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Food-Induced Behavioral Sensitization, Its Cross-
Sensitization to Cocaine and Morphine, Pharmacological
Blockade, and Effect on Food Intake

Julie Le Merrer and David N. Stephens
Department of Psychology, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom

Repeated administration of abused drugs sensitizes their stimulant effects and results in a drug-paired environment eliciting conditioned
activity. We tested whether food induces similar effects. Food-deprived male mice were given novel food during 30 min tests in a runway
(FR group) that measured locomotor activity. Whereas the activity of this group increased with repeated testing, that of a group exposed
to the runways but that received the food in the home cage (FH group), or of a group satiated by prefeeding before testing (SAT group),
decreased. When exposed to the runways in the absence of food, the paired group was more active than the other groups (conditioned
activity); no activity differences were seen in an alternative, non-food-paired, apparatus. Conditioned activity survived a 3-week period
without runway exposure. Conditioned activity was selectively reduced by the opiate antagonist naltrexone (10-20 mg/kg) and by the
noncompetitive AMPA receptor antagonist GYKI 52466 [1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine hy-
drochloride] (5-10 mg/kg). The D, antagonist SCH23390 [R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-
benzazepine hydrochloride] (15-30 ug/kg) and D, antagonist sulpiride (25-125 mg/kg) reduced activity nonspecifically. A single intra-
peritoneal dose of cocaine (10 mg/kg) or morphine (20 mg/kg) increased activity compared with saline, the stimulant effect being larger
in the FR group, suggesting “cross-sensitization” to these drugs. However, pretreatment with GYKI 52466 or naltrexone at doses that
suppressed conditioned activity in FR animals suppressed cross-sensitization to cocaine. When allowed ad libitum access to food in the
runway, FR mice consumed more pellets in a time-limited test. Thus, many of the features of behavioral sensitization to drugs can be

demonstrated using food reward and may contribute to excessive eating.
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Introduction
When given repeatedly, the stimulant effects of drugs of abuse
increase (Eikelboom and Stewart, 1982; Robinson and Becker,
1986). This phenomenon is known as behavioral sensitization
and may be long lasting. Addiction researchers study behavioral
sensitization as an example of behavioral plasticity associated
with drug abuse, in the anticipation that understanding the neu-
ral mechanisms underlying this form of plasticity may provide
information on other plastic events underlying abuse. One theory
of drug abuse and relapse (Robinson and Berridge, 1993, 2001)
posits that behavioral sensitization occurs because repeated drug-
taking sensitizes transmission in neural pathways that normally
subserve conditioned incentive processes underlying drug seek-
ing and craving.

Many aspects of behavioral sensitization appear to reflect the
establishment of conditioned associations between the uncondi-
tioned stimulant properties of the drug, and the environment in
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which the drug is experienced (Stewart et al., 1984; Vezina and
Stewart, 1984; Stewart and Vezina, 1988; Vezina et al., 1989;
Crombag et al., 1996), so that the environment in which drug has
been experienced itself increases activity even when no drug is
administered (conditioned activity) (Stewart, 1983). It is well
established that environmental stimuli paired with primary ap-
petitive reinforcers enhance locomotor activity (Sheffield and
Campbell, 1954; Bindra, 1968). Because psychostimulant and
opiate drugs are potent rewards (Volkow and Wise, 2005), envi-
ronmental cues associated with them should also increase activ-
ity. Thus, a potential explanation of conditioned activity is that it
reflects the reward-predictive relationship of the environment to
drug, rather than the stimulant-predictive relationship. In this
respect, drug reward would not be expected to differ from natural
rewards.

This conditioning account would be consistent with the par-
allels between behavioral sensitization with other forms of learn-
ing, and synaptic plasticity. Thus, acquisition of behavioral sen-
sitization is blocked by treatments including NMDA antagonists
(Wolf and Khansa, 1991; Kalivas and Alesdatter, 1993; Stewart
and Druhan, 1993) and protein synthesis inhibitors (Karler et al.,
1993) that block long-term potentiation and learning. Further-
more, because dopamine by its action at D, receptors facilitates
synaptic plasticity (Beninger and Miller, 1998; Nestler, 2001),
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psychostimulant-induced increases in synaptic dopamine may
facilitate the formation of particularly strong conditioned associ-
ations between the reinforcer and the environment.

The purpose of the present study was to test whether food, a
natural reward, could support behavioral sensitization in mice.
We monitored the locomotor activity of food-deprived mice in
runways in which they were exposed daily to sweetened pellets,
and compared it with that of animals placed daily into the run-
ways but in the absence of pellets (given later in the home cage),
or exposed to pellets in the runways but satiated 30 min before
testing. Expression of food-induced conditioned activity was
then tested for context specificity and longevity, and the involve-
ment of dopaminergic, opioid, and AMPA glutamatergic mech-
anisms was assessed. Cross-sensitization to the stimulant effects
of cocaine and morphine was tested, as well as the effects of
naltrexone, 1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-
5H-2,3-benzodiazepine hydrochloride (GYKI 52466), and R(+)-
7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1 H-
3-benzazepine hydrochloride (SCH23390) on cross-sensitization
to cocaine. Finally, we evaluated the ability of a food-paired con-
text to elicit increased food intake in previously conditioned
animals.

Materials and Methods

Subjects

Subjects were male mice (C57BL/6 X SV129) bred in the Department of
Psychology at the University of Sussex and weighed 25-30 g at the begin-
ning of the experiments. They were housed in groups of two or three per
cage on a 12 h light/dark cycle (lights off at 7 P.M.), at a temperature of
19-21°C and 50% humidity. One week before the acquisition of food-
induced sensitization started, the mice were food restricted to reduce
their body weights to ~90% of their free-feeding weight. Water was
available ad libitum. All experiments were approved by the institutional
ethics committee and were performed under United Kingdom legislation
on animal experimentation [Animal (Scientific Procedures) Act, 1986].

Test apparatuses

Locomotor activity was assessed in polypropylene circular runways (in-
ternal diameter, 11 cm; external diameter, 25 cm; height, 25 cm)
equipped with eight infrared photobeams spaced at regular intervals and
positioned 2 cm above the floor (Mead and Stephens, 1998). The number
of beam crossings after three consecutive breaks in one direction was
used as a measure of forward locomotion. Context specificity was tested
in rectangular metallic boxes [19 cm (width) X 45 cm (length) X 20 cm
(height)] equipped with three parallel horizontal infrared beams posi-
tioned 1 cm above the floor and spaced at regular intervals along the
longitudinal axis. Forward activity was scored as the number of times an
animal broke two consecutive beams.

Experiment 1: acquisition of food-conditioned

locomotor sensitization

Each daily session consisted of a preexposure run of 10 min (run A),
followed by a 5 min break during which the animals were replaced in
their home cages. The mice were then returned to the locomotor runways
for 20 min (run B). This protocol was designed to mimic a classical
protocol of behavioral sensitization to drug, in which the animals are first
habituated to the activity cages/runways during a first run, and then
injected with the drug or its vehicle and returned to the activity apparatus
for a conditioning run.

Three separate groups of 10 animals were constituted. In the first
group (food in the runways, hungry: FR), the animals received 20 sweet-
ened pellets (20 mg each; Noyes Precision pellets, Formula P; Research
Diets, New Brunswick, NJ) scattered in the runways when returned for
run B. In the second group (food in the home cage, hungry: FH), the mice
were exposed to the runways as described for the FR group, except that
no sweetened pellets were available in the apparatus. Twenty sweetened
pellets per animal were given in the home cage 45 min after the end of the
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behavioral session. A third group (food in the runways, satiated: SAT)
was as the FR group, including the availability of sweetened pellets, ex-
cept that the animals were satiated 30 min before the behavioral session
by receiving the same sweetened pellets ad libitum in their home cage. All
animals were fed with standard laboratory chow in the afternoon (at 3—4
P.M.) at varying time intervals (6090 min) after testing, to limit possible
association between testing and chow feeding. Animals were not habitu-
ated to sweetened pellets before the beginning of the experiments to
avoid interference with subsequent conditioning. FR animals ate all pel-
lets in the runways after two to three sessions.

Experiment 2: context specificity of the food-induced conditioned
locomotor response

At the end of the acquisition phase, the animals of the FR and the FH
groups were either exposed to the runways or to the rectangular activity
boxes. The protocol was identical as for acquisition sessions, except that
forward activity was measured in the absence of sweetened pellets (con-
ditioned activity). After full recovery of their performance level (three to
four acquisition sessions), the animals were retested in a counterbalanced
order.

Longevity of the food-induced conditioned locomotor response
After three to four acquisition sessions, FR and FH animals were retested
for conditioned activity in the locomotor runways (day 1). No sweetened
pellets were given. Next session was a normal acquisition session, sweet-
ened pellets being available. Then daily sessions were suspended for 3
weeks, the animals remaining under food deprivation. On day 22, the
mice were reexposed to the runways in the absence of sweetened pellets to
evaluate conditioned activity.

Experiment 3: effects of dopaminergic antagonists on the
expression of food-induced conditioned activity

Two groups of 9-10 naive animals were constituted (FR and FH groups).
At the end of the acquisition phase, these animals were injected with the
D, receptor antagonist SCH23390 (at 15 or 30 ug/kg, i.p.) or vehicle
following a Latin square design; no sweetened pellets were given. The
animals were injected 5 min before run A, to assess possible effects on
anticipatory activity. After each drug testing session, the animals were
submitted to three to four normal acquisition sessions (sweetened pellets
available) to allow full recovery of their performance level. Two more FR
and FH (n = 7-9) groups were constituted from naive animals to test the
effects of the D,/Dj; receptor antagonist sulpiride (25, 75, or 125 mg/kg)
versus vehicle, using the same experimental design, except that sulpiride
was injected 30 min before run A.

Experiment 4: effects of opiate and AMPA receptor antagonists on
the expression of food-induced conditioned activity

The FH and FR animals from the longevity experiment were successively
injected with the nonselective but long-lasting opiate antagonist naltrex-
one (10 and 20 mg/kg, i.p.) or vehicle, and the AMPA antagonist GYKI
52466 (5 or 10 mg/kg, i.p.) or vehicle, following a Latin square design; no
sweetened pellets were available during run B. Naltrexone was adminis-
tered 30 min before run A; GYKI 52466 was injected immediately before
run A because of its short half-life. After each drug testing session, the
animals were submitted to three to four normal acquisition sessions to
allow full recovery of their performance level.

Experiment 5: effects of cocaine and morphine challenge injection

Two groups of 10 naive animals were constituted: an FR group and an FH
group. At the end of the acquisition phase, the animals received either a
challenge injection of cocaine (10 mg/kg, i.p.) or a vehicle (saline) injec-
tion immediately before run B; no sweetened pellets were given. Run B
lasted only 10 min. After full recovery of their performance level (three to
four sessions), the animals were retested in a counterbalanced order.
Similarly, two more groups of eight FR and eight FH animals were con-
stituted to test the effects of a morphine challenge injection. At the end of
the acquisition phase, the animals received either morphine (20 mg/kg,
i.p.) or vehicle (saline) injection 15 min before run A; no sweetened
pellets were given. Run B lasted 10 min. After full recovery of their per-
formance level, the animals were retested in a counterbalanced order.
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sequent one-way ANOVAs with session as the
within-subject factor were calculated for each
group to examine changes in activity over
sessions.

Experiment 2. Differences in locomotor ac-
tivity between FR and FH groups in different
contexts were analyzed using Student’s ¢ test for
independent samples. Concerning longevity
experiment, data were analyzed using two-way
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Experiments 3 and 4. Data over different
treatment conditions were analyzed using two-
way ANOVAs with group (FR, FH) as the
between-subject factor, and dose as the re-
peated measure. Subsequent one-way ANO-
VAs with session as the within-subject factor
were used to examine dose-dependent changes
in activity over sessions.
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Figure 1. Acquisition of food-induced conditioned activity. Repeated daily exposure (14 sessions) to the locomotor runways

resulted inincreased forward activity (means == SEM) during run A (4) and run B (B) in hungry animals receiving sweetened pellets
in the apparatus (FR) (n = 10) compared with hungry animals receiving sweetened pellets in their home cage (FH) (n = 10) and
animals satiated with sweetened pellets available ad /ibitum 30 min before testing (SAT) (n = 10). Allocating the activity counts
to bins of 5 min over the last four sessions (means = SEM) indicated that locomotor activity increased by the end of run B in FH
animals repeatedly exposed to the runways (C), justifying for a separate analysis of the first 5 min of run B (D) (*p << 0.05; **p <

0.01, ANOVA followed by Newman—Keuls post hoc analysis).

Modulation of cocaine effects by AMPA, opiate, or dopamine D,
receptor antagonists

FR and FH animals previously treated with naltrexone and GYKI 52466
were used in this experiment. After three to four acquisition sessions,
they received either GYKI 52466 (10 mg/kg, i.p.) before run A followed
by cocaine (10 mg/kg, i.p.) before run B, or vehicle (saline) before run A
followed by cocaine before run B; no sweetened pellets were given. After
full recovery of their performance level, the animals were retested in a
counterbalanced order. Then, they were retested in the same condi-
tions, but receiving either naltrexone (20 mg/kg) or SCH23390 (30
png/kg) instead of GYKI 52466. GYKI 52466 and SCH23390 were
injected immediately before run A, and naltrexone was administered
30 min before run A.

Experiment 6: ability of food-paired environment to

facilitate eating

FR and FH animals previously treated with sulpiride were tested in the
same experimental conditions as during acquisition sessions, except that
run B lasted 5 min only and that 80 sweetened pellets were then available.
Forward activity was monitored during run A and run B. The amount of
pellets available for each mouse was weighed before and after run B
(taking into account any spillage). Food intake per mouse was expressed
either in grams or as a percentage of the animal’s body weight.

Drugs

Cocine hydrochloride, SCH23390, naltrexone (Sigma, Poole, UK), and
morphine hydrochloride (McFarland Smith, Edinburgh, UK) were dis-
solved in sterile 0.9% saline and injected intraperitoneally in a volume of
10 ml/kg. (*)Sulpiride (Tocris, Avonmouth, UK) as well as the AMPA
antagonist GYKI 52466 (IDR, Budapest, Hungary) were dissolved in a
small volume of hydrochloric acid (0.1 m), diluted with sterile 0.9% saline
to final concentration and brought to pH 6.5-7 with NaOH (1 m).

Statistical analyses

Experiment 1. Data were analyzed using two-way ANOVAs with group
(FR, FH, SAT) as the between-subject factor, and session as the within-
subject factor. When a statistically significant effect was found, post hoc
analysis was performed by using the Student-Newman—Keuls test. Sub-

Experiment 5. Data over different treatments
were analyzed using two-way ANOVAs with
group (FR, FH) as the between-subject factor,
and treatment or pretreatment as the repeated
measure.

Experiment 6. Differences in food intake be-
tween FR and FH groups in different contexts
were analyzed using a Student’s ¢ test for inde-
pendent samples.

Results

Experiment 1

Mice were allowed to explore circular run-
ways for 10 min (run A) before being removed briefly to allow
sweetened pellets to be placed in the runway, and were then re-
turned (run B). As shown in Figure 1A, repeated daily exposure
to food in the runways during run B over 14 sessions led to a
persistent high level of locomotor activity during run A (antici-
patory activity) in the group that received food in the runway
while hungry (FR group), but not in mice that received food in
the home cage (FH) or mice that were satiated by feeding before
placing in the runway (SAT) (group effect: F(, 5) = 6.53, p <
0.01; sessions effect: F; 335 = 3.39, p < 0.0001). Over the 14
sessions, activity was higher in the FR group than in both FH and
SAT groups ( post hoc, p < 0.01), attributable to significant de-
crease of activity across sessions in FH (F(,5 ;,7) = 2.93; p < 0.01)
and SAT (F(;3,04) = 2.15; p < 0.05) groups, but not in the FR
group (F5,,7) = 1.37; NS).

Similarly, giving sweetened pellets in the runways also resulted
in increasing locomotor activity during run B in the FR group,
whereas activity decreased in FH and SAT groups (group effect:
F56 = 8.00, p < 0.01; sessions effect: F(;5334) = 3.53, p <
0.0001; G X S interaction: F,4 335) = 3.99, p < 0.0001) (Fig. 1B).
Over the course of training, activity was higher in the FR group
than in both FH and SAT groups ( post hoc significance vs FH
group: p < 0.05; vs SAT group: p < 0.01), reflecting a significant
increase across sessions in the FR group (F(;5,,7) = 3.12; p <
0.001), most of which occurring after three to five sessions, but a
decrease in FH (F(,3 1,7, = 6.21; p < 0.0001) and SAT (F;5 104) =
3.70; p < 0.0001) groups.

The time course of locomotor activity during run B in animals
repeatedly exposed to the runways was assessed by expressing
activity counts in bins of 5 min over the last four sessions (11-14)
(Fig. 1C). Activity was higher in FR animals than in FH and SAT
animals (group effect: F(, .5, = 7.29; p < 0.01), with a general
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Figure2.  Context specificity and longevity of food-induced conditioned activity (means +
SEM). When tested in the runways in the absence of sweetened pellets, animals given repeated
sweetened pellets presentations in this context (FR) (n = 10) displayed higher locomotor
activity than animals given pelletsin their home cage (FH) (n = 10), during the first 5 min of run
B (A, left) (*p << 0.05, **p < 0.01, Student’s t test). When tested in a different context (4,
right), FR animals were not significantly more active than FH animals. Note that the scales are
different. The difference of activity observed between FR (n = 9) and FH (n = 10) animalsin the
runways at day 1 (D1) persisted over 3 weeks [until day 22 (D22)] of interruption in daily
exposure to the apparatus (B) (*p << 0.05; **p << 0.01, Student’s  test).

tendency to increase by the end of the run (time effect: F, ,) =
7.01; p < 0.001). However, such a tendency reached significance
only in FH animals (F; ;) = 5.25; p < 0.01), and not in FR
(F(3,27) = 2.61; NS) nor SAT animals (F;,,) = 1.23; NS). The
most significant differences between FR and FH/SAT groups
were seen during the first 5 min of run B (F,,, = 10.28; p <
0.0001), despite the time needed by FR animals to eat the sugar
pellets (all pellets were eaten in ~3—4 min). Taking this result
into consideration, we narrowed statistical analysis to data from
the first 5 min of run B (Fig. 1 D). FR animals, but not FH or SAT
animals, displayed a significant increase in their locomotor activ-
ity over 14 sessions (most of the increase occurring in three to
four sessions) when sweetened pellets were available during run B
(group effect: F, 56y = 8.52, p < 0.01; sessions effect: F(,; 334) =
5.95, p < 0.0001; G X Sinteraction: F,¢ 535, = 3.80, p < 0.0001).
Again, activity was higher over the 14 sessions in the FR group
than in FH and SAT groups ( post hoc significance, p < 0.01).
Subsequent one-way ANOVA indicated a significant increase in
activity in the FR group over sessions (F3;,,) = 4.80; p <
0.0001) but a significant decrease in FH (F3,,7) = 4.86; p <
0.0001) and SAT (F ;3 104y = 4.07; p < 0.0001) groups.

Experiment 2
When tested in the circular runways in the absence of sweetened
pellets, animals from group FR were more active than FH animals
duringrun A (t,4) = 2.72, p < 0.05; activity = SEM: FH, 33.90 =
5.84; FR, 80.60 * 16.25), during run B (¢, = 3.39, p < 0.01;
activity = SEM: FH, 28.10 * 13.86; FR, 152.60 = 34.02), and,
more specifically, during the first 5 min of run B (¢(,5, = 4.02; p <
0.01) (Fig. 2A). When tested in a different context (rectangular
activity boxes) not previously paired with food, and in the ab-
sence of sweetened pellets, FR animals did not differ from FH
animals in forward activity during run A (¢,5, <1.63, NS; activ-
ity = SEM: FH, 24.10 = 4.25; FR, 44.80 * 11.77), run B (f4) =
1.48,NS; activity = SEM: FH, 39.30 = 8.74; FR, 72.70 * 20.87) or
during the first 5 min of run B (¢,5, = 1.34, NS) (Fig. 2A).
When runway training was paused for 3 weeks, an increase in
locomotor activity during run A and run B was observed in both
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groups of animals, but FR animals continued to be more active
than FH animals (activity = SEM: run A, day 1, FH, 43.10 £ 7.98;
FR, 80.11 * 13.08; day 22 FH, 64.10 * 12.93; FR, 156.00 * 39.74;
run B, day 1, FH, 39.10 = 13.34; FR, 170.67 = 43.26; day 22, FH,
110.40 = 19.91; FR, 228.89 * 68.90). Two-way ANOVAs with
group and testing day as factors revealed significant main effect
of group (F(, ;) = 6.61, p < 0.05; F(, ;) = 5.67, p < 0.05, re-
spectively) and testing day (F(, ,,) = 8.28,p < 0.05; F, ;,, = 8.02,
p < 0.05, respectively) with no significant interaction. In con-
trast, interruption had no significant effect on activity during the
first 5 min of run B, FR animals remaining more active than FH
animals (group effect: F(, ;) = 8.19, p < 0.05; testing day effect:
F.,7 = 2.17,NS) (Fig. 2B).

Experiment 3

Pretreatment with SCH23390 had no effect on locomotor activity
during run A (group effect: F,,, = 0.90, NS; dose effect:
F(;.34) = 0.86,NS). FR animals were more active than FH animals
during run B (group effect: F; ;,y = 5.17, p <0.05), a pattern that
was not modified by SCH23390 injections (dose effect: F, 5,y =
2.06, NS) (Table 1). This was attributable to the absence of
SCH23390 effect in the FR group (F,, 15, = 0.32; NS), whereas a
decrease of activity was observed in the FH group (F, 4, = 6.20;
p < 0.01). Focusing on the first 5 min of run B (Fig. 3A), FR
animals were again more active than FH animals and SCH23390
injections failed to suppress this difference (group effect: F, ,,, =
16.51, p < 0.001), although at the highest dose it tended to reduce
locomotor activity (dose effect: F, 5,y = 3.60, p < 0.05). This
effect, however, did not reach significance in either the FR
(Fi2.16) = 2.11;NS) or the FH (F, ;) = 2.65; NS) group.

Although increasing doses of sulpiride reduced activity in all
mice during run A, FR animals remained more active than FH
animals (group effect: F, ;) = 6.02, p < 0.05; dose effect:
F3,42) = 8.32, p < 0.01). Likewise, FR animals displayed higher
locomotor activity during run B (group effect: F, ;) = 11.72,p <
0.01), and sulpiride pretreatment, although reducing activity
with increasing doses, had no significant effect on this difference
(dose effect: F; 4,y = 4.67,p < 0.01) (Table 1). Finally, during the
first 5 min of run B only, FR mice were more active than FH mice
(group effect: F(; 14 = 7.65, p < 0.05), and sulpiride reduced
locomotor activity in a similar way in both groups (dose effect:
Fis.4) = 4.86, p < 0.01) (Fig. 3B).

Experiment 4

Naltrexone pretreatment reduced locomotor activity during run
A, FR animals failing to be significantly more active than FH
animals (group effect: F; 14y = 2.02, NS; dose effect: F, 5, =
6.82, p < 0.01). In contrast, FR animals displayed higher activity
than FH animals during run B (group effect: F; 14y = 7.58, p <
0.05), a difference that naltrexone tended to suppress (dose effect:
F;35) = 1.72,NS) (Table 1). As shown in Figure 3C, FR animals
were more active than FH animals during the first 5 min of run B
(group effect: F; 1) = 11.36, p < 0.01). Naltrexone specifically
reduced conditioned activity in FR animals, without affecting
locomotor activity in FH animals (dose effect: F, 5,, = 5.74,p <
0.05; G X D interaction: F, 5,y = 6.09, p = 0.01). Subsequent
one-way ANOVA indicated a dose-dependent decrease in activity
in FR animals (F(, 4 = 6.11; p < 0.05) but no effect in FH
animals (F, ;) = 0.90; NS).

Treatment with the AMPA antagonist, GYKI 52466, tended to
decrease locomotor activity in both groups during run A (dose
effect: F(, 3,y = 3.02, NS), FR and FH animals displaying similar
levels of activity (group effect: F; ,;y = 1.37, NS). GYKI 52466
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Table 1. Effects of SCH23390, sulpiride, naltrexone, and GYKI 52466 on food-induced conditioned activity

(means = SEM) measured during run A and run B (20 min)
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during the first 5 min of run B (Fig. 3D),
without modifying locomotor activity in

Forward activity during run A

Forward activity during run B

FH animals (group effect: F, ;) = 5.23,

p < 0.05; dose effect: F, 5,y = 10.30, p <

Group Group
) 0.001; G X D interaction: F, 5,y = 6.43,
Pharmacological treatment  Dose (mg/kg) ~ FH FR FH FR p < 0.01). Subsequent one-way ANOVA
SCH23390 0 378 £1213 5167 =1345 7650 +1885 12411+3583  indicated a significant dose effect of GYKI
0.015 42.50 = 7.85 58.89 = 17.28  58.10 = 20.26  125.89 = 45.35 52466 in FR animals (F(z,ls) =873p <
0.03 65.33 = 19.84 51.10 =£12.20  10.00 = 3.85 88.44 + 40.69 OO]) but no effect in FH animals (F(2,16) =
Sulpiride 0 BA 2035 1682273063 62001283 1994372 138, NS).
25 92.14 = 28,65  148.22 £ 2555  60.14 = 1559  210.67 = 47.23
75 4086+ 1294 11022 +2570 4029+ 1527 13822 =+ 24.98 .
125 6294733 68891142 248+ 1242 12533 = 2495 ?’(‘)P;rsltm;ﬁ;ier the behavioral sensitira
Naltrexone 0 67.50 = 2297 10212 £23.40 3030 = 12.44  145.00 = 52.1 . P
10 M80+013  5925+1374 3620=901 107.12=3041  ton tofood showed cross-sensitization to
2 21805919 4050+ 1404 3230 +1258 5925+ 1594  cocaine, we injected cocaine immediately
GYKI 52466 0 3360 =680 86783194 4570 +1833 167.55 = 6806  before run B (Fig. 4A). After saline injec-
5 53.90 + 6.34 79.56 =29.61 2810 = 1089 13489 +47.13  tion and in the absence of sweetened pel-
10 4130 £ 634 3744888  7.00*3.26 722236 lets, animals from the FR group showed
increased activity during run B (10 min)
relative to FH mice (conditioned activity;
A B tas) = 2.15, p < 0.05); injection of cocaine enhanced forward
2 604 * -O-FH 2 75- activity, when compared with saline injection, in both groups,
s - * =T z = but the increase in activity after cocaine was higher in the FR than
2 2 % & the FH group. A two-way ANOVA with group (G) and drug (D)
g = 401 * . s = 50 * as factors revealed significant effect of group (F; 4y = 9.46; p <
T E TE * 0.01) and drug treatment (F, 14y = 23.90; p < 0.001), with a
g ks 20- g ok 25- significant G X D interaction (F, 4, = 6.18; p < 0.05).
5@ < Cross-sensitization to morphine was assessed by injecting
= =) §\Q/§ = 6 morphine 15 min before run A (Fig. 4 B). Forward activity was
0- 0- increased by morphine pretreatment in FR and FH animals dur-
S — T T 1 ing run A (drug effect: F(; ,) = 10.93, p < 0.01), with no differ-
0 15 30 0 25 75125 encebetween groups (group effect: F, ,,, = 0.11, NS; saline FH,
SCH 23390 Sulpiride 62.62 * 16.49; FR, 87.50 = 25.98; morphine FH, 210.62 * 40.10;
C (ng/Kg) D % (mg/Kg) FR, 219.50 * 80.34). During run B, morphine challenge en-
2 60 * 2 80- * hanced activity in both groups when compared with saline (drug
E’ - ? = effect: F, 14 = 5.10, p < 0.05), and activity remained higher in
- é £ é 60- FR animals than in FH animals (group effect: F(; ;,y = 21.55,p <
& 2 40 * g = 0.001).
TE TE 40 The participation of food-conditioned activity in cross-
2 o 20- § b sensitization to cocaine effects was tested by pretreating the ani-
3 £ s £ 204 mals with GYKI 52466 and naltrexone, at doses that were shown
= &= = = to block conditioned activity in previous experiments, or
0- 0- SCH23390, which, even at a dose that decreased globally locomo-
— 71— 1 tor activity, was not able to suppress conditioned activity. Prein-
0 10 20 0 5 10 jection of vehicle or GYKI 52466 had no effect on activity during
Naltrexone GYKI 52466 run A, FR animals failing to be more active then FH animals
(mg/Kg) (mg/Kg) (pretreatment effect: F(; ;s, = 0.23, NS; group effect: F(, ;) =
0.23, NS; activity = SEM: saline FH, 38.20 * 11.01; FR, 63.87 =
Figure 3.  Effects of SCH23390 (), sulpiride (B), naltrexone (C), and GYKI 52466 (D) on  24.44; GYKI 52466 FH, 51.10 = 5.15; FR, 37.25 * 7.54). During

food-induced conditioned activity (means = SEM). SCH23390 and sulpiride failed to suppress
food-conditioned response during the first 5 min of run B in animals previously exposed to
sweetened pelletsin the runways (FR) (n = 9 per drug) compared with animals receiving sugar
pellets in their home cage (FH) (n = 7-10 per drug). In contrast, food-induced hyperactivity
was completely inhibited after naltrexone or GYKI 52466 pretreatment in FR animals (n = 8 -9
per drug), at doses (20 and 10 mg/kg, respectively) that had no effect on basal activity in FH
animals (n = 10 per drug) (*p << 0.05, **p < 0.01, Student’s ¢ test to compare FH and FR
groups for each dose).

reduced locomotor activity in both groups during run B, but this
decrease was more pronounced in FR than in FH animals (group
effect: F, ,,, = 4.06,NS; dose effect: F(, 55, = 9.10,p < 0.001; G X
D interaction: F, 3,y = 3.73, p < 0.05) (Table 1). GYKI 52466
injections specifically reduced conditioned activity in FR animals

run B, pretreatment with GYKI 52466 before the cocaine chal-
lenge completely suppressed the difference in activity observed
after vehicle pretreatment between FR and FH animals (pretreat-
ment effect: F, ) = 8.52, p = 0.01; group effect: F, |, = 8.02,
p < 0.05; P X G interaction: F( ;5 = 11.07, p < 0.001) (Fig. 4).
No effects of vehicle versus naltrexone pretreatment or FR versus
FH group were observed in the animals during run A (pretreat-
ment effect: F, ;) = 1.03, NS; group effect: F, ;) = 1.18, NS;
activity = SEM: saline FH, 28.20 = 7.24; FR, 58.50 * 28.31;
naltrexone FH, 27.90 = 8.91; FR, 33.38 = 8.31). Duringrun B, FR
animals pretreated with naltrexone before cocaine challenge
failed to display higher activity than FH animals as observed after
vehicle pretreatment (pretreatment effect: F(, 5y = 4.48, p =
0.05; group effect: F(; 15y = 7.30, p < 0.05; P X G interac-
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tion: F(; 14 = 7.56, p < 0.05) (Fig. 4). Fi-
nally, SCH23390 pretreatment reduced
the hyperactivity observed in FR animals
compared with FH animals during run A
(pretreatment effect: F(, ;o) = 13.38, p =
0.05; group effect: F(; 14 = 4.00, NS; P X
G interaction: F(, ;) = 5.77, p < 0.05; ac-
tivity = SEM: saline, FH, 38.20 = 9.05; FR,
111.87 % 30.67; GYKI 52466 FH, 25.00 =
4.13; FR, 48.12 * 25.86). However, during
B, although SCH23390 reduced the loco-
motor response to cocaine in both groups,
it failed to suppress the difference of activ-
ity observed between FR and FH animals
(pretreatment effect: F; ;5) = 18.46, p <
0.001; group effect: F, 4 = 7.77, p <
0.05; P X Ginteraction: F; ;5 = 4.05, NS)
(Fig. 4).

Experiment 6

The ability of the runways to elicit food
intake was assessed in FR and FH animals
by giving them access to 80 sweetened pel-
lets during a 5 min run B. Activity during
both runs A and B was monitored, and the
total amount of sweetened pellets eaten
was measured. Activity during run A was
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Figure4. Effects of a challenge cocaine (A) or morphine (B) injection on food-induced conditioned response (means + SEM).

Cocaine was injected immediately before run B; morphine was administered 15 min before run A. Cocaine and morphine increased
locomotor activity in all animals; however, their stimulant effect was markedly potentiated in food-conditioned animals (FR) (n =
8-10), compared with controls (FH) (n = 8 —10). Effects of pretreatment with GYKI 52466 (C), naltrexone (D), or SCH23390 (E) on
cross-sensitization to cocaine. GYKI 52466 injected immediately before run A or naltrexone injected 30 min before run A sup-
pressed cross-sensitization to cocaine in FR animals (1 = 9), and activity was not different from FH animals (n = 7). SCH23390
reduced the stimulant effects of cocaine but failed to suppress the difference of activity between FR and FH animals (*p << 0.05,

higher in FR animals than in FH animals
(tag = 2.34, p < 0.05; activity + SEM:
FH, 88.14 £ 12.94; FR,207.44 * 49.33). In
contrast, activity during run B (5 min), when sweetened pellets
were available ad libitum, was significantly higher in FH mice
than in FR mice (¢,,) = —4.85, p < 0.0001; activity = SEM: FH,
24.00 * 3.30; FR, 7.78 = 1.49). Lower activity in FR animals was
attributable to their significantly higher intake of sweetened pel-
lets than FH animals, as expressed in grams (t,,) = 2.70, p < 0.05;
amount consumed = SEM: FH, 0.78 = 0.1; FR, 1.08 = 0.03) or as
a percentage of their body weight (¢,,,, = 3.58, p < 0.01; intake
ratio = SEM: FH, 3.05 *+ 0.45; FR, 4.77 = 0.17).

Discussion

In the present study, food-deprived mice, repeatedly exposed to
palatable food in a specific context, displayed progressive and
persistent increases in locomotor activity in that context. In con-
trast, animals receiving the food in their home cage, or animals in
which the rewarding properties of the food were previously de-
valued by satiation, showed a decrease in locomotor activity after
repeated exposure to the same context. These data resemble the
development of behavioral sensitization to repeated intermittent
exposure to drugs of abuse such as cocaine. After sensitization,
placing mice in the food-paired environment, even in the absence
of food, resulted in heightened activity. Notably, the amplitude of
both the anticipatory response (during run A), and conditioned
hyperactivity were greatest when the FR animals were placed in
the same context as that in which they received the repeated food
pairings. No significant difference in activity between groups was
observed in a different, unconditioned environment.

To our knowledge, our results are the first report of locomotor
sensitization to palatable food in rodents. A previous study (Schr-
oeder etal., 2001) failed to observe sensitization in rats repeatedly
exposed to chocolate chips in activity cages. However, unlike the
present study, the animals were not food deprived. Negative en-
ergy balance may thus be critical in establishing food-induced

**p < 0,01, Student's ¢ test to compare FR and FH groups in each condition; 'p < 0.05, "p < 0.01, ™p < 0.001, ANOVA).

locomotor sensitization. Food restriction both facilitates dopa-
minergic transmission, especially in the nucleus accumbens (Ca-
doni et al., 2003; Carr et al., 2003; Haberny et al., 2004; Lindblom
et al., 2006), and increases the rewarding and stimulant proper-
ties of dopamine receptor agonists (Carr et al., 2001) and stimu-
lant drugs (Deroche et al., 1993; Bell et al., 1997; Cabeza de Vaca
etal., 2004). Facilitation of dopaminergic transmission in nucleus
accumbens, and plasticity in associated pathways (Haberny et al.,
2004; Haberny and Carr, 2005) may be a prerequisite for estab-
lishing behavioral sensitization to food.

Comparison of food sensitization with behavioral sensitiza-
tion to drugs of abuse reveals several common features. Behav-
ioral sensitization to addictive drugs persists for months after the
treatment ceases (Paulson et al., 1991; Castner and Goldman-
Rakic, 1999). In the present study, both the anticipatory response
and conditioned hyperactivity to food reward persisted over a
period of 3 weeks without exposure to the food-paired environ-
ment, showing that both of these responses were long-lasting. We
have not yet tested longer periods.

Our finding that the food-paired context acquired the ability
to evoke a conditioned locomotor response is consistent with
observations (Bindra, 1968) that environmental stimuli paired
with primary reinforcers stimulate locomotor activity, an effect
that has been repeatedly confirmed (Jones and Robbins, 1992;
Hayward and Low, 2005; Barbano and Cador, 2006). Further-
more, the locomotor activity observed in food-sensitized animals
exposed to the food-paired context when food was omitted, was
similar in amplitude to their activity measured when food was
available. This result suggests that the sensitized locomotor activ-
ity observed in response to food presentation was a response
conditioned to the environment, rather than one elicited by the
food.

The establishment of behavioral sensitization and condi-
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tioned activity to drugs depends on mechanisms related to those
underlying some forms of long term potentiation, in that these
phenomena are blocked by NMDA antagonists, protein synthesis
inhibitors, and dopamine D, antagonists. The same mechanisms
are not specifically required for the expression of sensitization or
conditioned activity, which seem not to depend critically on D,
receptor-mediated mechanisms (Beninger and Hahn, 1983;
Cervo and Samanin, 1996; McFarland and Ettenberg, 1999).
Nevertheless, presentation of cues predictive for sucrose avail-
ability evokes dopamine release in the nucleus accumbens (Roit-
man et al., 2004), suggesting a potential role for dopamine recep-
tors in the food-induced conditioned response. In the present
study, neither the D, antagonist SCH23390 nor the D,/D; antag-
onist sulpiride reliably suppressed the expression of conditioned
locomotion, at doses that already tended to decrease basal activ-
ity. Thus, activation of D; and D,/D; receptors may play only a
nonspecific role in the expression of food-conditioned activity, as
with drug-conditioned activity.

Pretreatment with the opiate antagonist naltrexone abolished
food-conditioned activity in FR animals, whereas it had little
effect on the activity of controls, suggesting that opioid receptors
are involved in the expression of food-induced sensitization. We
are unaware of data on the effects of opioid blockade on the
expression of cocaine sensitization, although naltrexone blocks
the expression of behavioral sensitization to methamphetamine
(Chiu et al., 2005). The ability of another opioid antagonist, nal-
oxone, to decrease operant responding for food reinforcers
(Glass et al., 1999) and food-conditioned locomotor activity in
the presence of food (Hayward and Low, 2005), as well as the
ability of the w-agonist morphine to induce context-dependent
conditioned feeding (Kelley et al., 2000) suggests a role for opiate
receptors in food-conditioned responses.

The development and expression of cocaine-induced behav-
ioral sensitization is associated with alterations in glutamatergic
neurotransmission (Wolf, 1998; Vanderschuren and Kalivas,
2000). Among glutamate receptors, AMPA receptors appear to be
specifically involved in controlling the expression of drug-
induced conditioned activity (Pierce et al., 1996; Cornish and
Kalivas, 2001; Carlezon and Nestler, 2002; Boudreau and
Wolf, 2005), and AMPA receptor competitive antagonists NBQX
[2,3-dihydroxy-6-nitro-7-sulfamoylbenzo( F)-quinoxaline] and
DNQX (6,7-dinitroquinoxaline-2,3-dione) suppress condi-
tioned activity to amphetamine and cocaine in mice (Cervo and
Samanin, 1996; Mead and Stephens, 1998; Mead et al., 1999). In
rats, the noncompetitive AMPA receptor antagonist GYKI 52466
blocks the expression of conditioned responses to cocaine (Hot-
senpiller et al., 2001). In the present study, GYKI 52466 abolished
food-conditioned activity, without influencing spontaneous ac-
tivity (during the first 5 min of run B), suggesting that the expres-
sion of food-conditioned activity, like drug-conditioned activity,
depends on the activation of AMPA receptors.

Once animals are sensitized to one drug, they often show
cross-sensitization to other drugs (Vezina et al., 1989). In the
present study, the ability of cocaine and morphine to increase
locomotor activity was markedly enhanced in animals sensitized
to food, compared with the control group. Although this in-
creased response could be described as cross-sensitization, an
alternative account is that cocaine or morphine’s ability to stim-
ulate activity was more easily seen if animals were already show-
ing enhanced locomotion in the food-paired environment (Ste-
phens and Mead, 2004). However, because in the converse
experiment, previous exposure to amphetamine causes sensitiza-
tion of the locomotor response to food stimuli (Jones et al., 1990;
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Avena and Hoebel, 2003), it may be that pairing a context with
either drugs or food results in facilitation of signaling in common
underlying pathways.

Behavioral sensitization can be viewed as the result of associa-
tive learning processes involving drug-environment condition-
ing. According to this view, repeated administration of drugs in
the same environment allows contextual cues to acquire the
properties of a conditioned stimulus (CS), whereas the drug acts
as an unconditioned stimulus. Presentation of the CS alone (the
context) then becomes sufficient to trigger a drug-like condi-
tioned response. Because the association of environmental stim-
uli with reward must be learned, the learning process, rather than
the drug effect, provides the incremental nature of behavioral
sensitization (Tilson and Rech, 1973; Pert et al., 1990). Applied to
the phenomenon of cross-sensitization, this account predicts that
drugs preventing the expression of conditioned activity should
also suppress cross-sensitization to other rewards. We tested this
prediction in food-conditioned animals, by administering GYKI
52466 and naltrexone before exposing them to cocaine. Both
pretreatments suppressed cross-sensitization to the stimulant ef-
fects of cocaine. In contrast, pretreatment with SCH23390, which
failed to suppress conditioned activity in FR animals, decreased
locomotor activity in both groups, but failed to suppress cross-
sensitization to cocaine. Thus, the cross-sensitization to cocaine
observed in food-conditioned animals reflects the acute effects of
the drug on the expression of conditioned response to the food-
paired environment.

Together, the present results suggest that behavioral sensitiza-
tion occurs not only to drugs of abuse, but also to a natural
reward, food, and that these forms of sensitization have many
features in common. On the one hand, the present data suggest
that the ability of natural rewards to support behavioral sensiti-
zation and conditioned activity may imply a role for sensitiza-
tion in incentive motivation for food. On the other hand, they
may also suggest that an answer to the question of why drug
seeking comes to dominate behavior, in a way that conven-
tional reward seeking does not (Robinson and Berridge, 1993,
2001), does not lie in the ability of drugs to support behavioral
sensitization.

Finally, we asked whether the conditioning of an environment
to food that resulted in environment-associated increases in ac-
tivity, might also affect feeding behavior. Discrete tone or light
cues, paired with food while rats are food deprived, subse-
quently elicit feeding (Petrovich et al., 2002; Holland and
Petrovich, 2005); similarly, food-sensitized mice consumed
more food in the conditioning apparatus than a control group
with identical exposure to the runways, but which had expe-
rienced the novel food in the home cage. Thus, the condi-
tioned environment increased food consumption, possibly
through the ability of such CSs to activate amygdala outputs to
the lateral hypothalamus via accumbens and prefrontal cortex
(Petrovich et al., 2005). Whether both the ability to increase
locomotor activity and to stimulate feeding depend on related
circuitries, and whether these are the same as circuitries acti-
vated during behavioral sensitization to drugs is an intriguing
question.
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