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Hippocampal Sharp Waves and Reactivation during Awake
States Depend on Repeated Sequential Experience
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!Graduate Program in Neuroscience, 2Graduate Program in Neuroscience and Center for Cognitive Science, and *Department of Neuroscience, University of
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Hippocampal firing patterns during behavior are reactivated during rest and subsequent slow-wave sleep. These reactivations occur
during transient local field potential (LFP) events, termed sharp waves. Theories of hippocampal processing suggest that sharp waves
arise from strengthened plasticity, and that the strengthened plasticity depends on repeated cofiring of pyramidal cells. We tested these
predictions by recording neural ensembles and LFPs from rats running tasks requiring different levels of behavioral repetition. The
number of sharp waves emitted increased during sessions with more regular behaviors. Reactivation became more similar to behavioral
firing patterns across the session. This enhanced reactivation also depended on the regularity of the behavior. Additional studies in CA3
and CAl found that the number of sharp waves emitted also increased in CA3 recordings as well as CA1, but that the time courses were

different between the two structures.
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Introduction

Damage to the hippocampal formation causes memory deficits in
the storage of facts, episodes, and new spatial environments.
Analogous deficits are observed in both humans and animals
after hippocampal lesions (Scoville and Milner, 1957; O’Keefe
and Nadel, 1978; Kesner and Novak, 1982; Morris et al., 1982;
Redish, 1999; Clark et al., 2000; Fortin et al., 2002). Hippocampal
firing patterns observed during behavior are reactivated during
subsequent sleep states (Pavlides and Winson, 1989; Wilson and
McNaughton, 1994; Kudrimoti et al., 1999; Nadasdy et al., 1999;
Sutherland and McNaughton, 2000; Hoffmann and McNaugh-
ton, 2002; Lee and Wilson, 2002). Based on the effects of sleep on
task learning (Smith, 1995; Gais and Born, 2004, 2006), theories
have suggested that these reactivations may be involved in mem-
ory consolidation processes (Marr, 1971; Squire, 1987; Buzséki,
1989; Redish and Touretzky, 1998; Hoffmann and McNaughton,
2002). In rodents, neural correlates of spatial aspects of memory
are found in the strong spatial tuning of the hippocampal pyra-
midal neurons (place cells) (O’Keefe and Dostrovsky, 1971;
Redish, 1999). Tasks with repetitive spatial components have
been used to study reactivation of spatially dependent firing pat-
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terns during slow-wave sleep (Wilson and McNaughton, 1994;
Skaggs and McNaughton, 1996; Kudrimoti et al., 1999; Nadasdy
et al., 1999; Lee and Wilson, 2002).

In the hippocampus, network states are characterized by dis-
tinct oscillatory patterns in the local field potentials (LFPs). In
rats, hippocampal LFPs show two clearly identifiable oscillatory
patterns: (1) a 7-10 Hz regular oscillation (theta), seen during
attentive behaviors, such as running, as well as REM sleep; and
(2) a more broad-spectrum pattern [large-amplitude irregular
activity (LIA)], seen during other behaviors, such as grooming,
eating, and slow-wave sleep (Vanderwolf, 1971; O’Keefe and
Nadel, 1978). LIA is punctuated by transient LEP events termed
sharp wave-ripple complexes (SWRs), identified by high-
frequency (100-250 Hz) ripple oscillations (O’Keefe and Nadel,
1978; Buzsaki et al., 1983; Ylinen et al., 1995). During wakeful-
ness, LIA and SWR brain states similar to those activated during
sleep are observed (Vanderwolf, 1971; O’Keefe and Nadel, 1978).
During these awake sharp waves, ensemble firing patterns are
reactivated, and this activity appears to grow with time (O’Neill et
al., 2006).

Theories of hippocampal function (Buzsaki, 1989; Shen and
McNaughton, 1996; Redish and Touretzky, 1998; Redish, 1999)
predict that asymmetric plasticity (Levy and Steward, 1983; Bi
and Poo, 2001) applied to recurrent connections within CA3
through experience of repeated spatial sequences during theta
will lead to storage of sequences within the recurrent connectivity
matrix (Levy and Steward, 1983; Muller et al., 1991; Blum and
Abbott, 1996; Redish and Touretzky, 1998). During states in
which the network was uncoupled from its entorhinal inputs
(e.g., slow-wave sleep and LIA) (Chrobak and Buzsdki, 1994,
1996; Chrobak et al., 2000), uncorrelated noise in the system
would then cascade across these strengthened synapses produc-
ing a replay of this stored information during sharp waves
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(Buzsdki, 1989; Ylinen et al., 1995; Redish and Touretzky, 1998;
Redish, 1999; Csicsvari et al., 2000). These theories predict that
the emission of awake sharp wave-ripple events should increase
in number with experience within a session and that the organi-
zation of ensemble firing during those awake sharp waves should
improve with experience. These increases in sharp wave emission
and reactivation should depend on the level of repetition of spa-
tial sequences. Because experimental evidence suggests SWR ac-
tivity in CA3 can initiate CA1 SWs in vivo and in vitro (Buzsaki et
al., 1983; Csicsvari et al., 1999; Ylinen et al., 1995; Behrens et al.,
2005), any changes in SW activity in CA3 should be observable in
CAL as well.

Materials and Methods

In experiment I, we explicitly examined the task dependence of sharp
wave emissions and hippocampal ensemble reactivation in well trained
rats running three tasks with different spatial requirements. Hippocam-
pal neural ensembles and local field potentials were recorded from the
CAL1 region of six rats as they ran three behavioral tasks daily. The tasks
included shuttling back and forth along a linear track (LT), foraging for
scattered pellets in a cylindrical arena [“cylinder-foraging” (CF)], and
navigating to a goal for food reward in the same cylindrical arena
[“cylinder-goal” (CG)]. In experiment II, we compared the experience
dependence of SWR emission in CAl and CA3 in data from six rats
trained to run a multiple-choice sequence task (MT) (Schmitzer-Torbert
and Redish, 2004).

Animals

Male Fisher—Brown—Norway hybrid rats (Harlan, Indianapolis IN), 7-14
months of age at the time of implantation, were maintained on a syn-
chronous day/night cycle. Animals were handled for at least 1 week be-
fore beginning behavioral training. Rats were food deprived to no less
than 80% of their body weight during behavioral training; water was
freely available in the home cage at all times. All procedures were in
accordance with National Institutes of Health guidelines for animal care
and were approved by the Institutional Animal Care and Use Committee
at the University of Minnesota.

Experiment I: behavior, surgery, and
neurophysiological recordings
Food-deprived rats were trained to run on a series of multiple tasks,
including shuttling back and forth alonga 137 X 15 cm linear track (LT),
foraging for scattered pellets in an 92-cm-diameter cylindrical arena
(CF), or navigating to a small, invisible goal for food reward in the same
cylindrical arena (CG). Linear track was similar to the shuttling tasks
studied by O’Keefe and Recce (1993) and others: two to four (depending
on the animal and session) 45 mg food pellets (TestDiet, Richmond, VA)
were delivered via automated feeders (Med Associates, St. Albans, VT)
when the animal reached the end of the track. Animals were required to
alternate between track ends to receive food. Paths are highly repeatable
on the linear track. The CF task was a variant of that studied by Muller et
al. (1987) and others: food was delivered randomly into the cylinder at
random intervals providing pellets approximately six times a minute.
The 45 mg food pellets were delivered from one of three sites (randomly)
above the cylinder. The food distribution that reached the cylinder floor
was uniform and random. The CG task was a variant of that studied by
Rossier et al. (2000) and Olypher et al. (2002): to receive food, the rat had
to cross a 7-cm-diameter goal. Once the rat entered the goal region, a
tone was played and three pellets were delivered from the automated
feeders. Like the CF task, the food scattered randomly on dispensing. The
goal was not rearmed until the rat had been outside a 14 cm surrounding
region for 4 s. The goal was randomly placed on each session, but remained
ata constant location within each session. Because the CF and CG tasks used
the same arena, the arena was wiped down with 70% isopropyl alcohol
before each CF and CG task to reduce carryover of odor cues.

Training began with 30—40 min sessions on a single task (task training
order counterbalanced across rats) until an animal was proficient on that
task: full coverage of arena on CF, at least 30 successful goal entries on
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CG, and at least 50 laps on LT. Animals were then trained on the next task
to proficiency. This continued until animals had been trained on each
task individually. This usually took ~1 week per task. Next, animals were
trained for at least 4 d on the three-task protocol such that they encoun-
tered each ordering at least once: LT-CF-CG, LT-CG-CF, CF-CG-LT,
and CG—CF-LT. Thus, final-training and the postimplantation record-
ing sessions consisted of 20 min exposure to each of the three tasks
pseudorandomly ordered each day with a 5 min rest period before and
after each task. Goal location also varied pseudorandomly each day.

Once a rat was running proficiently on all three tasks, it was implanted
with a 14-tetrode microdrive (Kopf Neuro-Hyperdrive; 12 tetrodes and
two references) at bregma, 3.8 mm posterior, 2.0-2.5 mm right medio-
lateral. Animals were allowed 2 d to recover, during which electrodes
were advanced toward the CA1 pyramidal cell layer. Animals were re-
trained on the three-task protocol until electrodes were in place. Record-
ings were then taken from the pyramidal layer of the CAl region of
hippocampus. The pyramidal layer was identified by the presence of
strong high-frequency (100-250 Hz) ripples (Ylinen et al., 1995). LFPs
were recorded using 16 channels of a Neuralynx (Tucson, AZ) 64 channel
Cheetah system and were sampled at 2 kHz and bandpass filtered from 1
to 425 Hz.

For experiment I, 1 ms, 32-sample spike waveforms were recorded to
disk when extracellular potentials crossed a preset threshold. Waveform
features were calculated and clustered using a combination of automatic
and manual clustering algorithms (MClust; A. D. Redish et al.; http://
mclust.sourceforge.net) (Klustakwik; K. D. Harrisetal.; http://klustakwik.
sourceforge.net). Only clusters with firing rates <2 Hz were used; these
tended to have the characteristic bursting interspike interval (ISI) typical
of hippocampal pyramidal neurons. Neurons whose waveforms were not
stable enough across the entire session to reliably cluster or whose wave-
forms drifted toward the spike detection threshold were not clustered
and were excluded from additional analysis. Clusters with very short
interspike intervals (2 ms) were not clustered and were excluded from
additional analysis. The data reported here were based on using all cells
that met the above criteria. However, only including clusters with high
quality (Schmitzer-Torbert et al., 2005) (L-ratio, <0.2; isolation dis-
tance, >15) produced qualitatively similar results. Figure 1 shows an
example of seven hippocampal pyramidal neurons recorded simulta-
neously from one tetrode, their waveforms, clusters, ISI histograms, and
cluster quality values.

For all analyses and controls except the reactivation and transition
entropy analyses versus experience, data from each session were trans-
formed using a z-score analysis based on mean and SD over the first 30
laps. On the hidden-goal task (CG), the time between successful goal
triggers, was considered a lap. These lap times were used for the analysis
of the matching foraging task (CF) for that day. For each task, only
sessions with 30 laps or more were considered on the three-task sessions (LT,
n = 6 rats; CF, n = 7 rats; CG, n = 7 rats). See Table 1 for session and neuron
yields. For the reactivation analysis, only sessions with >20 neurons re-
corded simultaneously were used (n = 10 sessions from three rats).

Experiment II: behavior, surgery, and

neurophysiological recordings

Food-deprived rats were trained to run for food on a multiple-choice
sequence-learning task consisting of 4T choices with return rails after the
final turn, making it a lap-based task (Schmitzer-Torbert and Redish,
2002, 2004). The track used for the multiple-T task consisted of an ele-
vated (20 cm above the floor), 10 cm wide, carpet-covered, plywood
track. The maze itself consisted of a set of three to five T-shaped tracks
(stem, 30 cm; each choice arm, 18.5 cm) placed within a large outer
rectangular track [140 cm (3Ts) to 220 cm (5Ts) X 142.5 cm]. Rats were
required to run through the central sequence of Ts, making a final choice
when they reached the top rail of the outer square. They then proceeded
along the top rail of the outer square, back along a return rail, and re-
turned to the start of the sequence. Food was provided at two sites on
each return rail. An error on a T led to a deadend and required the animal
to turn around to return to the correct path. The final choice entailed a
decision about which return rail to use. On any specific day, only one pair
of sites (i.e., the right or left return rail) was active and provided food
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Figure1.  Example tetrode recordings: clustering, waveforms, and firing patterns. Spikes were clustered according to multiple

waveform features including peak spike amplitude, energy, and principal components. Clustered spikes are shown with different
colors for each cluster on two projections: peak spike amplitude on channel 1 versus channel 2, and peak amplitude on channel 3
versus channel 4. One millisecond waveforms for 7 of the 16 separable clusters are shown below color-coded by cluster color. ISI
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Table 1. Session availability and neuron yields per rat for experiment |
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reward. The other pair of feeders remained in
their usual positions on the track but did not
provide reward. The sequence of choices re-
mained constant within a day, but changed be-
tween days. Rats were allowed to run for one 40
min session each day.

Rats were first trained on 3T sequences for 1
week, and then trained on 5T for 1 week. Once
a rat was running proficiently on a five-choice
task (>50 laps per day for at least 3 d), it was
implanted with a 14-tetrode microdrive (Kopf
Neuro-Hyperdrive; 12 tetrodes and two refer-
ences) at bregma, 3.8 mm posterior, 2.0-4.0
mm right mediolateral. Recordings were taken
from the pyramidal layer of the CA1 or CA3
regions of hippocampus (3X CA1,2.0-2.5mm
right mediolateral; 3X CA3, 4.0 mm right me-
diolateral). For example recording locations
(CA1 vs CA3), see Figure 2. Table 2 reports the
number of sessions available from each animal
and the recording location for each animal. The
pyramidal layer was identified by the presence
of strong high-frequency (100200 Hz) ripples
(Ylinen et al., 1995; Csicsvari et al., 1999). LEPs
were recorded using 16 channels of a Neural-
ynx 64 channel Cheetah system, and were sam-
pled at 2 kHz and bandpass filtered from 1 to
425 Hz.

For multiple-T (MT), time passing the sec-
ond feeder was identified as the start of a lap.
(Thus, each lap consisted of a journey from the
time the rat left the second feeder to the time
the rat returned to the second feeder.) As
above, sessions with at least 30 laps were con-
sidered (n = 3 CA3 rats, n = 3 CAl rats on
MT). One rat in the MT group was previously
recorded in experiment I, and is therefore in-
cluded in both experiments.

LFP analysis
Generally noisy channels were removed from
the analysis. Any event of maximum/minimum
voltage (during which the amplifiers reached the
+ or — rails) on any channel was removed from
all channels including 0.5 s before and after.
SWR detection. SWR events were extracted
by down-sampling the LFP traces by a factor of
2 (using an anti-aliasing low-pass filter), and
bandpass filtering from 100 to 250 Hz. Ampli-
tude for each trace was found via Hilbert-
transform and then averaged across traces. The
distribution of log-transformed average ampli-
tude was used to find samples >2.5¢ from the
mean power. Higher and lower values of o (e.g.,
20, 30, 40) yielded qualitatively similar results.
Visual inspection of a subset of the data re-

vealed ripple events synchronous across LFP channels. Threshold cross-
ings <20 ms were removed; the remaining events were concatenated if

Rat no. No. sessions No. neurons No. interneurons No. pyramidal <100 ms apart. Twenty milliseconds were added to the beginning and
RO31 6 107 1 9% end of each SWR to capture the tails of the SWR. Raw threshold detec-
R035 5 33 5 28 tions were also analyzed and yielded qualitatively similar results. Like-
R039 7 23 2 21 wise, merging threshold crossings <100 ms apart before discarding short
RO41 8 240 16 224 (<20 ms) events yielded qualitatively similar results. To reduce the pos-
R044 3 0 0 0 sibility of non-LIA, high-frequency events contaminating the analysis,
R047 5 9 1 8 we removed all SWR events detected during high-theta/low-delta peri-
R048 7 284 25 259 ods. Thus, the SWR represented in our analyses would be most analogous

to the iSWR (immobile sharp wave-ripple) events of O’Neill et al. (2006).
Total 4 696 60 636 The results in this paper are from this conservative set; however, there

Allrats ran the LT, CF, and (G tasks each day. No., Number.

was little qualitative difference introduced by including all SWR events.
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Figure 2.
tracks in the CA3 (R057) and CA1 (R065) regions. The bottom panels show regions from which
(A3 and CA1 recordings were taken.

Histology showing recording sites. The top panels show representative tetrode

Table 2. Multiple-T session availability per rat for experiment Il

Rat no. No. sessions Region
R048 19 (A1
RO51 23 (A3
R057 24 (A3
RO67 25 (A1
RO69 18 (A3
R072 12 A1
Total 56 CA1,65 CA3

No., Number.

SWR detection was done with wide-band filtering cutoffs of 100-250
Hz. Csicsvari et al. (1999) demonstrated a dissociation between regions
CAl and CA3 in the hippocampus and the characteristic frequency of
sharp wave-ripples in these regions. We have observed a similar dissoci-
ation in our CA3 and CA1 recordings on MT (data not shown). The
range of filters that were used detected SWRs robustly in either hip-
pocampal region.

It is possible that volume conduction from ripples in CA1 could influ-
ence our detection in CA3; if CA3 was not emitting SW ripples, it may be
that ripples occurring in CA1 could trigger SWR detection in CA3. This is
unlikely because volume conductance drops off at higher frequencies
(Niedermeyer and Lopes da Silva, 1999) and because CA3 showed addi-
tional, early SWRs not seen in CA1 (see Results).

Theta detection. Theta times were extracted by down-sampling the LFP
traces by a factor of 5 (using an antialiasing low-pass filter), and bandpass
filtering from 6 to 10 Hz to obtain theta-band signals, and from 2 to 4 Hz
to obtain delta-band signals. The amplitude for the band of each trace
was found via Hilbert transform, and then averaged across traces to
obtain two averaged signals: an average theta-band amplitude and an
average delta-band amplitude. The distribution of the log-transformed
ratio (theta/delta) of average amplitudes was used to identify samples
with a low power-ratio > 1o from the session mean; these were taken to
be nontheta brain states. Higher and lower values of o (e.g., 0.50, 1.50,
20) yielded qualitatively similar results. Visual inspection of a subset of
the data revealed low theta amplitude epochs that clustered at locations
of immobility (e.g., the linear track ends). These nontheta epochs were
concatenated if <500 ms (the low-frequency cutoff for the delta band)
apart, and events smaller than 100 ms (the high-frequency cutoff for the
theta band) were removed. Raw threshold detections were also analyzed
and yielded qualitatively similar results. Theta epochs were taken as the
complementary set of times; these high theta-band power and low delta-
band power epochs tended to coincide with times when the animal was
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moving. Because theta epochs were defined as times with theta/delta ratio
either greater than the mean or no more than 1o below the mean, some
“theta” epochs may have had relatively lower theta power and may have
corresponded to one or more intermediate states. However, visual in-
spection showed that the definition of “theta” epoch was relatively robust
and tended to correspond to easily visually identifiable theta periods.

Statistics. Linear regression was used to determine whether there was a
change in SWR properties as a function of laps over the session. For
per-lap measures in experiment I, only sessions in which the rat ran >30
laps were included, and only the first 30 laps of each session were in-
cluded in the analyses. Because the number of laps run on the MT task in
experiment IT was much more variable the tasks in experiment I, sessions
in which the rat ran >20 laps were included, and up to the first 60 laps of
each session were included in the analyses to provide comparison with
per-lap measures in experiment I. Because we looked at a number of
regressions on the lap-dependent local field potential properties (time
spent in nontheta, SWR emission rates, duration of SWR, etc.), we con-
trolled for multiple comparisons with a Bonferroni correction (Zar,
1999) to define significance. This correction was only applied to the large
number of lap-dependent analyses done.

Cofiring reactivation analysis

To measure reactivation at the ensemble level, we developed a new mea-
sure (see Appendix). Briefly, for an ensemble of n cells, this measure
generates an n° binary representation (s,) of which cell pairs cofired
within a theta cycle. A similar representation can be generated for cell
pairs that cofired within a sharp wave (sqy). These two binary strings can
be compared by taking the exclusive OR (XOR) of the two. Under the
null hypothesis H, that the strings are independent with respect to each
other, the expected number of ones in the XOR string can be predicted
from the binomial cumulative distribution as a function of the propor-
tion of ones in each string and the length of the strings themselves. The
deviation of the number of ones in the XOR string from the expected
number indicates the extent to which the two strings are more similar
than expected. Details of this procedure are given in Appendix.

The new analysis presented here uses the entire ensemble cofiring
pattern, exploiting information about neurons that are not active on the
task and pairs that did not have overlapping place fields. Thus, we are not
measuring whether neuron pairs correlated in theta are increasing their
correlation in SWR; we are testing whether the same cell assemblies are
present in SWR that were present in theta. In other words, if neuron pairs
were coactivated during theta but not during SWR, our measure would
show a lower value than for matched coactivations in both states. Simi-
larly, if neuron pairs were not coactive during theta but were coactive
during SWR, our measure would also show a lower value than for
matched coactivations in both states. Our application of this method
here is not temporally biased, and is therefore insensitive to the firing
ordering within the reactivated patterns. Furthermore, as noted in Ap-
pendix, any noise within the coactivation estimates reduces the similarity
of the sy and s, patterns and argues in favor of the null hypothesis.
However, to reduce the likelihood of clustering artifacts influencing the
analysis (Quirk and Wilson, 1999), only neuron pairs recorded across
tetrodes were included in the analysis.

The null hypothesis in this analysis is that the cofiring patterns ob-
served in theta and during SWRs are independent within a single session.
To determine whether there is general reactivation, we must determine
whether the number of sessions in which the null hypothesis will be
rejected by chance. This can be found using a test which measures
whether there are more sessions in which the null hypothesis can be
rejected than would be expected by chance. This can be measured with a
binomial test, asking whether there are more sessions with negative mean
log-likelihoods less (more negative) than negative log(a) (Zar, 1999). We
used a = 0.05 for these analyses. Thus, if (as seen in our data) (see Fig. 5),
14 sessions of 29 have significant reactivation (i.e., significance > «), this
is highly significant (a binomial test would expect only 1.45 sessions of 29
to have reactivation by chance) with a value of p < 10 ~*°.

Randomized ensemble controls. Two randomized controls were used
for comparison with experimental reactivation. The first (SWAP) ran-
domized spike identity across the ensemble while maintaining the overall
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Figure 3.  Methods: randomized controls for cell assembly similarity (diagrammatic). The

top three rasters represent spikes from three simulated neurons. Time runs along the x-axis are
shown. SWAP, The spikes are shuffled across neurons preserving their timing but changing the
neuron they are assigned to. This preserves the overall ensemble firing patterns with respect to
the oscillatory state shown at the top. SHUFF, The intervals between spikes are shuffled within
the spike train of each neuron in the bottom rasters, preserving the firing statistics of each
neuron but disrupting ensemble state-dependent temporal firing patterns.

ensemble state-dependent firing. The second (SHUFF) shuffled the ISIs
of each neuron preserving first-order neuronal firing statistics but dis-
rupting state-dependent firing and controlling for the contribution of
silent cells to the reactivation analysis. Shuffles were conducted within
each task (CF, CG, LT) across the entire task within each session (Fig. 3).
Both randomizations were run eight times for each session, and the data
for each session were averaged for within-session comparisons.

Video tracking and behavioral control

The positions of light-emitting diodes (LEDs) mounted on the headstage
were recorded by a camera mounted in the center of the ceiling of the
recording room. The video frame data were sampled at 60 Hz, digitized,
and time stamped by a Cheetah recording system (Neuralynx); pixels
that crossed thresholds set by the experimenter were recorded to disk.
Real-time position data were accessed by in-house behavioral control
software implemented in Matlab (The MathWorks, Natick, MA). This
software used the serial ports to communicate with an experimental
control box (constructed by J. C. Jackson) to trigger food delivery (45 mg
pellets; Research Diets, New Brunswick, NJ) (food dispensers; Med As-
sociates) and simultaneously signal the Cheetah recording system for a
synchronous food delivery time stamp (each feeder had a unique digital
identification).

Position data were then preprocessed for post hoc analysis by extracting
the center of mass of all suprathreshold pixels. Video interlacing effects
were removed from the data through linear interpolation of odd and
even position samples (two 30 Hz time series) to produce two 60 Hz time
series, which were then averaged to yield a single, stable 60 Hz time series.

Lap times: linear track. Because the linear track was aligned along the
x-direction of the video data, the x-position was taken as the linearized
one-dimensional projection of the animal’s behavior. The x-velocity was
calculated using a 64th order low-pass FIR filter with a 2 Hz high-
frequency cutoff by filtering forward and backward (to eliminate phase
shifts). Plots of the x-position versus x-velocity displayed a clustering of
low velocity at the track ends. These clusters were selected manually for
each session and lap times were defined as the time from departure from
one end of the track to the next departure from the same end. Interlap
intervals were defined as the time spent in these low-velocity clusters at
the track ends.

Goal entry times (laps): cylinder tasks. When real-time tracking of the
animal’s position detected that the rat was in the goal region on CG, a
tone was sounded and a TTL signal was sent to Cheetah via the experi-
mental control module to time stamp the event. Trial division times were
then taken as the delivery time of this qualifying tone. Because each day
an animal ran both the CF task and CG task for 20 min each, the trial
times from CG were applied to the CF task for a matched control.
Throughout the text, we will also refer to these goal-entry times as “laps”
for simplicity, because they serve as a temporal parcelation of the
behavior.

Lap times (multiple-T). On the multiple-T task, laps were defined as
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successfully triggering the second feeder on the correct return rail. This is
consistent with previous analyses of the multiple-T task (Schmitzer-
Torbert and Redish, 2002, 2004).

Spatial transition analyses

Behavioral entropy. To determine the repetitive nature of the behavior,
the entropy of the transitions between spatial positions was measured.
For each task on each day, the x-, y-position data were binned into 40 X
40 pixel blocks (11 X 11 cm) and the transition probability from each bin
into every other bin was calculated for each block of time. Thus, our
640 X 480 video capture yielded a 16 X 12 bin array and a 192 X 192
transition matrix, containing the transitions between the bins. The
Shannon entropy of the transition matrix was calculated using all non-
zero transitions as follows:

N N
H= 2 E — pijlogapi s (1)
i

where p; ; is the time-independent probability of transition from bin j to
bini,and N = 16 X 12 = 192 is the total number of bins. This measures
the variability in the distribution of transition probabilities between spa-
tial positions. Highly variable behaviors will have a more uniform tran-
sition probability distribution and thus a high entropy. More regular
behaviors will have a more limited transition probability distribution and
thus a low entropy.

Reactivation and SWR emission given experience and behavior entropy.
Measuring SWR emission by experience (number of laps) by entropy
produced a three-dimensional data set of points. To show this distribu-
tion in graphical form (see Fig. 7), the lap and entropy axes were divided
into 15 equally spaced bins and SWR emission rate was averaged within
each bin. A square-root transform was applied to the SWR emission rate
to stabilize the variance. For each bin, the plotted emission rate for that
bin was then calculated from an ellipse with radii equal to twice the bin
width of each axis for bins with five or more samples falling within this
radius. This radial averaging technique made the bin-centered value es-
timation robust to spurious outliers encountered at the edges of sparse
data regions and therefore reduced the dependence on choice of bin size
and bin location. Cumulative spatial entropy was calculated as described
above, taking the entropy of all behavior occurring before time t. For
reactivation (see Fig. 8), the limited data sample available precluded
using 15 bins, so entropy and time in theta were divided into nine equally
spaced bins.

Results

Experiment I: behavioral manipulations

A total of 696 spike trains were recorded over 24 sessions in
ensembles of up to 96 neurons/session (30 * 31 neurons/session;
mean * SD); 17 additional sessions were included for which
spike trains were unavailable. SWRs were identified by a thresh-
old applied to the average amplitude across tetrodes of the
Hilbert-transformed local field potentials, bandpass filtered from
100 to 250 Hz. As observed in previous experiments (O’Keefe and
Nadel, 1978; Buzséki et al., 1983; Christian and Deadwyler, 1986),
SWR occurred during the tasks (LT, CF, CG) concentrated when
the rat paused in running. Overall, the number of SWR events per
time spent in nontheta states increased with laps on each task
[slope > 0; p (slope = 0) < 0.0003] (Fig. 4).

To determine whether these sharp wave—ripple events were
also associated with experience-dependent changes in neuronal
firing, we examined the cross-neuron cofiring probabilities.
When averaged over the entire 20 min session, over all tasks, the
pattern of neuron pairs that were coactive during awake SWRs
were significantly more similar to the pattern that were coactive
during theta than would be expected given random neuronal
activity (binomial test, p < 10 ~'?). These results were compared
with two randomized controls: SWAP, in which the spike identity
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was swapped within the ensemble, pre-

serving timing and ensemble firing prop- Ove ra”
erties, and SHUFF, in which the spike -
times were shuffled within spike train,
preserving the overall firing rate of each
neuron. Both randomizations removed
the effect (Fig. 5).

The similarity between SWR firing and
theta firing also increased across the ses-
sion. For each session, this was measured
by dividing the number of SWRs in the
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Linear Track (LT)

session in half (first half, second half), and
comparing the similarity of coactive firing
in each half with the coactive firing in
theta. Overall, the similarity tended to in-
crease (one-sided Wilcoxon’s paired
signed rank test comparing reactivation
during the first n/2 SWR to reactivation
during the second n/2 SWR, p < 0.02)
(Fig. 6). Although there was an overall ef-
fect, the strength of the effect on each task
differed. We next consider each task
individually.

SW emission (z-score)
o

o

—

1
—

Linear track
Sharp wave-ripple complexes occurred

Laps

Cylinder Foraging (CF)

)
o
[&]
P A
St
S0
[}
@2
e-1
(0]
15 30 c%o 15 30
Laps

Cylinder Goal (CG)

during the linear track task, concentrated
at the ends of the track where the rat re-
ceived food and paused between each lap
(0.19 = 0.11 SWR/s in nontheta; mean *=
SE). The number of SWR events per lap
increased throughout the session [slope >
0, p (slope = 0) < 0.00002] (Fig. 4). This
increase in SWR emission could not be at-
tributed to a change in performance, be-
havior at the track ends, changes in time
spent in nontheta states, or changes in rate of transition between
nontheta and theta (see below, controls). The duration of the
SWR showed no detectable change across the session [p (slope =
0) = 0.30, nonsignificant (ns)]; however, there was a significant
increase in the amplitude of the SWR [p (slope = 0) < 0.00005].
Awake SWRs are associated with reactivation of the ensembles
active during theta (Foster and Wilson, 2006; O’Neill et al., 2006)
as are SWRs that occur in slow-wave sleep after a session (Wilson
and McNaughton, 1994; Kudrimoti et al., 1999; Nadasdy et al.,
1999; Hoffmann and McNaughton, 2002). On the linear track
task, the SWRs emitted during waking states were also associated
with reactivation of firing patterns observed during the theta-
associated components of behavior (p < 10~®) (Fig. 5). The
proportion of neurons included in each SWR did not signifi-
cantly change across each session [p (slope = 0) = 0.84, ns]. Nor
did the average firing rates occurring within a SWR change across
each session [p (slope = 0) = 0.94, ns]. The reactivation itself,
however, did increase in similarity to cofiring patterns observed
during theta across the task (one-sided Wilcoxon’s paired signed
rank test comparing reactivation during the first n/2 SWR to
reactivation during the second n/2 SWR, p < 0.05) (Fig. 6).
Linear track controls. The increase in SWR emission rate on the
linear track could have been caused by an increase in the time
spent resting between laps at the track ends; however, there was
no detectable increase in lap duration [p (slope = 0) > 0.88, ns]
nor in the resting time between laps [p (slope = 0) > 0.79, ns].
Neither was there a corresponding increase in the rate of transi-
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Experience-dependent changesin SW ripple events. Mean and SE of SW ripple events emission rate normalized by the
time spent in nontheta were calculated from individual averages across animals. Linear regression line and 95% regression
confidence intervals for all four conditions. AL, Overall, including all three tasks, R* = 0.063, F = 14, p (slope = 0) << 0.0002;LT,
R? =0.098, F = 19, p (slope = 0) << 0.00002; CF, R? = 0.011, F = 2.3, p (slope = 0) > 0.12; (G, R* = 0.056, F = 10.3,p

tion out of theta [p (slope = 0) > 0.28, ns] nor in the time spent
in nontheta brain states [p (slope = 0) > 0.14, ns]. Because we did
not have video image data (only LED coordinates), an analysis of
specific behaviors was not possible (e.g., grooming, resting,
chewing, etc.). However, to test for changes in the activity level at
the track ends, we compared how the mean and SD of the ani-
mal’s speed while at the track ends changed across laps. There was
no change in either of these measures of activity level [mean
movement speed, p (slope = 0) > 0.55, ns; SD of movement
speed, p (slope = 0) > 0.36, ns]. As a final control, to check for the
possibility that increases in overall LFP power with experience
could affect SWR detection, we ran the equivalent analyses with
the bandpass filter set to the theta band power. No detectable
increases in threshold crossings, neuronal recruitment, or firing
rate were observed at the theta band, suggesting that the increase
in SWR event detection is attributable to a specific enhancement
in the SWR frequency band. Thus, the robust increase in SWR
emission on LT cannot be explained by overt changes in the
animal’s state of arousal or intensity of behavior over the first 30
laps.

Two-dimensional tasks

Because the increase in SWR emission during awake states was
obtained on a linear track where the animal repetitively traversed
the same path, which presumably would allow for repeated
strengthening of the connectivity of the network, we examined
whether these increases occurred in more complex environments
and tasks with less spatial behavioral regularity. Fach day, in ad-
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Figure 5.  SWR complexes during awake behavior include the same cell assemblies as occur

during theta. The similarity between cell cofiring during SWRs and during theta are shown for
each condition (see Materials and Methods). Each session produced one - on each plot. For all
four conditions, the cell assemblies active during SWR were more similar to those seen during
behavior (theta) than would be expected from either random control, including SWAP (preserv-
ing timing and ensemble firing properties) and SHUFF (preserving the overall firing rate of each
neuron). Note that the overall condition is an analysis over all sessions, not an average of the
other three conditions. On each plot, the horizontal line at negative mean log-likelihood = 3
marks p = 0.05. The marks above this line imply significant reactivation on that session. The
numbers above each column indicate the number of sessions with significant reactivation. The
numbersin bold indicate more sessions with significant reactivation than would be expected by
chance. ALL, Overall, including all three tasks, p << 10 ~ "% LT, p < 10~ CF, p < 0.00001; CG,
p < 0.0001.

dition to the linear track session, each rat ran two additional 20
min sessions CF and CG (see Materials and Methods).

Sharp wave-ripple complexes also occurred on CF and CG,
concentrated where the rat paused to consume food or rest (CF,
0.11 = 0.10 SW/s in nontheta, mean = SE; CG, 0.042 * 0.061
SW/s in nontheta, mean = SE). The rate of SWR emission did not
increase significantly on the cylinder-foraging task [p (slope =
0) > 0.12], nor was there a detectable change in SW amplitude [p
(slope = 0) > 0.16, ns]. As in LT, there was no detectable change
in the duration of the SWR [p (slope = 0) > 0.10, ns]. When
averaged over the entire 20 min session, the pattern of neuron
pairs that were coactive during awake SWRs were significantly
more similar to the patterns that were coactive during theta than
would be expected given random neuronal activity for the task
(p <107°) (Fig. 5). The similarity between cell assemblies active
during SWR and theta showed no significant increase in the CF
task (one-sided Wilcoxon’s paired signed rank test, p = 0.28, ns)
(Fig. 6).

On the CG task, the occurrence of SWR showed a trend [ap-
proaching, but not reaching significance when corrected for mul-
tiple comparisons, p (slope = 0) < 0.002 (Fig. 4); ns as a result of
multiple comparisons]. As in CF, the duration of SWRs did not
change significantly [p (slope = 0) > 0.57, ns], nor did the am-
plitude of SWRs [p (slope = 0) > 0.44, ns]. When averaged over
the entire 20 min session, the set of neuronal pairs that were
coactive during awake SWRs were significantly more similar to
the set that were coactive during theta than would be expected
given random neuronal activity for both tasks ( p < 10 ~*) (Fig.
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Figure 6.  The assemblies became more coherent through the session. The sharp wave—

ripple complexes in each session were divided into two halves by the median occurring sharp
waves, providing the same number of SWRs in two blocks (an early block and a late block). If the
cell assemblies cofiring in the SWRs become more similar to the cell assemblies occurring during
theta, we would expect the similarity to increase between the two blocks. The similarity did
increase for the linear track, and for the overall condition. But the increase was not significant for
the two-dimensional conditions. One-sided nonparametric Wilcoxon’s signed rank tests were
used (Zar,1999). ALL, Overall, including all three tasks, p << 0.01; LT, p < 0.05; CF, p << 0.25; (G,
p < 0.10.

5). The similarity between cell assemblies active during SWR and
theta on CG did not show a detectable increase (one-sided Wilc-
oxon’s paired signed rank test, p = 0.10, ns) (Fig. 6).
Two-dimensional task controls. For the two-dimensional tasks,
there was no significant increase in lap duration [CG, p (slope =
0) > 0.70, ns; CF, p (slope = 0) = 0.02, ns as a result of multiple
comparisons], neither was there a corresponding increase in the
rate of transition out of theta [CG, p (slope = 0) > 0.74, ns; CF, p
(slope = 0) = 0.01, ns as a result of multiple comparisons] nor in
the time spent in nontheta brain states [CG, p (slope = 0) > 0.10,
ns]. Thus, as with linear track, the increases in SWR emission rate
and in reactivation similarity occurring across the session in the
CG task could not be explained by changes in gross behavior.

Comparisons across tasks

A two-way ANOVA comparing SWR emission across laps and
tasks revealed an effect of task (F = 19.1; p < 10 %), SWR emis-
sion rates were significantly higher on LT than on either CF or CG
[p < 0.05, Tukey’s honestly significant difference (HSD) crite-
rion for multiple comparisons]; SWR emission rates were higher
on CF than on CG ( p < 0.05, Tukey’s HSD criterion for multiple
comparisons).

Because SWR emission rates and reactivation time courses
differed across tasks, we tested whether those differences in SWR
emission rates correlated with differences in spatial sequence be-
havior. To test this, each spatial task was binned into 40 X 40
pixel blocks (11 X 11 cm), and the transition probability from
each bin into every other bin was calculated for each block of time
(see Materials and Methods). As expected, an ANOVA compar-
ing the entropy of these transition probabilities across tasks and
time revealed an effect of task type (F = 101.3; p < 10 ~12) with
LT having significantly lower transition entropy compared with
either CF or CG. Consistent with the linear track being a one-
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Figure 7.  Dependence of SWR emission on the sequential repetitiveness of the behavior.
Number of SWR events normalized by time spent in nontheta states as a function of lap number
and behavioral entropy. The color bar indicates SWR emission rate, measured as seconds .
SWR emission increased with lower entropy (more regular paths) and on later laps (with more
experience). ALL, Each lap for each session on each task (LT, CF, or CG) contributed one three-
dimensional point to the analysis. For each bin, points were radially averaged to determine
average SW emission given the cumulative regularity and experience. Statistics: Stepwise re-
gression on raw (i.e., unaveraged) data showed an effect of lap number, p << 0.00001; an effect
of entropy, p << 0.00001; and an interaction between the two, p << 0.00001. LT, Same as ALL
except only LT sessions were used. Statistics: Stepwise regression on raw data showed an effect
of lap number, p < 0.00001; an effect of entropy, p << 0.0005; and an interaction between the
two, p < 0.00001. CF, Same as ALL except only CF sessions were used. Statistics: Stepwise
regression on raw data showed an effect of lap number, p <<0.002 (ns, by multiple compari-
sons); an effect of entropy, p << 0.001; and an interaction between the two, p << 0.00005. (G,
Same as ALL except only CG sessions were used. Statistics: Stepwise regression on raw data
showed an effect of lap number, p > 0.002 (ns, by multiple comparisons); an effect of entropy,
p >0.31(ns); and an interaction between the two, p << 0.0005.

10

Laps

dimensional task and both cylinder tasks being two-dimensional,
LT had approximately one-half the spatial transition entropy of
the behavior on CF and CG (LT, 27.4 * 15.2 bits; CF, 53.7 * 28.9
bits; CG, 56.2 = 27.0 bits, mean = SD).

Because sequential behavior is thought to engage hippocam-
pal plasticity mechanisms (Mehta et al., 1997; Shen et al., 1997;
Ekstrom et al., 2001), and both SWR emission and reactivation
increased with time (Figs. 4, 6), we tested the extent to which
SWR emission and reactivation were dependent on the interac-
tion of the two factors of behavioral regularity. Because a suffi-
cient number of SWRs were available to measure emission as a
function of lap, the emission rate of SWRs in nontheta states was
measured as a function of lap and the entropy of all behavior
leading up to that lap (“cumulative entropy”). SWRs were more
likely to be emitted earlier with more regular behavior (stepwise
multiple linear regression: significant effect of lap number, p <
0.00001, and of entropy, p < 0.00001, with a significant interac-
tion, p < 0.00001, F = 52.9) (Fig. 7).

This same trend could be seen in each task. On LT sessions,
SWRs were more likely to be emitted earlier with more regular
behavior (stepwise multiple linear regression: effect of lap num-
ber, p < 0.00001, and of entropy, p < 0.0005, with a significant
interaction between the two, p < 0.00001, F = 15.0) (Fig. 7). On
CF sessions, a similar interaction effect was observed (stepwise
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Figure 8.  Dependence of reactivation on the sequential repetitiveness of the behavior. Re-

activation similarity (measured as negative log-likelihood of similarity relative to randomness)
as afunction of behavioral entropy and total time spent in theta. Statistics: Stepwise regression
showed an effect of entropy, p < 0.005; for timein theta, p << 0.05; and an interaction between
the two, p < 0.001.

multiple linear regression: effect of lap number, p < 0.002; effect
of entropy, p < 0.001; and a significant interaction between the
two, p < 0.00005, F = 10.9) (Fig. 7). CG sessions demonstrated a
similar interaction [stepwise multiple linear regression: effect of
lap number, p < 0.002; no effect of entropy, p > 0.31 (ns)];
however, the interaction between the two was significant ( p <
0.0005; F = 7.88) (Fig. 7).

Because reactivation could not be measured for each lap, the
total time spent in theta was used as the temporal measure. Total
time spent in theta was used because theories suggest that infor-
mation storage in hippocampus occurs during theta, whereas
information reactivation and replay occurs during sharp wave—
ripples occurring in LIA (Buzsdki, 1989; Hasselmo and Bower,
1993; Redish, 1999). These theories predict that reactivation rate
should depend on total time spent in theta. Reactivation similar-
ity also increased with more regular behaviors and time spent in
theta. This effect was significant (stepwise multiple linear regres-
sion: effect of entropy, p < 0.005, and of time spent in theta, p <
0.05, with a significant interaction p < 0.001). The low number of
data points for this analysis was sufficient only for the pooled data
from the three tasks, not for individual task comparisons of reac-
tivation as a function of spatial regularity and experience (Fig. 8).

Effects of task order

On each day in experiment I, each rat ran all three tasks in one of
the following orders: LT-CF-CG, LT-CG-CF, CG-CF-LT, or
CF-CG-LT. There was no overall effect of order on number of
laps (ANOVA, no effect of order, F = 0.04, p = 0.8447). Nor was
there an effect on the entropy of behavior within each task
(ANOVA, no effect of order, F = 0.92, p = 0.33), nor on the time
spent in LIA during each task (ANOVA, no effect of order, F =
0.005, p = 0.81). Nor was there an effect of order on the number
of SWR complexes emitted (ANOVA, no effect of order, F =
0.44, p = 0.51), nor on the duration of the SWRs emitted during
each task (ANOVA, no effect of order, F = 0.1, p = 0.75). How-
ever, there was an effect of task order on the reactivation of
ensembles.

Because linear track was not run in the middle position, the
first task was compared with the third. As can be seen in Figure 9,
reactivation of the current task (i.e., LT while running LT, CF
while running CF, CG while running CG) was strong whether the
task was first or third (first, p < 0.0001; third, p < 0.0001). Reac-
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Figure9. Dependence of reactivation on the order of task experience. Reactivation similarity

(measured as negative log likelihood of similarity relative to randomness) as a function of order
of the tasks. The line indicates the significance threshold, p = 0.05. Statistics: All four conditions
show significant reactivation, p << 0.001, binomial test. Significant increase in reactivation of
other tasks with order ( p << 0.001, sign test) but no increase in reactivation of the task being
run ( p = 0.09, sign test).

tivation of other tasks (that is, CF or CG when running LT, LT or
CF when running CG, etc.) was weak, but significant (p <
0.0001) during the first task of the run. As can be seen in Figure 9,
strong reactivation of other tasks was present during the third
task of the run (p < 0.0001). Reactivation of the other tasks
increased significantly with order ( p < 0.0001, sign test), but the
reactivation of the primary task did not change significantly with
order ( p = 0.09, sign test).

These data show that reactivation during awake states in-
cludes both the task being run as well as other tasks previously
run by the animal. Reactivation of other tasks during the first run
may reflect memories from previous days (Kudrimoti et al., 1999;
Louie and Wilson, 2001). The increase in reactivation of other
tasks from first to third, however, implies that representations of
tasks recently run are reactivated during subsequent waking be-
havior in a manner similar to that known to occur during subse-
quent sleep sessions.

Experiment II: the multiple-T task: CA3 and CAl

The data in experiment I were all taken from the CAIl region
while rats ran familiar tasks. SWRs have also been seen in record-
ings taken from the CA3 region (Csicsvari et al., 2000; Behrens et
al., 2005). To determine the time course of changes in SWR gen-
eration with experience, we analyzed data from six animals run-
ning the multiple-T task. Although these animals had experience
running on 3T and 5T tasks, this was their first experience on 4T
mazes. Local field potential data were available from both CA3
(three animals) and CA1 (three animals).

Behavior on the MT task

Rats ran an average of 48 = 26 (SD) laps per 40 min session. There
was no significant difference between the number of laps run by
CA1 or CA3 rats [CAl: 46 = 2.4 (SE) laps; CA3: 49 = 2.5 (SE)
laps; p = 0.51, ns, t test], even taking differences between rats and
sessions into account (ANOVA, F = 0.03, p = 0.87, ns). Nor were
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(A3 and CATincreased over the first 20 laps but then remained stable for the rest of the session.
Error bars indicate SEM.

there differences in length of time spent in each lap between the
two groups (ANOVA controlling for changes in length oflap over
laps, F = 0.52, p = 0.47).

SWR emission on the MT task

As can be seen in Figure 10, overall, the number of SWR com-
plexes emitted per second of LIA increased over the first 20 laps,
but then remained at an approximately constant rate over the
subsequent laps. Although the number of SWR events emitted on
each lap differed between rat, the pattern of lap-dependent
change in SWR emission remained similar between rats
(ANOVA, effect of rat, F = 15.0, p < 10 ~'% effect of lap, F = 1.72,
p <0.002; no interaction, F = 0.94, p = 0.75). A linear regression
over the entire session showed a significant increase [F = 11.8; p
(slope = 0) < 0.001]. A linear regression over the first 20 laps
showed an even stronger effect (F = 82; p < 10~ '°). Both overall
and over the first 20 laps specifically, the SWR amplitude also
increased significantly (overall, F = 23.5, p < 10 ~7; first 20 laps,
F =15.4, p <0.001). Interestingly, whereas the number of SWR
complexes emitted per second of LIA after the first 20 laps re-
mained constant, the SWR amplitude continued to increase.

MT controls. Unlike the tasks in experiment I, on the MT task,
there was a significant increase in the proportion of time spent in
LIAin each lap (F = 74; p < 10 ~'°). Not surprisingly, given these
results, there was a corresponding increase in the transition rate
between theta and LIA in each lap (F = 35.0; p < 10 7). These
effects may be attributable to the fact that the MT task was phys-
ically much larger than the other three tasks, and the animal had
to run farther on the MT task to get food than on the other tasks.
However, these effects remained significant even when restricted
to the first 20 laps. Although these controls could explain the
increase in SWR emission with experience on the MT task, based
on the results from experiment I, we conclude that the increases
in SWR emission were likely a result of experience, not of
exhaustion.

Comparison of CA1 and CA3 SWR emission

Splitting by recording location, we found significant differences
between SWR emission rates in CA1 and CA3. Both CAl and
CA3 showed strong changes in SWR emission rates (ANOVA;
CA1,F=3.57,p <10 '% CA3, F = 2.04,p < 10 '°). As can be
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seen in Fig. 10, in both structures, the SWR emission rate in-
creased over the first 20 laps, and then remained approximately
constant through subsequent laps [increase over all laps: CAl, p
(slope = 0) < 0.00001; CA3, p (slope = 0) < 0.00001; over first 20
laps: CAL, p (slope = 0) < 10~'% CA3, p (slope = 0) < 10~®].
Controlling for session, rat, and changes over lap, there was a
significant lap by structure interaction (F = 1.6; p << 0.008). As
can be seen in Figure 10, CA3 showed an increased SWR emission
rate on early laps (f test comparing emission rate over first five
laps, p < 0.001).

Discussion

Together, these data confirm predictions that both SWRs and
reactivation develop with experience across multiple behavioral
tasks. This increased probability of SWR emission depended on
repetition and the regularity of the behavior. SWR emission rates
increased in both CA3 and CAl. Ensemble firing patterns during
task performance were reliably reactivated during SWRs emitted
on task. The similarity between the ensemble firing patterns in
SWR and theta increased across the task and also depended on
the regularity of the behavior.

The analyses presented here replicate and extend the recent
work by O’Neill et al. (2006) and Foster and Wilson (2006) that
the same cell assemblies that occur during theta are repeated
during sharp wave-ripple complexes occurring during LIA, and
that these assemblies become more likely to be reactivated with
experience on an environment. These data support learning the-
ories that suggest that experience-dependent mechanisms
strengthen cell assemblies during tasks and that SWRs reactivate
those cell assemblies in subsequent rest states. Such cell assem-
blies have been directly observed in theta during behavior (Wil-
son and McNaughton, 1993; Harris et al., 2003; Leutgeb et al.,
2005; Wills et al., 2005) and reactivation of those assemblies have
been observed during subsequent sleep states (Pavlides and Win-
son, 1989; Wilson and McNaughton, 1994; Kudrimoti et al.,
1999; Nadasdy et al., 1999; Lee and Wilson, 2002). The fact that
there was more reactivation of other tasks during the third task of
each session than there was during the first task of each session
(Fig. 9) implies that reactivation of recently experienced tasks
also occurs during waking rest. These data indicate that reactiva-
tion is a cumulative process that incorporates information from
all previous behavior (as opposed to place cell firing, which is task
specific).

SWR detection: changes in amplitude versus increases in rate
Because SWRs were detected with a threshold detection mecha-
nism, it is possible that the number of SWRs emitted remained
constant, but the amplitude increased, bringing more SWRs
above threshold. We find this unlikely, because SWR emission
rate changes and SWR amplitude changes were uncoupled. For
example, in experiment I, over all three tasks, the slope of SWR
emission increased significantly, whereas SWR amplitude did
not; whereas, in contrast, the SWR amplitude continued to in-
crease in rats running the multiple-T task, even after the increase
in SWR emission had stopped.

Implications for theories of SWR generation and function

Because the density of SWR emission during nontheta states de-
pended on the behavioral structure of the task, our results are
consistent with SWRs being generated by the sequential firing of
neurons as a result of plasticity induced by sequential behavior
(Skaggs and McNaughton, 1996; Csicsvari et al., 1999; Nadasdy et
al., 1999; Redish, 1999). Our data are consistent with the SWR
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itself being a consequence of a noise-driven firing cascade across
potentiated synapses within CA3 (Ylinen et al., 1995; Shen and
McNaughton, 1996; Redish and Touretzky, 1998; Csicsvari et al.,
1999, 2000; Behrens et al., 2005). Experimental evidence suggests
SWR activity in CA3 initiates CA1 SWRs (Buzsaki et al., 1983;
Ylinen et al., 1995; Csicsvari et al., 1999; Behrens et al., 2005). In
our data, there was an experience-dependent increase in SWR
emission in both CAl and CA3 regions of the hippocampus.
Theories of hippocampal function suggest that information is
stored in the hippocampus during the theta state and replayed
out via ripple activity during LIA (Marr, 1971; McNaughton et
al., 1983; Buzsaki, 1989, 1996; Redish and Touretzky, 1998;
Redish, 1999). Theories predict that asymmetric plasticity (Levy
and Steward, 1983; Bi and Poo, 2001) applied to recurrent con-
nections within CA3 through experience of repeated spatial se-
quences (Levy and Steward, 1983; Blum and Abbott, 1996; Redish
and Touretzky, 1998) results in replay of this stored information.
Our data strongly support this hypothesis; increases in SWR
emission and reactivation were dependent on the level of repeti-
tion of regular spatial sequences.

On the linear track and multiple-T tasks, the animal’s trajec-
tories were highly repeated with specific reward delivery sites
(back and forth along a thin track, around a loop on a track,
respectively). In contrast, on the cylinder tasks, the trajectories
were highly variable and the average reward distribution was uni-
form. These differences in behavior and reward distribution may
account for the higher rate of SWR emission on LT and MT. On
the goal-oriented task (CG), the repeated approach to the goal
may account for the increase in SWR emission rate with experi-
ence, which was not observed in the foraging task (CF). It is
possible that instrumental action required to obtain reward may
also be important. Quantitative analysis of these variations in
behavioral structure between LT, CF, and CG revealed a grada-
tion in the repetition of spatially sequential behavior. As shown in
Figure 7, combining the lap-to-lap variability of individual ses-
sions across all tasks showed that an increase in the occurrence of
SWR was strongly related to the cumulative sequential repetitive-
ness of behavior.

CA3 and CA1l

As shown in Figure 10, SWR emission rates increased in both CA3
and CA1 with experience on the multiple-T task. Although this is
consistent with theories suggesting that SWRs in CA1 reflect dy-
namics in CA3 projected to CA1 (Buzsaki, 1989; Ylinen et al.,
1995; Redish and Touretzky, 1998; Csicsvari et al., 1999, 2000;
Behrens et al., 2005), these recordings were not taken simulta-
neously. Therefore, we cannot measure the cross-coherence of
CA3 and CA1 [as was done, for example, by Csicsvari et al.
(2003)] and cannot conclude that CA3 “learns” earlier than CA1.
Our data are also compatible with separate SWR generation mech-
anisms in CA3 and CA1, but with some additional, unknown pro-
cess providing an early set of SWRs in CA3 but not CAl.

How much reactivation is based on internal input versus
external input?

O’Neill et al. (2006) have reported that SWRs occurring during
exploratory activity end with cells that reflect the current location
of the animal. Similarly, Foster and Wilson (2006) have reported
reverse sequences during awake SWRs on linear tracks that also
end with cells that reflect the current location of the animal. The
data from O’Neill et al. (2006) and Foster and Wilson (2006) may
reflect self-localization phenomena (Touretzky and Redish, 1996;
Redish and Touretzky, 1998; Redish, 1999). As shown computa-
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tionally by Touretzky and Redish, reactivation and self-
localization phenomena can co-occur in the same hippocampal
network, depending on the amount of external input provided to
the network during each SWR complex. Because our analyses did
not examine the order of cell firing within the SWR, it is possible
that some examples of “reactivation” seen on our tasks are actu-
ally examples of self-localization phenomena like those poten-
tially seen by O’Neill et al. (2006) and Foster and Wilson (2006).
However, reactivation of other tasks during a task (Fig. 9, bottom
right panel) must be examples of reactivation rather than self-
localization, because those reactivations do not reflect the current
task the animal is in.

Appendix: Cofiring reactivation analysis: pattern
reactivation at the ensemble level

Using only spikes that occurred in strictly high theta states (see
Materials and Methods, Theta detection), all neuron pairs that
cofired more often within a median theta cycle than they did
during 10 times the median theta cycle were considered to cofire.
This was assessed by finding the maximum bin of the cross-
correlation (binned at one-half the median theta cycle for the
session). If the maximum of the cross-correlation was at the zero
bin, that pair of neurons was declared to cofire during theta. To
avoid potential clustering problems (Quirk and Wilson, 1999),
only pairs from different tetrodes were included in the analysis.
Each pair was only counted once.

The same cofiring criterion was then applied to spikes emitted
during SWR complexes except that the median SWR duration
was used for the bin width of the cross-correlations between non-
tetrode cell pairs. For each pair of neurons, the cross-correlation
of all spikes fired during LIA by the pair was calculated, binned at
one-half the median SW duration. If the maximum of the cross-
correlation was at the zero bin, a pair of neurons was declared to
cofire during SWRs. Any noise in determining this measure
would only detract from the signal; therefore, this definition of
cofiring enforces the conservative nature of the analysis below.

Computing the temporal cofiring for all cell pairs from differ-
ent tetrodes yielded a pattern of 1’s and 0’s for the theta state s,
and for the SWR state sgyy (1 = cofiring, 0 = not cofiring) (see
example Egs. 2 and 3).

sqw = 10111 ... 100 (2)

s =00011...100. (3)

These two ensemble cofiring patterns were compared as follows:
(1) s. was computed as the exclusive OR (XOR) of the two binary
patterns sy and s, (see example Eq. 4):

s, = sqw D s, =10100. . . 000, (4)

(2) given the null hypothesis H, that sqy, and s, are independent
with respect to each other and randomly related, the probability
Prob(k = nN, p.) of observing a particular number of 1’s, where
n. = s, or less (1’s are mismatches between sqy, and s,) in the
pattern s, can be computed from the binomial cumulative distri-
bution (Eq. 5) with parameters p. (the probability of observing a
1) (Eq. 8), and the length N of pattern s,.

e N!
Prob(k = n|N, p) = > m?f(l —pNE(5)

k=1
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P the probability of observing a 1 in s, is determined from the
proportion of ones pg, in the SWR cofiring pattern and the
proportion of ones p, in the theta cofiring pattern (8).

3
pow =" (6)
sy
Po="N (7)
Pe= psw(l = po) + po(l — psw) (8)

This is a one-tailed measure of how significantly different from
random the similarity between two patterns is. If sq,, and s, are
very similar, s, has very few ones, and 7, is smaller than expected
by random chance; therefore, Prob(k < n,|N, p,) is low. Because
the probability of a mismatch p, is calculated from the proportion
of I’s and 0’s in the SWR and theta cofiring patterns, Prob
(k = n|N, p,) is robust to differences in overall proportions of
ones and zeros between the two patterns. Furthermore, because
the null hypothesis assumes the patterns are randomly related,
dependences between elements within either pattern are there-
fore expected to be randomly related. The result is that the indi-
vidual elements of the output of the XOR operation are expected
to be independent and identically distributed. Violations arising
out of dependencies that occur in both sets argue for a rejection of
the null hypothesis. Our analytical calculations and empirical
simulations found that the binomial approximation is conserva-
tive and will underestimate significance levels. This is because of
lower and upper limits to the number of possible matches, which
reduces the possibility of seeing low probability events (i.e.,
events that argue for a rejection of the null hypothesis). These
limits come increasingly into play as the proportion of 1’s and 0’s
in the two patterns deviates from 50%, as is often the case in our
data. Thus, as the proportion of 1’s and 0’s gets farther from even
in either or both patterns, the measure becomes more conserva-
tive with n.approaching either N X p.or N X (1 — p_).
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