Cover legend: Information from different reward and cognitive-related cortical areas terminate in both separate and converging striatal regions. The schematic drawings illustrate the cortical terminal fields at different rostrocaudal levels. Each color represents different cortical areas (pink, ventral, medial prefrontal cortex; dark orange, orbital prefrontal cortex; light orange, dorsal anterior cingulate cortex; yellow, dorsolateral prefrontal cortex). There are two labeling patterns, a focal projection field consisting of dense terminal fields (illustrated in the top right hand corner) and a diffuse projection consisting of clusters of fibers, extending throughout a wide striatal region. The bottom panel shows diffuse terminals superimposed onto the dense projection illustrating the interface of the diffuse and focal projections. For more information see the article by Haber et al., in the August 9, 2006 issue (Vol 26, Issue 32, 8368 – 8376).

Editorial
9077 An Open Question

Commentary
9078 Why Open Access to Research and Scholarship?
John Willinsky

Journal Club
9080 Heroin Addiction: Anticipating the Reward of Heroin or the Agony of Withdrawal?
Magalie Lenoir and Ronald Keiflin
9082 It Is Time to Move: Role of Lateral Diffusion in AMPA Receptor Trafficking
Guang Yang, Alan Huang, Shanshan Zhu, and Wei Xiong

Brief Communications
9130 Contrasting Roles of Corticosteroid Receptors in Hippocampal Plasticity
Avi Avital, Menahem Segal, and Gal Richter-Levin

Articles
CELLULAR/MOLECULAR
9084 Nonlinear Interaction between Shunting and Adaptation Controls a Switch between Integration and Coincidence Detection in Pyramidal Neurons
Steven A. Prescott, Stephanie Ratté, Yves De Koninck, and Terrence J. Sejnowski

9227 The Role of G-Protein-Coupled Receptor Kinase 5 in Pathogenesis of Sporadic Parkinson’s Disease

9312 Astrocytic Glutamate Is Not Necessary for the Generation of Epileptiform Neuronal Activity in Hippocampal Slices
Tommaso Fellin, Marta Gomez-Gonzalo, Sara Gobbo, Giorgio Carmignoto, and Philip G. Haydon
Deletion of the GABA_{α1} Receptor Subunit Increases Tonic GABA_α Receptor Current: A Role for GABA Uptake Transporters

The Activation of Excitatory Glutamate Receptors Evokes a Long-Lasting Increase in the Release of GABA from Cerebellar Stellate Cells
Siqiong June Liu and Philippe Lachamp

Activation of P2Y₁ Nucleotide Receptors Induces Inhibition of the M-Type K⁺ Current in Rat Hippocampal Pyramidal Neurons
Alexander K. Filippov, Roy C. Y. Choi, Joseph Simon, Eric A. Barnard, and David A. Brown

High Levels of New Neuron Addition Persist When the Sensitive Period for Song Learning Is Experimentally Prolonged
Linda Wilbrecht, Heather Williams, Nidhi Gangadhar, and Fernando Nottebohm

Photic Regulation of Arylalkylamine N-Acetyltransferase Binding to 14-3-3 Proteins in Retinal Photoreceptor Cells
Nikita Pozdeyev, Carla Taylor, Rashidul Haque, Shyam S. Chaurasia, Amy Visser, Aamera Thayyen, Yuhong Du, Haian Fu, Joan Weller, David C. Klein, and P. Michael Iuvone

Unipolar Brush Cells of the Cerebellum Are Produced in the Rhombic Lip and Migrate through Developing White Matter

Abnormal Positioning of Diencephalic Cell Types in Neocortical Tissue in the Dorsal Telencephalon of Mice Lacking Functional Gli3
Vassiliki Fotaki, Tian Yu, Paulette A. Zaki, John O. Mason, and David J. Price

The B’ Protein Phosphatase 2A Regulatory Subunit well-rounded Regulates Synaptic Growth and Cytoskeletal Stability at the Drosophila Neuromuscular Junction
Natasha M. Viquez, Caroline K. Li, Yogesh P. Wairkar, and Aaron DiAntonio

Orientation-Specific Computation in Stereoscopic Vision
Bart Farell

Cerebellar Contributions to Locomotor Adaptations during Splitbelt Treadmill Walking
Susanne M. Morton and Amy J. Bastian

The Role of Feedback in Shaping the Extra-Classical Receptive Field of Cortical Neurons: A Recurrent Network Model
Lars Schwabe, Klaus Obermayer, Alessandra Angelucci, and Paul C. Bressloff

The Effect of Lateral Septum Corticotropin-Releasing Factor Receptor 2 Activation on Anxiety Is Modulated by Stress
Brook Henry, Wylie Vale, and Athina Markou

Differential Encoding Mechanisms for Subsequent Associative Recognition and Free Recall
Bernhard P. Staresina and Lila Davachi

Ambiguous Encoding of Stimuli by Primary Sensory Afferents Causes a Lack of Independence in the Perception of Multiple Stimulus Attributes
Bruce A. Carlson and Masashi Kawasaki
AFosB in the Nucleus Accumbens Regulates Food-Reinforced Instrumental Behavior and Motivation
Peter Olausson, J. David Jentsch, Natalie Tronson, Rachel L. Neve, Eric J. Nestler, and Jane R. Taylor

Angiotensin-II Is a Putative Neurotransmitter in Lactate-Induced Panic-Like Responses in Rats with Disruption of GABAergic Inhibition in the Dorsomedial Hypothalamus
Anantha Shekhar, Philip L. Johnson, Tammy J. Sajdyk, Stephanie D. Fitz, Stanley R. Keim, Pamela E. Kelley, Donald R. Gehlert, and Joseph A. DiMicco

Deciphering the Spike Train of a Sensory Neuron: Counts and Temporal Patterns in the Rat Whisker Pathway
Ehsan Arabzadeh, Stefano Panzeri, and Mathew E. Diamond

Integration of Exogenous Input into a Dynamic Salience Map Revealed by Perturbing Attention
Puuiu F Balan and Jacqueline Gottlieb

Mode of Functional Connectivity in Amygdala Pathways Dissociates Level of Awareness for Signals of Fear
Leanne M. Williams, Pritha Das, Belinda J. Liddell, Andrew H. Kemp, Christopher J. Rennie, and Evian Gordon

Transcranial Magnetic Stimulation over Sensorimotor Cortex Disrupts Anticipatory Reflex Gain Modulation for Skilled Action
Toshitaka Kimura, Patrick Haggard, and Hiroaki Gomi

NEUROBIOLOGY OF DISEASE

Protecting Motor Neurons from Toxic Insult by Antagonism of Adenosine A2a and Trk Receptors
Jelena Mojsilovic-Petrovic, Goo-Bo Jeong, Amanda Crocker, Amrita Arneja, Samuel David, David Russell, and Robert G. Kalb

α-Synuclein Overexpression Increases Cytosolic Catecholamine Concentration

 Corrections: In the article "Rule Learning and Reward Contingency Are Associated with Dissociable Patterns of Dopamine Activation in the Rat Prefrontal Cortex, Nucleus Accumbens and Dorsal Striatum" by Mark R. Stefani and B. Moghaddam, which appears on pages 8810 – 8818 of the August 23, 2006 issue, the affiliation for Mark R. Stefani should have been listed as Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260. Middlebury College was not affiliated with any aspect of this work. Please note that this was an author error and not a journal error.

In the article "Aberrant GABAα Receptor Expression in the Dentate Gyrus of the Epileptic Mutant Mouse Stargazer" by Helen L. Payne, Peter S. Donoghue, William M. K. Connelly, Sabine Hinterreiter, Priyanka Tiwari, Jane H. Ives, Victoria Hann, Werner Sieghart, George Lees, and Christopher L. Thompson, which appears on pages 8600 – 8608 of the August 16, 2006 issue, the units for the mean area of mIPSCs from granule cells were incorrectly printed as pA/ms and nA/ms instead of pA/ms and nA/ms in several places in the article. Thus, in the Materials and Methods section, page 8602, under Electrophysiology, “... threshold criteria of 10 pA and 50 pA/ms” should have been, “... threshold criteria of 10 pA and 50 pA/ms.” In the Results sections, page 8604, under Do the GABAα subunit changes result in modifications to synaptic GABA function, “... (0.435 ± 0.039 nA/ms for +/+ vs. 0.43 ± 0.04 nA/ms for stg; n = 4; p > 0.05, unpaired t test) (Fig. 5)” should have been, “... (0.435 ± 0.039 nA/ms for +/+ vs. 0.43 ± 0.04 nA/ms for stg; n = 4; p > 0.05, unpaired t test) (Fig. 5).” And, in the legend to Figure 5B, “... (0.435 ± 0.039 nA/ms for +/+ vs. 0.429 ± 0.039 nA/ms for stg; n = 4; p > 0.05)” should have been, “... (0.435 ± 0.039 nA/ms for +/+ vs. 0.429 ± 0.039 nA/ms for stg; n = 4; p > 0.05).”
Persons interested in becoming members of the Society for Neuroscience should contact the Membership Department, Society for Neuroscience, 1121 14th St., NW, Suite 1010, Washington, DC 20005, phone 202-962-4000.

Instructions for Authors are available at http://www.jneurosci.org/misc/itoa.shtml. Authors should refer to these Instructions online for recent changes that are made periodically.

Brief Communications Instructions for Authors are available via Internet (http://www.jneurosci.org/misc/ifa_bc.shtml).

Submissions should be submitted online using the following url: http://sfn.manuscriptcentral.com. Please contact the Central Office, via phone, fax, or e-mail with any questions. Our contact information is as follows: phone, 202-962-4000; fax, 202-962-4945; e-mail, jn@sfn.org.