverse pattern is learned. B, Graph showing the normalized difference between the mean
synaptic weight, w, ., within the central S-band (¢ << 0.1; see Materials and Methods for a
definition of d), and the mean weight, w, ¢, within the inverse band (0.4 = d < 0.5),asa
function of A, The desired weight pattern corresponds to positive values of this difference, the
inverse pattern corresponds to negative values, and random connectivity corresponds to values
near zero.

We would expect that the temporal structure of learning will
also interact with the membrane time constant. The effect of the
membrane time constant is rather complex. The optimal value,
given the default parameters, is in the range 10 to 20 ms. Outside
these values, the weight pattern begins to degrade, although, in-
terestingly, after a nadir around 7,,, = 40 ms, the pattern recovers
considerably. The root mean squared positional error (compare
Fig. 6C) is 4.7% of the range at the default 7, = 20 ms, 18.0% at
40 ms, and 6.3% at 400 ms.

We have so far assumed that the input and training signals are
exactly coincidental; however, the latency required for a signal to
travel from peripheral receptors to the region in which coordi-
nate transformations are performed (e.g., the parietal cortex) is
likely to be different for the two modalities. For example, in the
ventral intraparietal area of macaque monkeys, the mean latency
of visual signals is ~86 ms, whereas that of tactile signals is ~31
ms (Avillac et al., 2005). Furthermore, in our example of a mov-
ing arm, tracking eye movements are required to follow the
movement, so the visual input is likely to lag behind the propri-
oceptive. We therefore investigated how robust the learning is to
differences in signal latency between the input and training sig-
nals (Fig. 8).

We define the difference in latency, A, to be positive when
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the input signal precedes (has lower latency than) the training
signal and to be negative otherwise. We found that the upper
limit of the window of A, within which the correct transforma-
tion is learned is approximately proportional to (approximately
three to five times) the correlation time 7,,. The above-
mentioned latency difference found experimentally in macaque
falls within this window. The lower limit is smaller in amplitude
and depends on both 7., and the time constant for the depres-
sion part of the STDP curve, 7_. When both quantities are 100
ms, the limiting value for A, is approximately —30 ms. As the
difference in latency becomes more negative than this, there is
another window in which the reverse weight pattern is learned
(Fig. 8A).

The mechanism for this may be understood with reference to
the histogram of postsynaptic—presynaptic intervals, At (Fig. 3).
Initially, the postsynaptic firing time is determined mainly by
spikes from the training population, because those from the in-
put population have random weights. If the latency difference,
Ay, Is positive (input earlier than training), the peak in the inter-
val histogram is pushed toward positive At, into the potentiation
part of the STDP curve. Therefore, learning will only begin to fail
when the peak of the interval histogram exceeds the correlation
time. In the converse case, in which A, is negative, the histogram
peak is pushed toward negative At, because the training spike
causes an action potential and then the input spike (with longer
latency) arrives. With no difference in latency, there is an excess
of postsynaptic—presynaptic pairs with small positive intervals.
When a sufficient amount of this excess has been pushed into the
depression part of the STDP curve, weights that are normally
potentiated will be depressed. Because of the competitive nature
of the Song—Miller—Abbott (Song et al., 2000) STDP rule, weights
for which there is reduced correlation between inputs will be
potentiated, leading to the observed reversal in the weight
pattern.

Influence of training pathways

Learning the correct pattern of synaptic weights for the connec-
tions from the input population to the output population clearly
requires a topographic pattern of connections from the training
population to the output population; however, the precise
strength and range of these connections are not critical (see sup-
plemental note, available at www.jneurosci.org as supplemental
material), but there is a certain minimum level of input to the
output population from the training population that is required
to mold the weight patterns effectively.

We now asked whether the weight pattern is stable if the train-
ing input is removed altogether but the STDP mechanism is still
active. This is important because the intention is to be able to
predict, for example, the location of the hand based only on pro-
prioceptive signals without visual input. This has straightforward
applications such as being in the dark or in the case of becoming
blind. Must there be an upper boundary to the critical develop-
mental period, after which weights must be frozen, or can plas-
ticity be ongoing?

In fact, the weight pattern is very stable (supplemental Fig. 4,
available at www.jneurosci.org as supplemental material), al-
though the degree of stability depends on the peak step-size of the
weight change (A, and A_). We conclude that differences be-
tween the plasticity rules operating during development and dur-
ing adulthood are not required (nor are they precluded) and that
this mechanism can operate in the adult brain and subserve slow
adaptation. If a completely different training pattern is applied
(consider wearing prism glasses, for example), the originally
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learned weight pattern is quickly forgotten
and then a new one forms.

Up to this point we have made the as- ¢
sumption that the connection weights
from the training population to the output
population (visual synapses, in our exam-
ple) have been determined by an earlier
phase of development and no longer un-
dergo plasticity. We believe that this as- 1
sumption is a reasonable one (see Discus-
sion) but nevertheless examine situations
in which plasticity is ongoing in the train-
ing connections. If we start from a situa-
tion in which the training connections B
have been prespecified, the questions are
whether the preexisting pattern is stable
with the addition of the new modality and
whether the input to output weights de-
velop as desired. Figure 9A indicates that
this does seem to be the case: the diagonal
band undergoes some changes but re-
mains recognizably diagonal.

If both input and training connection
weights start from random values, then re-
current excitatory and inhibitory connec-
tions within the output population (see
Materials and Methods) and larger values
of A, (i.e., 0.1 rather than 0.01) are re-
quired for smooth weight bands to form.
Even then, the connections develop with
an arbitrary phase, i.e., the network maps 1
0 to sin(0 + i), where iy takes a random 1
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value and tends to wander as training con-
tinues (Fig. 9B). If the global inhibitory
weights within the output population are
too weak, then the recurrent excitatory
weights tend to saturate in such a manner
that ¢ precesses, moving always in the
same direction. On the basis of this, we
conclude that it is necessary for the train-
ing pathways (visual pathways, in our ex-

Output neuron 0

w

max

Figure 9.  The effect of making training connections subject to plasticity. Grayscale plots are of the matrix of synaptic weights.
Note that the model was extended with recurrent inhibitory and excitatory connections within the output population for these
simulations (see Materials and Methods). A, A prespecified pattern of training connections remains stable, whereas the input
connections develop as when training connections are fixed. Output to output connections were all weak (w < w,,,/10) and are
not shown. B, From random initial training connections, an S-band forms but its location “wanders” as the training continues. The
grayscale plots show the development (left to right) of the connection matrices from training to output (top row), input to output

(middle row), and recurrent output to output (bottom row) populations. Note that the amplitude of weight changes was increased

ample) to develop first (see Discussion)
but that plasticity mechanisms can remain
active even after this development has taken place.

Influence of plasticity rules

We have shown above that both asymmetric and symmetric
STDP rules can produce the desired weight patterns, although the
symmetric rule is more robust to the temporal structure of the
sensory inputs, whereas the asymmetric rule is much less depen-
dent on the amplitude of the population tuning curve. The pre-
cise amplitudes and time constants of potentiation and depres-
sion are not critical, provided they obey certain conditions (see
supplemental note and supplemental Figs. 5 and 6, available at
www.jneurosci.org as supplemental material); however, the de-
pendence of the amplitude of weight changes on the current
weight is considerably more important. Clearly, the formation of
the banded pattern relies on the bimodal distribution of synaptic
weights produced by the hard boundaries (no dependence of Aw
on w) of the Song—Miller—Abbott (Song et al., 2000) STDP mech-
anism. For soft weight boundaries (linear dependence of Aw on
w) that give a unimodal distribution (Giitig et al., 2003), a banded
pattern also forms, but the modulation of the weight pattern by

for these simulations compared with the other results shown (A,

= 0.1, rather than 0.0 or 0.001).

correlation is much weaker; however, the location calculated
from the population activity still accurately follows the sine
curve, although it is much noisier than with the bimodal distri-
bution (Fig. 10). The combination of a unimodal distribution
with pruning of weaker synapses produces patterns similar to the
hard-boundary mechanism; however, with the default parame-
ters used in our simulations, the threshold for pruning has to be a
substantial fraction (~0.8) of the mean synaptic weight.

Influence of network activity and connectivity

The network behavior is not strongly dependent on the size or
connectivity of the network, provided that the level of activity to
each cell is maintained approximately the same by adjusting
other parameters. For example, a network of 500 neurons per
population in which each input cell connects to 20% of output
cells behaves similarly to a network with populations of 100 neu-
rons in which each input cell connects to all output cells. For
networks smaller than this, increasing the maximum firing rate
R,..x proportionally to the decrease in network size has a similar
effect. The lower limit on network size is dependent on the num-
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Figure 10.  Comparison of “hard” and “soft” limits on synaptic weights. 4, Hard limits (see Materials and Methods). B, Soft
limits. Each panel has three parts, from left to right: grayscale plot showing input— output weight matrix after learning; weight
histogram; firing-rate response to a sweep stimulus (grayscale map), together with population estimate of position (red line). To
show more clearly the continuity of the position estimate, the estimate has been “unwrapped.” It is interesting to note that the
soft-limits weight distribution is still bimodal, although the separation of the peaks is much less. Clearly, hard limits give better
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effect has a complex dependence on
whether the activity is presynaptic or
postsynaptic. Adding background noise to
each postsynaptic cell, adding a non-
location-specific term (R,,;,) to the tuning
curve, increasing the height of the tuning
curve (R,,,,), or increasing the peak syn-
aptic weight (w,,,,) all separately have the
similar effect of depressing off-band
weights toward zero; however, combining
both background noise and nonspecific
input leads to a failure of learning. With
R,in = 10 Hz and low levels of background
noise, the weight band forms as desired. If
the background noise is increased, how-
ever, then off-band weights are not de-
pressed (the opposite to what would be
seen with R, ;, = 0), and the weight pat-
tern appears almost random.

Discussion

The principal conclusion of this study is
that the connectivity patterns required for
performing coordinate transformations
between sensory frames of reference can be
learned in an unsupervised manner, with
the STDP learning rule, based on simulta-

results but are not essential.

ber of input locations that give a similar output (compare Fig. 4),
but the network performs surprisingly well with very few neu-
rons. With N = 20, the network can learn to perform f(6) =
sin(30) about as well as a network of 100 neurons per population
but fails on f(0) = sin(46), whereas the network with N = 100
succeeds.

We chose to use periodic boundary conditions to avoid edge
effects. For problems involving a body-centered coordinate sys-
tem, such boundary conditions are consistent with the physical
situation, because a stimulus could be at any point on a full circle
around the body, although whether such conditions are imple-
mented in the brain in the pattern of connections and how such
connections could be formed are open questions. For problems
involving arm movements, periodic boundary conditions are not
appropriate, because the ranges of joint motion are limited. We
performed simulations with nonperiodic boundary conditions in
which the arrays of neurons were padded with extra neurons with
receptive fields centered outside the input range. With no pad-
ding, the population estimate is inaccurate when the output lo-
cation is near the edge of the array, because there is only half a
tuning curve at the edge. When the padding is 0.2 N cells at each
edge (about half the width of the S-band), there is a little nonspe-
cific activity in the neurons at the edge of the array, but this has
little effect on the population estimate, which is comparable in
accuracy to the network with periodic boundary conditions (sup-
plemental Fig. 7, available at www.jneurosci.org as supplemental
material).

For an asymmetric learning rule with hard bounds on the
weights, increased activity biases the distribution toward the peak
at zero (Song et al., 2000). If there is insufficient activity in the
network, the “off-band” weights are not depressed toward zero. If
there is too much, then all weights are depressed toward zero, and
the band of potentiated weights fades out (supplemental Fig. 8,
available at www.jneurosci.org as supplemental material). The

neous observations of moving stimuli with

two sensory modalities. This adds support

to the hypothesis that basis function net-
works are actually used in biological neural systems [see Pouget
and Sejnowski (1997) for a fuller discussion of the evidence support-
ing the existence of basis function networks in parietal cortex].

Correlation-based learning in spiking models

The idea of using basis function networks to perform coordinate
transformations has been developed extensively (Salinas and Ab-
bott, 1995; Pouget and Sejnowski, 1997; Deneve et al., 2001; De-
neve and Pouget, 2003), but most existing models consider only
the mean firing rate. The principal disadvantage of this approach
is the difficulty in relating the model to underlying biological
mechanisms and hence in constraining it with biological data. In
contrast, an approach that models synaptic conductances and
individual action potentials gives a more direct correspondence
between model parameters and experimentally measurable
quantities and hence allows the model to be more tightly con-
strained by experiments and to make more testable predictions.
An example in this study is the interaction between the experi-
mentally determined time constants of the STDP rule and the
temporal structure of the motion that drives learning (Fig. 7).
Another example is the prediction that position estimation
should be poorer near the limits of the movement range, which is
a direct consequence of the intersynapse competition inherent in
the STDP rule used. One existing report has shown that a basis
function network can be implemented with spiking neurons (van
Rossum and Renart, 2004), but this was shown only for calcula-
tion of the sum of two variables and with synaptic weights set by
hand.

Because the output of a basis function network is a linear
weighted sum of the basis functions, determining the correct
weights requires simply linear regression, calculated off-line or by
using a supervised learning rule; however, neither one of these
methods is available to biological nervous systems. A method that
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uses a Hebbian-like learning rule was developed and analyzed by
Salinas and Abbott (1995). As in our model, the coordinate trans-
formation is learned based on the correlations between randomly
generated inputs and independent measurements of the trans-
formed locations. During the learning phase, however, the input and
output populations are decoupled, and the desired output response
is applied directly to the output population: the input neurons do
not drive the output neurons. In contrast, our model has no need for
a separate training phase with decoupled neurons.

The idea of learning transformations through observation of
randomly generated movements [“motor babbling” (Bullock et
al., 1993)] has been widely used in models of sensorimotor trans-
formations (Kuperstein, 1988; Gaudiano and Grossberg, 1991;
Burnodetal., 1992; Bullock et al., 1993), with weights determined
by error-correcting or generalized operant conditioning meth-
ods. Studies in kittens and infant monkeys have shown that visual
feedback from limb movements is essential in the development of
visually guided reaching (Hein, 1974; Held and Bauer, 1974). For
humans, opposing external forces during spontaneous move-
ments requires sight of the limb in newborns (van der Meer et al.,
1995) but not in 3-month-old infants (Dibiasi and Einspieler,
2004). This also provides support for our finding that visual con-
nections to the coordinate transformation network must develop
before proprioceptive connections. This idea can also be applied
to cross-modal integration as opposed to sensorimotor transfor-
mations, because the random inputs can be generated by an ex-
ternal mechanism rather than by the organism itself. The only
requirement is for two independent measurements of the
location.

Time-scale issues

The strongest influence on the learning behavior of the network is
the interaction of the different time-scales in the model: of the
STDP rule, of the rapidity of change in input location, and of the
membrane time constant. To summarize, for saltatory move-
ment, the mean dwell time at any one location must be on the
same order as the STDP time constant for depression, 7_ (Fig. 7),
although this requirement is considerably relaxed for the sym-
metric STDP rule. Similarly, for continuous motion, the speed
must be sufficiently high that the arm moves a distance approxi-
mately equal to the receptive field size during a time 7_. This is a
strong constraint, which may possibly be eased if the two modal-
ities do not always attend to the same stimulus, e.g., arm move-
ments could be slower if the eyes make saccades to other regions
of the visual field (during which the two modalities are not cor-
related) and only return periodically to observe the hand. The
faster of the modalities would then be the limiting one. In general,
however, we should expect to find either asymmetric STDP with
7_ >> 7, or symmetric STDP in the brain regions that are re-
sponsible for coordinate transformations. If the mismatch be-
tween STDP and movement timescale is too great, further mech-
anisms would be required.

Despite the temporal precision of the STDP rule, the model is
quite robust to differences in response latency between the two
modalities, particularly if the input signal precedes the training
signal, as is found experimentally for tactile and visual signals in
ventral intraparietal cortex in the macaque (Avillac et al., 2005).
Here again, the robustness of the model is increased if 7_ is longer
than 7.

Biological realism of the model
This model uses integrate-and-fire neurons, which are consider-
ably lacking in complexity compared with real neurons. We have
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attempted, however, to set firing rates and excitatory postsynap-
tic potential sizes to biologically realistic values.

Our standard model relies on the training—output synaptic
weights being fixed, and the input—output synapses being subject
to plasticity (although we show that a preexisting pattern of plas-
tic training weights is not appreciably degraded by the addition of
the input connections). There are several cases in which different
classes of excitatory synapses onto a single postsynaptic neuron
have been shown to exhibit such differential plasticity. A classic
example is the different NMDA dependence of commissural—
associational and mossy fiber synaptic plasticity in hippocampal
CA3 pyramidal neurons (Nicoll and Malenka, 1995). It has been
shown more recently that synapses onto hippocampal CA1 inter-
neurons that express group II metabotropic glutamate receptors
(mGluRs) presynaptically exhibit mGluR-dependent long-term
potentiation, whereas those that express group III mGluRs do not
(Lapointe et al., 2004). To our knowledge, differential plasticity at
different synapses has not been shown for postsynaptically ex-
pressed plasticity, although it has been shown that the subunit
composition of AMPA receptors on hippocampal interneurons
can be determined by the afferent identity (T6th and McBain,
1998), which implies that the enzymatic machinery underlying
plasticity with a postsynaptic locus might also be so regulated.

A criticism (van Rossum et al., 2000) of STDP mechanisms
with hard bounds on the synaptic weights, such as that of Song et
al. (2000), is that the resulting bimodal distribution of synaptic
weights does not match the distributions of miniature EPSC am-
plitudes or AMPA receptor densities measured experimentally
(cf. O’Brien et al., 1998), which are unimodal with positive skew.
The validity of our model does not depend critically on a bimodal
distribution of synaptic weights, because a network with soft-
bounded STDP is also able to learn the desired transformation,
albeit with increased output noise. We point out, however, that a
bimodal distribution of weights where the maximum synaptic
weight w,, .. follows a unimodal distribution may be difficult to
discriminate from a unimodal distribution of weights where w,, .
has a single value, because synapses with zero weight [silent syn-
apses (Malenka and Nicoll, 1997)] are likely to be difficult to
detect and hence undercounted experimentally.

We have shown that the appropriate patterns of connectivity
for basis function networks could be learned by using a spike
timing-dependent, local learning rule. We do not make strong
claims regarding in which areas of the brain such networks may
exist. A strong case has been made previously that the response
properties of neurons in the parietal cortex are in excellent agree-
ment with the predictions of a basis function network model for
the specific case of coordinate transformations from retinal to
head-centered coordinates (Pouget and Sejnowski, 1997). The
superior colliculus is another area in which there is strong evi-
dence for sensorimotor—coordinate transformations (Jay and
Sparks, 1984; Stuphorn et al., 2000).

Although we use the transformation from joint angle to visual
coordinates as our principal example, the model we have pre-
sented here is not intended as a detailed model of arm movements
(Baraduc et al., 2001; Joshi and Maass, 2005). In particular, pro-
prioceptive tuning curves appear to be monotonic (Helms Tillery
et al,, 1996) rather than Gaussian as in our model, although two
monotonic tuning curves with opposite slopes can be combined
to give a peaked tuning curve (Salinas and Abbott, 1995).

Additional studies are therefore required to determine
whether the principles elucidated in this study will still apply
when the neuronal and circuit diversity of known cross-modal—
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coordinate transformation areas is included in the model and
when the model is extended to encompass the entire sensorimo-
tor loop.
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